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Highlights 

 

 Known pattern was disclosed by independent techniques, bunch of techniques 

provides same pattern 

 Similarity of columns are revealed by non-parametric methods  

 Sum of ranking difference and generalized pair correlation methods for fine 

differences 

 The primary retention data are superior compared to the HS approach 

 Enforcing HS model leads to significant information loss 
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Abstract 

Comparison and selection of chromatographic columns is an important part of 

development as well as validation of analytical methods. Presently there is abundant number 

of methods for selection of the most similar and orthogonal columns, based on the application 

of limited number of test compounds as well as quantitative structure retention relationship 

models (QSRR), from among Snyder’s hydrophobic-subtraction model (HSM) have been 

most extensively used.  

Chromatographic data of 67 compounds were evaluated using principal component 

analysis (PCA), hierarchical cluster analysis (HCA), non-parametric ranking methods as sum 

of ranking differences (SRD) and generalized pairwise correlation method (GPCM), both 

applied as a consensus driven comparison, and complemented by the comparison with one 

variable at a time (COVAT) approach. The aim was to compare the ability of the HSM 

approach and the approach based on primary retention data of test solutes (logk values) to 

differentiate among ten highly similar C18 columns. 

The ranking (clustering) pattern of chromatographic columns based on primary 

retention data and HSM parameters gave different results in all instances. Patterns based on 

retention coefficients were in accordance with expectations based on columns’ 

physicochemical parameters, while HSM parameters provided a different clustering. 

Similarity indices calculated from the following dissimilarity measures: SRD, GPCM 

Fisher’s conditional exact probability weighted (CEPW) scores; Euclidian, Manhattan, 

Chebyshev, and cosine distances Pearson’s, Spearman’s, and Kendall’s, correlation 

coefficients have been ranked by the consensus based SRD. Analysis of variance confirmed 

that the HSM model produced statistically significant increases of SRD values for the 

majority of similarity indices, i.e. HS transformation of original retention data yields 
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significant loss of information, and finally results in lower performance of HSM 

methodology. The best similarity measures were obtained using primary retention data, and 

derived from Kendal’s and Spearman’s correlation coefficients, as well as GPCM and SRD 

score values. Selectivity function, Fs, originally proposed by Snyder, demonstrated moderate 

performance. 

Keywords: Chromatographic column selection, Distance and orthogonality measures, 

Hydrophobic subtraction model, Sum of Ranking Differences, Generalized Pairwise 

Correlation method, Principal Component Analysis 
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1. Introduction 

 Presently there is abundant numbers of various brands of reversed-phase stationary 

phases available on the market, and new ones are released regularly. Since separation 

performance of a chromatographic column strongly depends on the properties of stationary 

phase, it is important to have reliable means for their comparison and adequate selection.  

 Comparison and selection of appropriate columns is an important part of development 

and validation of many chromatographic methods. During early phases of method 

development, a search for the most dissimilar (orthogonal) chromatographic systems is 

targeted in order to achieve the optimal separation of analytes and their impurities [1]. On the 

other hand, selection of the most similar columns is of great importance in assessing 

robustness and reproducibility of a method, and plays important role in method transferring 

processes. Information on chromatographic column similarity is of great deal in every-day 

laboratory practice providing valuable information to a researcher in order to choose a 

suitable substitute [2].  

 At present, numerous approaches exist to compare and select similar and dissimilar 

(orthogonal) chromatographic columns (systems) [3]. Some comparison methods use only a 

few test solutes (six or seven) in order to determine stationary phase characteristics such as: 

hydrophobicity, hydrophobic selectivity, shape selectivity, hydrogen bonding, ion exchange 

etc. Engelhardt’s test [4,5], the extensively used Tanaka’s test [6], its modifications [7-9], and 

the Catholic University of Leuven (Katholieke Universiteit Leuven - KUL) method [10-13] 

are good examples. The other approaches include establishing quantitative structure retention 

relationships (QSRR) models describing the chromatographic column selectivity in terms of 

molecular descriptors [14,15] or physicochemical properties such as linear solvation energy 

relationships (LSER) [16] or HSM method [17-22]. 
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All column classification systems suffer from the problem that the inherent clustering pattern 

among the columns is not known. 

Although, aiming to measure more or less the same column properties, some of the methods 

usually provide significantly different results (e.g. KUL method, original Tanaka’s test and its 

modifications) [22,23]. The situation is more complicated by use of different chemometric 

approaches to perform comparisons. Principal component analysis (PCA) and hierarchical 

cluster analysis (HCA) are most frequently employed [1,8,9]. The main drawback of 

unsupervised pattern recognition methods is that they provide different column 

grouping/ranking patterns depending on the applied amalgamation rule (e.g., weighted and 

unweighted-average linkage, single and complete linkage, the centroid, Ward’s method, etc.), 

and distance/similarity measure used [24-26]. Various dissimilarity measures such as 

selectivity function, Fs [11-13,23] and orthogonality ratio (OR) based on Pearson’s 

correlation coefficient, Spearman’s rho, and generalized pairwise correlation method (GPCM) 

based on Fisher’s conditional exact test as well as McNemar’s significance test [25] are used 

to find the most similar or the most orthogonal systems. All of them lead to different results. 

Column selectivity function, Fs, is an Euclidian distance of a target column (1) to the 

reference one (2) (Eq. 1). Hence it is represented by a single number, and is originally used in 

the framework of the hydrophobic-subtraction model. 
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Where a, b, c, h and s are weight factors that depends on the nature and structure of the set of 

test compounds. 

However, the same form of equation is often applied by the KUL, Euerby, Tanaka, and 

similar testing assays [11-13,23]. Column comparison is also done based on primary retention 

data (logk values) of testing solutes, and already mentioned techniques of multivariate data 

analysis [28].  
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The commonly used approach is to disclose the correlation matrix showing the similarities of 

columns pairwise. These matrices can be colored producing attractive heatmaps. As many 

similarity measures exist, many such heatmaps can be produced. They are rarely used for 

column selection as the similarity pattern depends on the definition of similarity and the color 

coding strongly. In this work we invent a solution to the problem of arbitrarily selected 

reference columns (COVAT method, see later). At the same time we apply a fair comparison 

method for various similarity search algorithms and for the “best” similarity metrics suitable 

to define the inherent clustering of chromatographic columns.  

 Finally, the present study aims to compare the ability of the HSM approach and the 

approach based on primary retention data to rank, group, and select the most similar and 

dissimilar (orthogonal) chromatographic columns, especially in the case of columns of highly 

similar properties (performance). For such purposes, we have decided to reinvestigate the 

emblematic data of Wilson’s et al. [17], which is historically a starting point in developing of 

the HSM approach. The method evolved during years and some changes in the values of the 

HSM column parameters occurred in latter works [19,20]. Also, Shackman [29] recently 

alerted to some minor discrepancies among HSM values reported for the same columns in 

above mentioned sources [19,20]. Despite of these discrepancies we were motivated to use 

this particular data set because its intrinsic data structure is well described and supported by 

physicochemical properties of the columns. Therefore, it suits ideally for a method 

comparison study. Several chemometric approaches were used such as PCA, HCA, and novel 

non-parametric ranking methods - called sum of ranking differences (SRD) [30-32] and the 

GPCM [33,34].  

 

2. Materials and methods (calculations) 

2.1. Data selection 
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Wilson and co-authors [17] have studied retention behavior of 67 solutes of highly 

diverse molecular structure on ten very similar octadecyl silica modified chromatographic 

columns, under the same chromatographic conditions. They have used retention data to 

develop a five term equation (Eq. 1) connecting the retention of solutes and column 

properties, by the so called hydrophobic-subtraction model. The model allows the 

characterization of the column selectivity according to hydrophobicity (H), steric resistance to 

penetration into the stationary phase (S), hydrogen bonding of basic or acidic solutes, 

respectively, acidic or basic column sites (hydrogen-bond acidity A and basicity B) and ion 

interaction or ion-exchange capacity (C).  

The source provides the column properties, primary retention data (logk values), and 

derived column selectivity parameters that are included in the scope of the present work as 

Table 1, and the Tables S1 and S2 (Supplementary material). 

Table 1 

The retention data are collected on a single mobile phase composition (50% acetonitrile -

phosphate buffer) with a pH = 2.8, at a temperature of 35 °C. Although Wilson et al. [18] 

suggested that measured column selectivity under one set of conditions can be related to 

different conditions, and thus likely relative values remain constant, it is worth mentioning 

that any variation in the experimental conditions would impact the retention data, and thus 

may change the findings presented in the current work. 

 

2.2. Data pre-processing and statistical analysis 

As primary retention data are basically expressed on the same scale, considering that 

very similar columns have been studied under the same chromatographic conditions, basically 

no data pre-processing is necessary. Nevertheless, in the case of PCA and HCA, mean 
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centering and scaling to the unit standard deviation (standardization) was applied, as in the 

case of column selectivity parameters, which are expressed in different scales. 

In the case of comparison of various dissimilarity measures (see section 3.3) different 

data pre-processing were investigated: (i) standardization, (ii) range scaling between 0 and 1, 

and (iii) rank transformation. Previous studies [35-36] suggest that variance analysis is able to 

reveal, whether the data preprocessing is a significant factor or not. If not, one can be sure that 

no artifacts are incorporated in the analysis by data pre-processing [35]. Otherwise, the best 

preprocessing method should be recommended [34]. 

All data pre-processing, descriptive statistics, PCA, HCA, and analysis of variance 

(ANOVA) were performed using Statistica v. 10 (Statsoft Inc. Tulsa, Oklahoma, USA).  

In the case of HCA and PCA the PLS, PCA and multivariate/Batch SPC module was 

used, while analysis of variance was done by Factorial ANOVA tool, part of advanced models 

(General linear) module, Statistica v. 10.  

HCA has been carried out using Ward’s amalgamation rule and Euclidian distance as a 

distance measure. The rest of computations were performed using Microsoft Excel 2010. 

 

2.3. Sum of ranking differences 

Sum of ranking differences has been developed with a purpose to fairly rank, group and 

compare methods and models [30]. It has been applied to various problems so far: from 

checking the multi-class classification performance in the case of tobacco leaf grades [37] via 

ranking and classifying chromatographic systems [38,39], to selection of multiple tuning 

parameters for multivariate calibration [40]. 

The SRD approach is simple: It requires the input data matrix consisting of objects 

arranged in rows (in the present case 67 compounds, or column selectivity parameters in case 

of HSM data) and methods (in this case chromatographic columns, or dissimilarity measures) 
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arranged in columns. In order to rank, compare, and group methods, a reference must be 

provided. Depending on the nature of the data, a reference can be the row maximum, row 

minimum, row arithmetic mean (average) values, or an already known set of reference values. 

Rationales for the use of row maxima and minima are valid in the case of properties that are 

maximized or minimized under optimal conditions, such as correlation coefficients and 

method errors (residuals), respectively. However, in most situations the use of the average is 

suitable (consensus modeling). Two main points justify this: (i) every method is accompanied 

by some sort of bias, as well as random errors; hence, the usage of arithmetic means leads to 

errors to cancel each other (at least) to a certain extent, and (ii) according to maximum 

likelihood principle the average is the most probable value to apply instead of all studied 

methods individually.  

After setting up the input matrix, the objects are ranked for each method including the 

reference, and these ranks are subtracted from the reference ranking. Absolute values of 

differences are then summed up and every method is associated with an SRD value. The 

lower the SRD value, the closer is the method to the benchmark, and vice versa. In that way 

the ranking of methods (in this case chromatographic columns, or dissimilarity measures) is 

obtained. The SRD values are usually expressed as the range scaled values between 0 and 100 

– so called normalized SRDs.  

The SRD procedure is validated in two ways. The first one, called comparison of ranks 

by random numbers (CRRN), either uses simulated random numbers or theoretical 

distribution of the random SRD values. SRD values that originate significantly differently 

from random distribution fall away from each side of the theoretical or fitted Gaussian-like 

curve at the significance level p = 0.05. The second validation uses sevenfold (n > 13) or 

leave-one-out cross-validation (n < 14) procedures to create seven, or n datasets by removing 

1/7th of objects, or just 1, in each step, where n is the total number of objects. Truncated 
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datasets are further subjected to SRD procedure, which finally results in 7 or n SRD values 

for each variable (method), enabling the estimation of their uncertainty. Statistical difference 

among variables (methods) can be then tested by applying Wilcoxon’s matched pair test, as 

well as sign test. Graphical representation of ranking and grouping may preferably be 

completed providing box and whisker plots.  

 Validation approaches are complementary. The first one provides information whether 

the ranking is statistically different from the random distribution of SRDs, while the second 

one additionally provides statistically significant difference among studied methods 

(variables). SRD procedure was done using several Microsoft Excel macros that can be 

downloaded from http://aki.ttk.mta.hu/srd/ together with input and output files. 

 

2.4. Generalized pairwise correlation method 

 The method requires the same data input matrix as in the case of the SRD; however, the 

GPCM approach is based on completely different train of thoughts. First, two variables (X1 

and X2) are selected and compared with the reference for each object pair. There are four 

possible outcomes: A) both ΔX1 and ΔX2 are positive, B) one of them is positive the other is 

negative, C) vice versa, D) both are negative. The numbers of events are counted for all 

possible pairs of objects. Then a suitable statistical test (e.g. Fisher’s conditional exact, 

McNemar’s, Chi-square and William’s test) decides whether the numbers of B and C events 

are significantly different or not: i.e. X1 is superior (wins over) to X2, reversely (looses 

against X2), or no decision can be made (tie). In the present work, only conditional exact 

Fisher’s test (CE) was used. Then, variables are compared pairwise with the reference, 

considering all possible combinations. Variables can be further ranked according to the 

number of wins (simple ranking), number of wins minus number of losses, or probability 

http://aki.ttk.mta.hu/srd/
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weighted ranking (PW), i.e. based on p(wins)-p(losses) scores. The last one was used in the 

present work.  

 

3. Results and discussion  

3.1. Exploratory data analysis 

 Visual inspection of the radar plots (Figure 1) suggests that all studied compounds 

except 16, 18, 45-50, 63-65, 67, share extremely similar retention profiles (the similar shape 

of different size). Compounds 46-50 are strong basic solutes, while solutes 56-67 are weak 

acids (Table S2, Supplementary material). This implies that column comparison based on 

such a vast number of compounds should definitely contain redundant information, and that 

significantly smaller set of compounds could be equally suitable. Indeed, the creators of the 

HSM approach ultimately reduced the size of the test set to 16 solutes [19], which are still in 

use for determination of HSM parameters for new columns. Use of 67 solutes for testing 

column selectivity requires significant recourses and is simply impractical. However, in this 

case Wilson et al. [17] have done a good job in selecting ten columns which have indeed very 

similar behavior, as demonstrated by the retention of a large portion of the test set (n = 67).  

Figure 1  

 Standardized primary retention data were subjected to PCA and HCA to accomplish 

better insight into data structure. Standardization (mean centering and scaling to the unit 

standard deviation) has been used as a data preprocessing step for both data sets: for logk data 

and HSM parameters. A virtual (hypothetic) average reference column (VARC) was created 

based on average retention coefficients of all 67 substances on all 10 columns. Selectivity 

parameters (H, S, A, B, and C) of the VARC were obtained as regression coefficients of the 

multiple regression model using average logk as dependent and selectivity parameters of 

solutes as independent variables (Tables S1 and S2, Supplementary material). 
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Figure 2 

 The total variance (98.06%) of the overall primary retention data was described using the 

first two principal components (91.02% and 7.04% by PC1 and PC2 respectively). Only SB-

300 and Discovery can be distinguished by PC1. However, retention data variability along 

PC2 reveals fine differences among the rest of the chromatographic columns. As it could be 

expected, based on the column property profiles (Table 1), SB-100 and SB-90 exhibit the 

greatest similarity. Close to them are all three YMC columns and the Eclipse. All of these are 

very close to the VARC, while Symmetry and Inertsil diverge. An outlier stationary phase 

(SB 300) was also observed and validated (see Table 1). This is also in accordance with 

expectations based on already known primary retention data structure. The loading plot 

reveals that compounds 45-50 diverge significantly from the main cluster. This is reasonable 

since all of them exhibit strong basic properties and are therefore retained by mechanisms, 

which most likely involve extensive ionic interactions with negatively charged silanols.  

 However, PCA based on HSM parameters leads to different disposition of 

chromatographic columns (Figure 2c). Considering the first two principal components, which 

account for 84.53% of the overall variance, chromatographic columns YMC 15, YMC 16, 

YMC 17 and Eclipse remain the closest to the VARC, but Inertsil and Symmetry, which were 

distant from the VARC in the case of PCA based on primary retention data, suddenly become 

closer. Also SB-100 and SB-90 that have been close to the VARC in the previous case and 

according to physicochemical parameters are very distant now.  

 Hierarchical cluster analysis complements the findings of PCA (Figures S1a and S1b, 

Supplementary material).  

 If one would like to substitute the VARC, the best choice would be YMC 16, and 

YMC 17, followed by Eclipse and YMC 15. Both, PCA and HCA may lead to the same 

conclusion.  
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3.2. Comparison of chromatographic columns by means of SRD and GPCM  

 Although PCA and HCA have been frequently applied to find similarities among 

particular chromatographic conditions [1,8,9], or specific chromatographic columns, the non-

supervised character renders an ambiguity to the pattern. The main disadvantage of PCA is a 

loss of information with consecutive reduction of dimensionality by projecting data only to 

few principal components. Besides, both PCA and HCA lack in estimation of statistical 

significance of such comparisons.  

 Non-parametric ranking methods such as SRD and GPCM, have the ability to fairly rank, 

group and compare methods (in this particular case chromatographic columns). They are also 

able to find differences when other parametric tests fail. SRD and GPCM are able to fuse 

multiple criteria (parameters) in order to achieve the final ranking.  

 In the present work both, retention and HSM data have been subjected to the SRD and 

GPCM without any preprocessing, using VARC as a benchmark. Validation of the SRD 

procedure was completed by comparison with the distribution of random numbers (CRRN).  

Figure 3 

 Both, SRD and GPCM ranking methods based on primary retention data (Figures 3a, 

and 3c) select the YMC 16 and YMC 17 as the closest to the VARC, followed by SB-100, 

SB-90, Inertsil and Discovery. SB-300 is distinctively separated from the rest of them (an 

outlier). This is again the pattern that is expected based on the well-known column property 

profiles (Table 1). All chromatographic columns are positioned far from the random number 

distribution curve in a narrow window of the SRD values (0.98-5.17), which indicates that all 

of them are powerful in ranking test solutes, mostly according to their abilities to establish 

hydrophobic, as well as specific interactions with the stationary phase, and not by chance. 

Although, the SRD and GPCM share the main ranking pattern, there are several 
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chromatographic columns that are separated by SRD, which are “glued together” by GPCM 

comparison (sharing almost the same GPCM score values). Obviously, the SRD is more 

suitable, when refined discrimination among similar columns is needed.  

 Contrary to the ranking based on primary retention data, comparisons based on HSM 

parameters reveals completely different patterns. Both, SRD and GPCM select Inertsil and 

YMC1 5 as the closest to the VARC. However, GPCM ranks the SB-300 as the worst one, 

i.e., the farthest from the reference, and clearly separated from the rest of them, while SRD 

puts all three SB columns together at the very end. Also, with the exception of Inertsil and 

YMC1 5, the SRD puts all chromatographic columns under the 95% probability interval of 

the random SRD distribution curve. In this particular case this is simply a consequence of a 

limited number of input terms (H, S, A, B and C). Again, patterns provided by GPCM and 

SRD are slightly different; however, the inherent order is preserved (Table S3, 

Supplementary material). The ranking pattern among columns suggested by both comparison 

methods using HSM data is different from expectations based on column properties. This 

might suggest that applying the HSM methodology to retention data may result in partial 

distortion of column grouping (based on selectivity) information.  

Figure 4 

After completing the sevenfold cross-validation procedure on retention data, as described in 

the section 2.3, the results are depicted in a form of box and whisker plot (Figure 4). All three 

YMC columns cannot be distinguished among themselves at the predefined significance level 

of p = 0.05. The same is valid for SB-90 and SB-100. However, the group of Inertsil, 

Symmetry and Discovery is clearly separated from the previous ones. The same is valid for 

SB-300, which differs from all others. In this way identifying similar and orthogonal columns 

is statistically justified. This is of great importance for chromatographers since the SRD 

procedure can be easily implemented for “in house” column comparisons or it can be 
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embedded in large databases. Compared to the HSM for which the cut off condition (Fs < 3) 

is empirically established, the SRD approach is founded on a firm statistically basis. 

 Although the use of the arithmetic mean as a reference seems to be an ideal solution, 

sometimes the choice of reference is not unambiguous. In such cases an alternative 

methodology might be used – the application of pairwise variable comparisons. Correlation or 

distance based matrices are most often used [24-26]. However, sometimes such matrices, 

especially in the form of heatmaps are used merely as a convenient representation of HCA 

results [24-26]. We have extended the capabilities of SRD and GPCM by using each variable 

(column) as a reference once and only once [41]. As a final result square matrices are 

obtained, which are superior in finding orthogonal and similar objects, over the classical 

approaches based on Pearson or Spearman rank correlation coefficients [41]. We have named 

this approach as comparison with one variable at a time (COVAT). SRD-COVAT matrix is 

completely symmetrical, while GPCM produces asymmetric one by definition. This is 

expected since GPCM probability weighted scores differ depending on weather x or y is used 

as a reference. Finally, the SRD-COVAT matrix is rearranged according to ascending order of 

the row-wise averaged SRD scores (which is, at the same time, the ascending order of the 

column-wise average SRDs, as the matrix is symmetric unless ties (equal numbers) are 

present in the input matrix). In the case of GPCM matrix, due to the inherent asymmetry, the 

rearrangement is slightly different. The reference variables are arranged in columns in an 

ascending order of the row-wise averages score. However, column-wise averaging leads to 

different results; therefore, the arrangement of GPCM-COVAT matrices demands a 

compromise. Results for both matrices are presented in an easily perceivable way using a 

heatmap, with three coloring schemes: relative, absolute and Gaussian. In the present work we 

have decided to stick with the relative coloring, which divide the range of score values into 

ten sub-ranges of the same size (0-10%, 10-20%,…,90-100%) and a color is assigned to each 
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of them (Figure 5). In the case of SRD-COVAT matrix the most similar elements are easily 

found in the top corner of a heatmap, and along the diagonal, sharing the same or similar 

color (Figures 5a and 5b). GPCM-COVAT matrix requires different interpretation (Figures 

5c and 5d). In the case of SRD we have implemented a MS Excel VBA macro for the 

generation of “SRD heatmaps”, which is also available for download at: 

http://aki.ttk.mta.hu/srd/ 

Figure 5 

 Both SRD and GPCM COVAT relative heatmaps based on primary retention data 

(Figures 5a and 5c respectively) share a common pattern. Again, columns YMC 16, YMC 17 

and YMC 15 are identified as the most similar ones, and they are best correlated with the rest 

of the studied columns. They are clustered in the upper left square A, closely bound with 

Eclipse (square B). Both chromatographic columns SB-90 and SB-100 are joined together 

along the matrix diagonal (square C). The most dissimilar column, SB-300, is located at the 

very edges of the matrix (area denoted as D). The rest of them, Inertsil, Discovery and 

Symmetry are placed in between. This is, again, confirmation of the expected pattern based 

on column properties, and above described results. Based on COVAT matrices it is easy to 

select the most similar as well as the most dissimilar pairs of chromatographic columns. For 

example SB-90 can be easily replaced by SB-100. However, in the absence of SB-100, a 

much better choice can be found from the columns located in the upper part of the matrix, 

e.g., Eclipse, YMC 16, or YMC 17, than those located below (Inertsil, Discovery or 

Symmetry). 

 SRD and GPCM COVAT matrices based on HSM parameters (Figures 5b and 5d) 

demonstrate a considerably different pattern. Only the pair made of SB-90 and SB-100 

columns is preserved. Also, YMC 16 and YMC 17 together with Eclipse can be found in the 

upper left area of both matrices. However, the upper position of Discovery, the middle 

http://aki.ttk.mta.hu/srd/
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position of SB-300 column, and the marginal position of YMC 15 clearly indicate strong 

deviation from the expected similarity pattern among the columns, which is inherent in the 

column physicochemical property data as well as primary retention data. The complete list of 

COVAT scores is provided in the Supplementary material (Tables S4a - S4d). 

 

3.3. Miscellaneous (dis)similarity measures in column comparison 

 Besides the various chemometric approaches discussed above, a simple (dis)similarity 

measure between two chromatographic columns is often used. Most (dis)similarity measures 

evaluated in this work (Table 3) are well known, and some of them have been already used in 

column comparison studies [11-13,17,23-26]. Nevertheless, a few points should be 

emphasized. First of all, our primary goal was to determine which type of data is the most 

suitable for column clustering. As different similarity measures are variously sensitive to 

deviations from the normal distribution and the presence of outliers, we have to use (more) 

robust similarity coefficients. However, we had to include absolute Pearson correlation 

distance, cosine and Manhattan distance because of their frequent usage. Second of all, any 

dissimilarity (distance) d(A,B), and similarity measure S(A,B) among two objects A and B 

can be interconverted by several mathematical transformations [42]. In the case of the so-

called “unbound” dissimilarity measures, which lie in the range       , transformation was 

done according to the Eq. 2. In the case of bound dissimilarities, ranging between 0 and 1, 

S(A,B) was calculated according to the Eq. 3.  

 
),(1

1
),(

BAd
BAS


  (2) 

 ),(1),( BAdBAS   (3) 

 Short definitions of investigated dissimilarity measures and their corresponding 

similarities are given in Table 2. The values of distances of chromatographic columns from 

the VARC, based on primary retention data, as well as HSM parameters are collected in the 
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Table S5a, while the corresponding similarities are given in the Table S5b (Supplementary 

material).  

Table 2 

Figure 6 

 The pattern among chromatographic columns, such as possible groupings, as well as the 

most similar and the most distant ones from the reference, can be easily identified by fusion 

of similarity or dissimilarity measures. In that sense, stack plots of interval scaled (between 0 

and 1) dissimilarity and similarity measures are particularly useful, providing cumulative 

profiles, which are sensitive to small differences among the columns. Profiles based on 

primary retention data (Figures 6a and 6c) demonstrate high similarity of all three YMC 

columns, which are the closest to the VARC (the lowest cumulative distance values, and the 

highest values of corresponding cumulative similarities). The Eclipse follows closely the 

pattern, along with the pair of SB-100 and SB-90, while the last ones are Inertsil, Symmetry 

and Discovery. However, the sharp peak of cumulative distance and the corresponding deep 

valley of cumulative similarity come from SB-300. Such behavior is in accordance with the 

already described physical properties of columns. On the contrary, the stack plots based on 

HSM parameters (Figures 6b and 6d) provide a completely different picture. The cumulative 

dissimilarity profile hardly distinguishes between all three SB columns, and the YMC 15 can 

be easily differentiated from the YMC 16 and YMC 17 columns. The similarity (dissimilarity) 

measures behave differently for Symmetry column – zigzag pattern for HSM data (Figures 

6b and 6d) whereas a more uniform behavior is seen in Figures 6a and 6c. 

 Obviously, the primary retention data provide different pattern between chromatographic 

columns compared to Snyder’s HSM selectivity parameters. In order to investigate this 

particular phenomenon we have decided to rank and group similarity measures by SRD in a 

consensus based comparison. The arithmetic mean was used as the reference. A comparison 



-20- 

 

of similarities is more convenient than comparison of corresponding dissimilarities simply 

because they range between 0 and 1, with 1 corresponding to identical objects and 0 to the 

most dissimilar ones. It should be kept in mind that different similarity measures might be on 

different scale, although they are located in the same range [35], especially if they are derived 

from similar or complementary distance metrics. According to Bajusz et al. [35] the 

relationship of such metrics and their arithmetic mean average is not linear. To get a fair 

comparison it is essential to scale all similarity measures to the same range using different 

transformation methods such as: standardization (mean centering and scaling to the unit 

standard deviation), interval scaling (between 0 and 1) and rank transformation.  

Figure 7 

 Complete list of the SRD scores is given in the Table S6, Supplementary material.  

The ranking is slightly altered by the data preprocessing method. However, the main pattern 

remains preserved. In the case of the standardized data (Figure 7) the best, i.e., the closest to 

the average (consensus) similarity measure is based on the Kendal’s correlation coefficient, 

which is closely followed by the GPCM and SRD. All three are derived from the primary 

retention data. The worst similarity measures, which fall under the bell shaped distribution 

curve of random SRD values, and therefore are statistically insignificant, are mostly based on 

HSM parameters, derived from non-parametric metrics (i.e., Kendal’s and Spearman’s rank 

correlation coefficients, as well as scaled SRD values, denoted by GPCM_HSM, KNT_HSM, 

SPR_HSM and SRD_HSM). Generally, a trend of lower SRD values of similarities based on 

primary retention data can be noticed. Similarity derived from the Fs comparison function, 

originally proposed by Snyder, works fairly well, although not being the best ranked.  

 In order to estimate the effect of (i) a preprocessing method of similarity measures, (ii) 

the sort of similarity measures, and (iii) the type of chromatographic data (primary retention 

vs. HSM parameters), on the ranking of similarity measures, the uncertainty was estimated for 
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each of the SRD scores by the leave-one-out cross-validation procedure. In that way 594 SRD 

score values were obtained (11 repetitions × 3 sorts of preprocessing methods × 9 similarity 

measures × 2 types of chromatographic data). SRD scores were further subjected to the 

factorial analysis of variance with type III decomposition, resulting in the full linear model 

with Eq. 4. 

Score = b0 + b1F1 + b2F2 + b3F3 + b12F1F2 + b13F1F3 + b23F2F3 + b123F1F2F3  (4) 

Where F1 accounts for the data preprocessing methods in three levels coded as 

standardization (STD), range scaling (SCL), and rank transformation (RNK); F2 represents 

the type of chromatographic data, coded at two levels: retention vs. HSM selectivity data, and 

finally, F3 encodes information about similarity measures at nine levels: EUC, MNH, CHD, 

COR, SPR, KNT GPCM, SRD, and COS. Snyder’s selectivity function Fs, was omitted in 

order to make factorial design balanced (Fs as such cannot be defined for primary retention 

data).  

Statistical parameters of ANOVA are listed in the Table 3. All factors including their 

cross-coupling terms, with exception of F1 and the corresponding interaction term are 

statistically significantly affecting the ranking of similarity measures at the predefined 

significance level of p = 0.05.  

Figure 8 shows the statistical significance of factor effects in a way that is much easier to 

understand. 

Table 3 

Figure 8 

Clearly, standardization and range scaling do not significantly affect the outcome of SRD 

ranking of similarity indices. However, in the case of primary retention data, rank 

transformation provides significantly lower SRD scores for all similarity coefficients, while in 
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the case of the HSM parameters, non-parametric based similarity measures (KNT, GPCM, 

SRD, and SPR) have significantly higher SRDs.  

Considering the fact that the lower the SRD scores are, the better the performance of a 

similarity measure is, it is clear that in most cases similarities based on HSM parameters 

results in significantly higher SRD scores (perform worse) compared to those derived from 

primary retention data. The exceptions are: MNH, COR and EUC in which case the use of HS 

parameters leads to equal or significantly better performance (EUC in the case of rank 

transformed data). The best similarity measures are: KNT, SRD, GPCM, and SPR derived 

from primary retention data. They could be particularly useful for comparison methods based 

on retention coefficients such as KUL, Tanaka, Euerby etc. instead of currently used 

Euclidian distance. Also, this clearly demonstrates a significant loss of information due to 

reinforcement of hydrophobic-subtraction model which is based on a limited number of 

assumed interaction terms) to describe column selectivity. However, because the Fs parameter 

is nothing else but a weighted form of Euclidian distance, it should be expected that itself, as 

well as its corresponding similarity measure have a moderate performance such as: CHD, 

COS and SPR in the case of primary retention data.  

 

4. Conclusion 

Non-parametric ranking based on Sum of Ranking Differences (SRD) as well as the 

Generalized Pairwise Correlation Method (GPCM) combined with conditional exact Fisher’s 

test (CE) are able to fairly compare, rank, and cluster chromatographic columns using a 

consensus based approach (arithmetic mean as a reference). The methods are sensitive in 

exploring refined differences among ten very similar chromatographic columns. Unlike 

Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) the methods 

provide statistical significance of ranking (grouping) patterns. 
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The methodology of SRD and GPCM, extended by the comparison with one variable at a 

time (COVAT) approach, provide symmetric and asymmetric matrices, respectively. The 

methodology uses each variable as a reference for comparison and possible grouping of 

chromatographic columns is revealed without selection of one particular (dedicated) column. 

The relative coloring of matrices enables the most similar and orthogonal chromatographic 

systems to be identified in an easily perceivable way.  

In all instances the ranking (clustering) pattern of chromatographic columns based on 

primary retention data (logk values), and hydrophobic-subtraction model (HSM) selectivity 

parameters gave different results. However, the primary retention data resulted in patterns that 

are consistent with differences in the columns’ physicochemical parameters, while HSM 

provide results that are drifting away to higher or lesser degree, depending on the particular 

chemometric approach, plus they are inconsistent within the various methods applied. 

Consensus based SRD comparison of nine similarity measures based on bound and 

unbound distances (dissimilarities), implied the existence of a trend in significantly lower 

SRD scores associated with similarity indices derived from primary retention data as 

compared to the ones derived from HSM parameters. The lower SRD scores indicate better 

performance and vice versa.  

Analysis of variance confirmed that (i) the type of data preprocessing was insignificant, 

but (ii) the type of chromatographic data (primary retention vs. HSM parameters) significantly 

affects the ranking of similarity measures, i.e., application of the HSM to retention data 

results in statistically significant increase of SRD values (worsen performance) for majority of 

similarity indices (exception are those based on Euclidian and Manhattan distance). 

Therefore, significant loss of information arises during the application of the HSM. The sort 

of distance measure is another factor influencing the performance of similarity indices. The 
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best ones are obtained on primary retention data and derived from Kendall’s and Spearman’s 

correlation coefficients, as well as GPCM and SRD score values. Selectivity function, Fs, 

originally proposed by Snyder, has moderate (medium) performance. 

Although our investigations are limited to one (well-known) data set, the procedure and 

algorithm can be carried out on any data sets partially and on the whole to select the most 

similar and dissimilar columns. 
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Tables 

Table 1 List of chromatographic columns and their properties; Data are taken from the 

reference [17] (Copyright Elsevier: license number 3995960369478, License date Nov 25, 

2016). 

No. Column name Abbreviation 

Surface 

area 

(m
2
/g) 

Pore 

diameter 

(nm) 

%C μmol/m
2
 

1 GL Inertsil ODS-3 Inertsil 436 9.5 14.7 1.74 

2 Waters Symmetry C18 Symmetry 343 9 19.7 3.13 

3 HP Zorbax SB C18 SB-100 186 8 10.4 2.08 

4 HP Zorbax SB C18
c
 SB-90 188 8 9.20 1.79 

5 HP Zorbax SB-300 C18 SB-300 52 30 3.25 2.09 

6 HP Eclipse XDB C18 Eclipse 186 8 10.7 3.00 

7 YMC Pack Pro C18 YMC 15 322 12.5 15.5 2.51 

8 YMC Pack Pro C18 YMC 16 321 12.5 16.3 2.68 

9 YMC Pack Pro C18 YMC 17 322 12.5 17.0 2.82 

10 Supelco Discovery C18 Discovery 190-220 17-20 12.5 3.12 
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Table 2 Dissimilarity measures and similarity measure transformation functions 

Dissimilarity 

measure 

Label Definition Range Similarity measure definition or 

transformation function 

Manhattan (City 

block) distance 

MNH 




n

j
jBjA xxBAd

1

),(  
 ),(0 BAd  

),(1

1
),(

BAd
BAS


  

Euclidean distance EUC 





n

j
jBjA xxBAd

1

2)(),(  
 ),(0 BAd  

),(1

1
),(

BAd
BAS


  

Chebyshev distance CHD  jBjA
i

xxBAd max),(   ),(0 BAd  

),(1

1
),(

BAd
BAS


  

Pearson’s correlation 

distance defined 

using absolute values 

COR 
ABrBAd 1),(  

rAB is the Pearson’s correlation coefficient 

among objects A and B in n-dimensional 

Euclidean space.  

 

1),(0  BAd  ),(1),( BAdBAS   

Spearman’s rank 

correlation distance 

defined using 

absolute values 

SPR 
ABBAd 1),(  

ρAB is the Spearman’s rank correlation 

coefficient among objects A and B in n-

dimensional Euclidean space.  

1),(0  BAd  ),(1),( BAdBAS   

Kendall’s rank 

correlation distance 

defined using 

absolute values 

KNT 
ABBAd 1),(  

τAB is the Kendall’s rank correlation 

coefficient among objects A and B in n-

dimensional Euclidean space. 

1),(0  BAd  ),(1),( BAdBAS   
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Dissimilarity 

measure 

Label Definition Range Similarity measure definition or 

transformation function 

Cosine distance 

defined using 

absolute values, also 

called 

Congruence 

coefficient 

COS 
ABBAd cos1),(   
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 ),(1
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BAd
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
  

GPCM (Conditional 

Fisher’s exact test 

with probability 

weighted ordering, 

CE-PW) 

GPCM 
BlossessABlossessABAwinsBAwins pNpNBAd ,,,,

),(   100),(0  BAd b
 

 ),(1

1
),(

BAd
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
  

a 
Scaled to the range between 0 and 100 

b
 Commonly rescaled to fit the SRD values 
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Table 3 Statistical parameters of factor effects in ANOVA model (type III decomposition). 

Statistically significant factor effects are marked in bold  

Factor SS D.F. MS F p 

Intercept 546030.5 1 546030.5 4891.58 <0.001 

F1 223.3 2 111.6 0.086 0.920 

F2 21570.4 1 21570.4 19.78 0.047 

F3 9838.3 8 1229.8 4.02 0.007 

F1×F2 2179.2 2 1089.6 10.91 0.001 

F1×F3 4895.3 16 306.0 3.06 0.016 

F2×F3 36960.1 8 4620.0 46.27 <0.001 

F1×F2×F3 1597.5 16 99.8 4.82 <0.001 
Error 11173.2 540 20.7   
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Figure captions: 

 

Figure 1 Retention profiles of solutes presented in a form of radar plots of retention 

coefficients; Clockwise order of the chromatographic columns starting from the top point in 

each radar plot is: Inertsil, Symmetry, SB-100, SB-90, SB-300, Eclipse, YMC 15, YMC 16, 

YMC 16, and Discovery. 

Figure 2 PCA of primary retention data (a, b) and hydrophobicity subtraction (HS) selectivity 

parameters (c, d); Score plot (a) indicates grouping of chromatographic columns, while 

loading diagram (b) demonstrates similarities among studied compounds; Diagram of scores 

(c) shows grouping of chromatographic columns according to disposition of HS selectivity 

parameters - loading plot (d). 

Figure 3 SRD and GPCM CE-PW comparison of chromatographic columns based on primary 

retention data (a, b) and hydrophobicity subtraction selectivity parameters (c, d); CE-PW 

stands for Fisher’s conditional exact test (CE), probability weighted (PW) ranking. VARC 

was used as the benchmark. 

Figure 4 Results of the sevenfold SRD cross-validation, Box-plot visualizes the ranking of 

chromatographic columns (arranged in ascending order of the SRD median values), and their 

separation in sections according to statically significant difference (Wilcoxon-matched pair 

test and sign test at predefined significance level of p = 0.05) 

Figure 5 COVAT relative heatmaps showing similarity/orthogonality relationship among 

chromatographic columns based on primary retention (a, c) and hydrophobicity subtraction 

data (b, d), using SRD (a, b) and GPCM CE-PW (c, d) comparison methods. Red color 

represents the lowest score value (the highest similarity), while blue marks the highest one 

(the lowest similarity). Color codes are provided on the right side with absolute and relative 

(%) values. CE-PW stands for probability weighted ranking (PW) based on Fisher’s 

conditional exact test (CE). 

Figure 6 Stacked plot: Cumulative distance (a, b) and similarity (c, d) profiles of a series of 

chromatographic columns, calculated from primary retention data (a, c) and hydrophobicity 

subtraction selectivity parameters (b, d). Similarity and distance measures were scaled 

between 0 and 1. 

Figure 7 Ranking and comparison of similarity measures (standardized data) using average as 

a reference; x and y left sided axes are SRD values scaled between 0 and 100, right sided y 

axis represents relative frequencies of the theoretical distribution of ranking random numbers; 

Dashed XX1 line denotes statistical significance at p = 0.05 (left side); ret, and HS denote 

similarity measures calculated from the primary retention and HS data, respectively. 

Figure 8 Effect of factors by analysis of variance for tenfold cross-validated SRD score 

values of similarity measures; the average was used for reference in ranking. Score values 

were plotted on the y-axis. Vertical bars denote 0.95 confidence intervals. 
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