Diarylheptanoids from Alnus viridis ssp. viridis and Alnus glutinosa: Modulation of Quorum Sensing Activity in Pseudomonas aeruginosa

Authors
Tatjana Ilic-Tomic1, Marina Sokovic1, Sandra Vojnovic1, Ana Ciric1, Milan Veljic1, Jasmina Nikodinovic-Runic1, Miroslav Novakovic4

Affiliations
1 Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
2 Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
3 Faculty of Biology, University of Belgrade, Belgrade, Serbia
4 Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia

Key words
Alnus viridis ssp. viridis
Alnus glutinosa
Betulaceae
diarylheptanoids
quorum sensing
acyl homoserine lactone
Pseudomonas aeruginosa

Abstract

Diarylheptanoids from the barks of Alnus viridis ssp. viridis (green alder) and Alnus glutinosa (black alder) were explored for anti-quorum sensing activity. Chemicals with anti-quorum sensing activity have recently been examined for antimicrobial applications. The anti-quorum sensing activity of the selected diarylheptanoids was determined using two biosensors, namely Pseudomonas aeruginosa PAO1 and Chromobacterium violaceum CV026. Although all of the investigated compounds negatively influenced the motility of P. aeruginosa PAO1, four were able to inhibit biofilm formation of this human opportunistic pathogen for 40–70%. Three of the diarylheptanoids (3, 4, and 5) negatively influenced the biosynthesis of pyocyanin, which is under the control of quorum sensing. Platiphyllenone (7) and hirsutenone (5) were able to inhibit the biosynthesis of violacein in C. violaceum CV026, with 5 being able to inhibit the synthesis of both biopigments. Only one of the tested diarylheptanoids (1) was shown to significantly decrease the production of acyl homoserine lactones (AHL) in P. aeruginosa PAO1, more specifically, production of the long chain N-(3-oxododecanoyl)-l-HSL. On the other side, four diarylheptanoids (2–5) significantly reduced the synthesis of 2-alkyl-4-quinolones, part of the P. aeruginosa quinolone-mediated signaling system. To properly assess therapeutic potential of these compounds, their in vitro antiproliferative effect on normal human lung fibroblasts was determined, with doses affecting cell proliferation between 10 and 100 µg/mL. This study confirms that the barks of green and black alders are rich source of phytochemicals with a wide range of biological activities that could further be exploited as natural agents against bacterial contaminations and infections.

Supporting information available online at http://www.thieme-connect.de/products

Introduction

Linear diarylheptanoids are secondary metabolites consisting of two benzene rings connected with a heptane skeleton (Fig. 1). The best-known and most investigated member of this group is curcumin [1,2], a compound isolated from Curcuma longa L. (Zingiberales) almost 170 years ago, whose structure was determined in 1910 [3], but whose medicinal values were known for thousands of years [4]. Beside the genus Curcuma, diarylheptanoids are isolated from Zingiberaceae genera Zingiber and Alpinia, and Betulaceae genera Betula and Alnus. The first diarylheptanoids from Alnus species, yashabushiketol and dihydroyashabushiketol, were isolated from Alnus firma Siebold & Zucc. in 1969 and 1970 by Yoshinori Asakawa [5,6]. Among the best-known linear diarylheptanoids from Alnus species are oregonicin, platyphylloside, hirsutenone, and platiphyllenone (Fig. 1). They are isolated from black and gray alder (oregonin, platyphylloside, hirsutenone) and green alder (platiphyllenone) and are well known for their anticancer, anti-inflammatory, and antioxidative properties [7–12].

Green alder [Alnus viridis (Chaix) DC.] is a bush, 3–5 m tall, found in the mountains of central Europe (Alps) and the Balkan peninsula [13]. In Serbia, Alnus viridis (Chaix) DC. ssp. viridis can be found only in the east regions (Mt. Stara Planina), mostly near creeks, at an altitude of 1300–2100 m [14]. Black alder [Alnus glutinosa (L.) Gaertn.] is a tree, up to 25 m tall, that thrive in moist soil, near creeks and rivers, at an altitude up to 600 m, and is widespread in Europe, the Mediterranean,
southeastern Asia, and the Caucasus Mountains. In Serbia, it can be found mostly in the central and west regions, always near creeks and rivers [14].

Green and black alders have been the focus of our research as exceptionally rich sources of phytochemicals [15, 16]. Investigated diarylheptanoids were previously isolated from the CHCl3/MeOH (1:1) extracts of the barks of the green and black alders and were chemically characterized [10, 17, 18]. They were the most common diarylheptanoids in these extracts. Poor to moderate antibacterial activity previously observed with these compounds [19] led us to examine their activity on bacterial communication within this study. Bacterial cell-to-cell signaling, so-called quorum sensing (QS), is involved in the regulation of virulence expression and biofilm development, traits that are crucial for pathogenicity and the interaction with colonization of eukaryotic hosts [20, 21]. Among gram-negative bacteria, QS is frequently mediated by N-acyl-L-homoserine lactone (AHL) signal molecules [22–24]. Virulence factors of important human pathogens such as P. aeruginosa are regulated in this manner [25, 26]. P. aeruginosa has two AHL-mediated QS systems, namely las and rhl, and one quinolone (AHOQs)-mediated signaling system [25, 26]. The las system consists of a LasR regulator and the cognate autoinducer N-(3-oxoodecanoyl)-I-HSL (3-oo-C12-HSL), while the rhl system consists of RhlR and the autoinducer N-butyryl-I-HSL (C4-HSL). These two AHL-mediated systems regulate the expression of many virulence factors, including LasA protease, phospholipase, exotoxin A, pyocyanin, rhamnolipids, and elastase, and also regulate the development of biofilms, while AHQs signaling, apart from regulating numerous virulence genes in common with AHLs, regulates genes involved in iron scavenging [25, 26]. Compounds that attenuate virulence, without killing or a pronounced effect on growth, offer an alternative therapeutic target with less possibility of resistance development [24]. Inhibitors can disrupt QS in various ways, such as by acting as enzymes (e.g., AHL-lactonase or AHL-acylase) that destroy signal molecules, as enzymes that degrade LuxR protein, the receptor for QS signaling molecules, or as AHL mimics that compete and block signal molecules [27, 28].

Plants are constantly exposed to bacterial infections. It is therefore logical to expect that plants have developed sophisticated chemical mechanisms to combat pathogens. Indeed, mushrooms [29, 30] and various plant extracts have been reported as efficient in bacterial QS inhibiting activity [27, 28] and various plant extracts have been reported as efficient QS-controlled promoter fused to a violacein production associated gene cluster and it is unable to produce violacein unless exogenous AHLs are supplied [37]. In addition, to further evaluate the safety for potential application of selected diarylheptanoids, in vitro antiproliferative activity of these compounds was determined.

Results and Discussion

In this work, diarylheptanoids from the two plant species, green and black alders, were examined for anti-QS activity. Diarylheptanoids from the green alder were (1S,3R)-3-hydroxy-5-(4-hydroxyphenyl)-1-[2-(4-hydroxyphenyl)ethyl]pentyl-O-β-D-glucopyranoside (1), (S)-7-bis-(4-hydroxyphenyl)-5-O-β-D-apiofuranosyl(1→6)-β-D-glucopyranosylheptan-3-one (2), platyphylloside (3), aceroside VIII (4), hirsutene (5), orogenin (6), and platyphylloene (7). (Color figure available online only.)
presence of 2 and 4 was around 70%. Compound 7 had no capacity to prevent biofilm formation, and, surprisingly, compounds 6 and 5 exhibited a stimulatory effect with 2.5-fold and 3-fold higher biofilm formation, respectively, at the concentration tested (Fig. 2).

Apart from QS, the initiation of biofilm formation by P. aeruginosa depends on two cell-associated structures: the flagellum and type IV pili [40, 41]. The flagellum is responsible for swimming motility, while the type IV pili are responsible for twitching motility [42]. Both types of motility are important in the initial stages of biofilm formation by P. aeruginosa [40, 41]. Therefore, we tried to determine if investigated diarylheptanoids influence either one or both motilities (Table S2, Supporting Information).

All diarylheptanoids reduced the twitching motility of P. aeruginosa (Fig. S1, Supporting Information). Colonies of P. aeruginosa PAO1 grown without diarylheptanoids were flat with a rough appearance displaying irregular colony edges, and hazy zones were surrounding these colonies (Fig. S1 J, Supporting Information). Untreated cells grew in a very thin layer. After 2 days of incubation at ambient temperature, colony expansion occurred very rapidly due to twitching motility (Table S2, Supporting Information). Bacteria that were grown in the presence of diarylheptanoids were incapable of producing such twitching zones and had almost round, smooth, regular colony edges, while protrusions were reduced both in size (24–120 µm) and in number (Fig. S1 A–G, Supporting Information), and the colony diameters of swimming zones were also reduced. In comparison, antibiotics such as streptomycin reduced the protrusion (Fig. S1 H, Supporting Information), while the presence of ampicillin, which P. aeruginosa PAO1 is resistant to, had no significant effect on protrusion (Fig. S1I, Supporting Information).

To evaluate the potential of diarylheptanoids as inhibitors of AHL-based QS signal molecules, two biosensor reporter strains were used: P. aeruginosa PAO1 and C. violaceum CV026. P. aeruginosa PAO1 produces a blue-green pigment pyocyanin under the control of AHL, while C. violaceum CV026 is a white, violacein negative, double mini-Tn mutant that has no constitutive ability of violacein pigment production, but CV026 can sense exogenously added AHLs and responds by producing purple violacein [37, 38, 43].

The effect of diarylheptanoids on pyocyanin production in P. aeruginosa PAO1 was tested in a flask assay at the concentration of 50 µg/mL (Fig. 3A). Of the seven investigated compounds, diarylheptanoids 3 and 5 significantly reduced pyocyanin production by 70% and 73%, respectively, whereas all of the others diarylheptanoids stimulated pyocyanin production (in the range of 17–77%) compared to the control P. aeruginosa PAO1 (DMSO). Diarylheptanoids 5 and 7 demonstrated considerable antagonistic activity on QS in CV026 when 100 µg of the test compound was applied per disc. Inhibition of violacein production with 5 and 7 was clearly visible as a colorless halo around the discs (Fig. 3B), not as strong as erythromycin, but significant to suggest that these diarylheptanoids could be blocking AHL-QS signaling. Many mechanisms of actions have been proposed to interfere with the QS inhibition, such as inhibition of biosynthesis of autoinducer molecules, inactivation or degradation of the autoinducer, interference with the signal receptor, and inhibition
of the genetic regulation system [44]. Hirsutenone (5) had the ability to inhibit synthesis of both biopigments.

To test whether the diarylheptanoids influenced AHL production in *P. aeruginosa* PAO1, we have grown this strain in the presence of 50 µg/mL diarylheptanoid and then performed the extraction of the AHLs. In the assay with *C. violaceum* CV026 as a reporter organism of QS, five out of seven AHL extracts from *P. aeruginosa* PAO1 manifested an unambiguous modulatory effect on violacein synthesis (Fig. 4). Interestingly, a notable stimulatory effect on overall AHL production in *P. aeruginosa* PAO1, in the range of 150% to 200% compared to the negative control (DMSO; Fig. 4A), was observed when four compounds (4–7) were supplied to the medium in these concentrations. When compound 1 was used, it reduced overall AHL production in *P. aeruginosa* PAO1 by 40% (Fig. 4A).

To differentiate the effects of seven diarylheptanoids on rhl and las QS systems in *P. aeruginosa* PAO1, two biosensors strains were included: PA14-R3ΔlasIPrsaI:lux for the detection of a long-chain AHL (3-oxo-C12-HSL) and PAO1 ΔrhlIpKD-rhlA for the detection of a short-chain AHL (C4-HSL; Fig. 4B–C). Only compound 1 significantly reduced the production of 3-oxo-C12-HSL by 35%, possibly accounting for its biofilm preventing activity (Fig. 2). Most of the other diarylheptanoids stimulated both the production of 3-oxo-C12-HSL and C4-HSL, suggesting that their observed activities on *P. aeruginosa* PAO1 biofilm and biopigment synthesis occurred via different mechanisms of action. *P. aeruginosa*, as some other bacterial species, has multiple interdependent QS systems. It produces diverse 2-alkyl-4-quinolones (AHQs), which act as QS signal molecules and are also involved in the regulation of many virulence factors. PQS has been shown to control the production of multiple virulence determinants, including elastase, pyocyanin, rhamnolipids, and biofilm development [20, 25, 28, 45]. Biosensor strain *P. aeruginosa* PAO1 ΔpqsA mini-CTX luxPpqsA was used to evaluate the influence of selected diaryheptanoids to AHQs production in *P. aeruginosa* PAO1 (Fig. 5). Compounds 2–5 significantly reduced the production of 2-alkyl-4-quinolones in *P. aeruginosa* PAO1 cultures grown in the presence of these compounds at 50 µg/mL when compared to the negative control (DMSO treated). On the other side, extracts from *P. aeruginosa* PAO1 cultures cultivated with compounds 6 and 7 showed a stimulatory effect of 120% to 150%, respectively (Fig. 5). These results indicated that diarylheptanoids more efficiently modulate the quinolone-mediated QS system in *P. aeruginosa* PAO1. The quinoline system is usually transferred via extremely hydrophobic molecules, usually in membrane vesicles [25, 26], so structural differences of selected quite polar diarylheptanoids (Fig. 1) could not account for the observed differences in the QS modulating activity.

In the present study, we have evaluated antiproliferative effects of the seven diarylheptanoids against MRC5 cells line (human lung fibroblasts) using the MTT assay. Doxorubicin was used as a control. DMSO served as the negative control.
Diarylheptanoids investigated in this work were previously isolated from the CHCl3/MeOH (1:1) extracts of the black and green alder barks from Serbia [17, 18]. Silica gel column chromatography followed by semipreparative reversed-phase HPLC were the techniques used for isolation. The structures of the diarylheptanoids were elucidated by means of 1D and 2D NMR, IR, UV, and HR-ESI-MS. Prior to investigation of the biological activity, all tested diarylheptanoids were checked for their purity by HPLC (at 280 nm) and 1H NMR, and it was higher than 98%.

Bacterial strains, growth media, and culture conditions

*P. aeruginosa* ATCC 27853 was obtained from the American Type Culture Collection, while *P. aeruginosa* PAO1, *P. aeruginosa* PAOJP2, *P. aeruginosa* PA14-R3, and PA01ΔpqsAmini-CTXluxPqsa were kindly provided by Dr. Livia Leoni, Department of Biology, University Roma Tre, Italy. Biosensor strain *C. violaceum* CV026 [37] was provided by Prof. Vittorio Venturi (ICGB, Trieste, Italy). Bacteria were routinely grown in Luria-Bertani (LB) medium (1% w/v NaCl, 1% (w/v) tryptone, 0.5% (w/v) yeast extract) with or without agar (1.5% w/v), or were shaken (180 rpm) at 37°C. Tryptone soy broth (TSB; Oxoid) was used for growth of *P. aeruginosa* PAO1 in the assay of biofilm formation. Mueller-Hinton agar (MH; Oxoid) was used to determine the motility of *P. aeruginosa* PAO1. When required, the antibiotics kanamycin (kanamycin sulfate from Streptomyces kanamyceticus, BioReagent; Sigma-Aldrich, purity > 95%), streptomycin (Streptomycin sulfate from *Streptomycetes griseus*, BioReagent; Sigma-Aldrich, purity > 95%), and tetracycline (BioReagent; Sigma-Aldrich, purity > 96%) were incorporated into the growth medium at a concentration of 30 µg/mL or 200 µg/mL in the case of kanamycin, 20 µg/mL for streptomycin, and 100 µg/mL for tetracycline.

Activity of compounds on *Pseudomonas aeruginosa* PA01 biofilm formation

To determine the MICs of each diarylheptanoid against *P. aeruginosa* PA01, a standard broth microdilution method was used in LB broth [48]. Tested compounds were included in concentrations from 0.9 µg/mL to 500 µg/mL. The carrier solvent DMSO was used as a control. Cell growth was measured via optical density at 600 nm (OD600nm) using a Tecan Infinite 200 Pro multiplate reader (Tecan Group Ltd.) plate reader after 24 h incubation at 37°C.

*P. aeruginosa* biofilms were grown in TSB medium without shaking conditions. The effect of diarylheptanoids on biofilm forming ability was tested at concentrations of 50% of the determined MIC (0.5 MIC) for each compound, on polystyrene flat-bottomed microtiter 96-well plates as previously described, with some modifications [49]. Briefly, the overnight culture of *P. aeruginosa* was diluted in a fresh LB medium to OD600nm = 0.2 and 100 µL of the diluted culture with the appropriate diarylheptanoid at the
concentration of 0.5 MIC was added to the plate. After incubation for 24 h at 37 °C, the plate was washed twice with sterile water, dried, and stained for 30 min with 0.4% crystal violet in order to determine biofilm formed. Stained cells were washed with sterile water to remove the unbound crystal violet. After drying, 150 µL of 30% (v/v) acetic acid were added to solubilize the dye. After 10 min, the content of the wells was homogenized and the OD of the samples was measured at 550 nm using a Tecan Infinite 200 Pro multiplate reader (Tecan Group Ltd.). The experiment was done in quintuplicate and repeated two times.

Effect of diarylheptanoids on twitching and flagella motility of Pseudomonas aeruginosa PA01

Twitching and motility of P. aeruginosa PA01 was assessed after the growth in the presence or absence of diarylheptanoids (10–15 µg/mL) and streptomycin (20 µg/mL). P. aeruginosa PA01 cells were washed twice with sterile PBS and resuspended in PBS at 1 × 10^9 cfu/mL (OD600nm = 0.1). Cells were stabbed into a nutrient agar plate with a sterile toothpick and incubated overnight at 37 °C. Plates were removed from the incubator and incubated at room temperature for two more days. Colony edges and the zone of motility were measured with a light microscope [40, 41]. An assay to test flagella-mediated motility was performed as previously described [40, 41]. Test compounds were mixed into 10 mL of molten MH medium and poured immediately over the surface of a solidified LB plate as an overlay. The plate was point inoculated with an overnight culture of P. aeruginosa PA01 on one side of the plate and was incubated at 37 °C for 3 days. The extent of swimming was determined by measuring the area of the colony [32]. The experiment was done in triplicate and repeated two times. The colony diameters were measured three times in different directions, and values are presented as the mean values ± SE (standard error).

Effect of diarylheptanoids on pyocyanin synthesis in Pseudomonas aeruginosa PA01

Overnight culture of P. aeruginosa PA01 grown in Kings Medium A (Himedia) was diluted to OD600nm = 0.2 (5 mL). Different diarylheptanoids at a concentration of 50 µg/mL were added to the flasks with P. aeruginosa PA01 and incubated at 37 °C for 24 h. Cultures were then extracted with chloroform (3 mL) and the chloroform layer was transferred to a fresh tube and mixed with 0.2 M HCl (1 mL), giving it a pink to deep red color, indicating the presence of pyocyanin. To determine the amount of pyocyanin, the absorbance was measured at 520 nm [50]. The experiment was done in triplicate and repeated two times. The values are expressed as a ratio (OD520/OD600) × 100.

Effect of diarylheptanoids on violacein synthesis in Chromobacterium violaceum CV026

C. violaceum CV026, mini-Tn5 mutant, depends on exogenous AHLs for violacein production, was used as an indicator organism to monitor QS inhibition in a disc diffusion assay [37]. Briefly, semisolid LB agar (0.3%, w/v; 5 mL) was seeded with 50 µL of an overnight culture of C. violaceum CV026 supplemented by N-hexanoyl-L-homoserine lactone (Sigma) to a final concentration of 5 µM and poured over the surface of LB agar plates. When the overlaid agar had solidified, sterilized discs containing 200 µg of each compound and erythromycin (50 µg) as positive control (Sigma-Aldrich; Bioreagent, purity > 95%) were placed on the plates. Petri dishes were incubated in the upright position overnight (30 °C) and examined for violacein synthesis. Inhibition of violacein synthesis was defined by the presence of white haloes in a purple background.

Assays for acyl homoserine lactones production

For the extraction of AHLs, P. aeruginosa PA01 was grown in LB broth at 37 °C for 24 h and supplemented with the appropriate test compound to a final concentration of 50 µg/mL from the DMSO stock solution. The control containing the equivalent amount of DMSO was also included. After 24 h of growth, the optical density of the culture at 540 nm (OD540nm) was determined and the cells were centrifuged. Supernatants (20 mL) from these cultures were extracted with the same volume of acidified ethyl acetate [acidic acid, 0.1% (v/v)] for 10 min with shaking and centrifuged to separate the aqueous and ethylacetate phases. The ethylacetate phase was transferred to a clean bottle and the solvent was removed under reduced pressure. The remaining residue was weighted and dissolved in the same solvent in an appropriate amount that corresponded to the following ratio: 1 µL of final extract corresponding to 1 × 10^9 cells of the original culture [51]. Experiments were performed in triplicate. Concentrated extracts were used in the AHL assays. Semisolid LB agar (0.3%, w/v; 5 mL) was seeded with 50 µL of an overnight culture of C. violaceum CV026 and poured over the surface of LB agar plates. When the overlaid agar had solidified, sterilized discs containing 10 µL of each AHL extract were placed on the surface of the plates. These petri dishes were incubated in the upright position overnight (30 °C) and examined for the stimulation of violacein synthesis. QS induction was detected as purple pigmentation of the bioreporter strain grown around the discs. Measurements were made from the outer edge of the disc to the edge of the zones of QS stimulation or QS inhibition. The assays were performed in triplicate.

For the micro-volumetric determination of long-chain (3-oxo-C12-HSL) and short-chain AHL (C4-HSL) levels in P. aeruginosa PA01 culture supernatants, cultures were grown overnight at 37 °C in LB. Cultures were diluted 1:1000 in 10 mL LB in the presence of diarylheptanoids or DMSO and grown at 37°C. After 6 h of growth, the OD600 was measured, and 2 mL of culture were centrifuged to separate the aqueous and ethylacetate phases. The chloroform layer was transferred to a clean bottle and the solution was concentrated to a small volume. Concentrated extracts were dissolved in 50 µL of DMSO and the final extract corresponding to 1 × 10^9 cells of the original culture [51]. Experiments were performed in triplicate. Concentrated extracts were used in the AHL assays. Semisolid LB agar (0.3%, w/v; 5 mL) was seeded with 50 µL of an overnight culture of C. violaceum CV026 and poured over the surface of LB agar plates. When the overlaid agar had solidified, sterilized discs containing 10 µL of each AHL extract were placed on the surface of the plates. These petri dishes were incubated in the upright position overnight (30 °C) and examined for the stimulation of violacein synthesis. QS induction was detected as purple pigmentation of the bioreporter strain grown around the discs. Measurements were made from the outer edge of the disc to the edge of the zones of QS stimulation or QS inhibition. The assays were performed in triplicate.

For the micro-volumetric determination of long-chain (3-oxo-C12-HSL) and short-chain AHL (C4-HSL) levels in P. aeruginosa PA01 culture supernatants, cultures were grown overnight at 37 °C in LB. Cultures were diluted 1:1000 in 10 mL LB in the presence of diarylheptanoids or DMSO and grown at 37°C. After 6 h of growth, the OD600 was measured, and 2 mL of culture were centrifuged and the supernatant was filtered and stored at −20 °C until used. An aliquot of culture supernatants (20 µL) was added to 180 µL of LB inoculated with P. aeruginosa PA14-R3 (measurements of 3OC12-HSL) or P. aeruginosa PA01P2 (measurements of C4-HSL; final OD600 = 0.045) [52, 53]. Plates were incubated at 37°C with shaking, and cell density (OD600) and bioluminescence (light counts per second, LCPS) were simultaneously measured after 4 h of incubation using a Tekan Infinite 200 Pro multiplate reader (Tecan Group Ltd.). Luminescence values were normalized per cell density.

2-Alkyl-4-quinolones production assay

For the detection and quantification of QS molecules 2-alkyl-4-quinolones (AHQs), such as 2-heptyl-3-hydroxy-4-quinolone (PQS) and 2-heptyl-4-quinolone (HHQ), which represent the major P. aeruginosa AHQ signal molecules present in bacterial culture supernatants, a lux-based P. aeruginosa AHQ sensor was employed in a liquid microtiter plate assay. PAO1 ΔpsqA mini-CTX luxPpqA biosensor was used for the detection and quantification of AHQ molecules extracted from P. aeruginosa PA01 cultures as described previously [54].
Antiproliferative assay
Antiproliferative activities of diarylheptanoids were measured using the methods described previously [55]. MRC5 cells (human lung fibroblast, obtained from ATCC) were plated in a 96-well flat-bottom plate at a concentration of 1 × 10^4 cells per well grown in a humidified atmosphere of 95% air and 5% CO_2 at 37°C, and maintained as monolayer cultures in RPMI-1640 medium supplemented with 100 µg/mL streptomycin, 100 U/mL penicillin, and 10% (v/v) FBS. After 24 h of MRC5 cells incubation, the media containing increasing concentrations of each tested diarylheptanoid (1, 10, 50, 100, and 250 µg/mL) were added to the cells. Control cultures received the solvent DMSO, and blank wells containing 200 µL of growth medium. As a positive control, doxorubicin hydrochloride (Sigma-Aldrich, 98–100% purity by HPLC) was used because it is a commonly used chemotherapeutic drug for the treatment of acute leukemia, lymphomas, and different types of solid tumors such as breast, liver, and lung cancers. After 48 h of incubation, cell proliferation was determined using the MIT reduction assay. Cell proliferation was determined from the absorbance at 540 nm on a Tekan Infinite 200 Pro multiplate reader (Tecan Group Ltd.). The MIT assay was performed two times in four replicates and the results are presented as the percentage of the control (untreated cells) that was arbitrarily set to 100%.

Statistical analysis
For each species, three samples were used and all of the assays were carried out in triplicate. The results are expressed as mean values and standard errors, and were analyzed using one-way analysis of variance (ANOVA) followed by Tukey’s HSD test with α = 0.05. This analysis was carried out using SPSS v. 18.0 program.

Supporting information
Minimal inhibitory concentrations (MIC, µg/mL) of diarylheptanoids against P. aeruginosa planktonically grown cells, activity of diarylheptanoids on twitching and motility of P. aeruginosa PA01 are available as Supporting Information.

Acknowledgement
This study is financially supported by the Ministry of Education, Science and Technological Development of Republic of Serbia, Project Nos. 172053 and ON173048.

Conflict of Interest
The authors declare no conflict of interest.

References
1 Priyadarshini KL. The chemistry of curcumin: from extraction to theraeutic agent. Molecules 2014; 19: 20091–20112
12 Tung NH, Sun K, Fan JY, Shoyama Y, Han JY. Oregonin from the bark of Alnus japonica restrained ischemia-reperfusion-induced mesentry oxidative stress by inhibiting NADPH oxidase activation. Microcirculation 2014; 21: 688–695
21 Kimura N. Metagenomic approaches to understanding phylogenetic diversity in quorum sensing. Virulence 2014; 5: 433–442


32 Yeo SSM, Tham FY. Anti-quorum sensing and antimicrobial activities of some traditional Chinese medicinal plants commonly used in South-East Asia. Malays J Microbiol 2012; 8: 11–20


44 Rasmussen TB, Givskov M. Quorum sensing inhibitors: a bargain of effects. Microbiology 2006; 152: 895–904


51 Bertani I, Rampioni G, Leoni I, Venturi V. The Pseudomonas putida Lon protease is involved in N-acetylhomoserine lactone quorum sensing regulation. BMC Microbiol 2007; 7: 71


54 Fletcher MP, Diggle SP, Cruz S, Chhabra SR, Camara M, Williams P. A dual biosensor for 2-allyl-4-quinolone quorum-sensing signal molecules. Environ Microbiol 2007; 9: 2683–2693