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This study was aimed at investigating the phytochemical composition and antioxidant capacity of rhizomes, above-ground vegetative parts and flowers 

of three Iris species: Iris humilis, Iris pumila L. and Iris variegata L. UHPLC-Orbitrap MS analysis was used for determination of phytochemical profile. Also, 

total pigments, phenolics, flavonoids, soluble sugars and starch content as well as ABTS antioxidant capacity was determined. In total, 52 phenolics 

compounds were identified with 9 compounds (derivates of iriflophenone, apigenin C-glycosides, luteolin O-glycoside, isoflavones derivates of 

iristectorigenin, dichotomitin, nigracin and irilone) never reported before in Iris spp. Differences in phenolic composition profile, pigments, soluble sugar, 

starch, total phenolics and flavonoids content and total antioxidant capacity were found among Iris species and different part of plants. Signifficant 

correlation between total phenolic content and antioxidant capacity was determined. The obtained results are comparable with those obtained for 

medical plants. These findings could be useful for fingerprinting characterization of Iris species and estimation of possible use in pharmaceutical 

industries. 

Keywords: Iris humilis • Iris pumila • Iris variegata • phenolics • LC/MS 

 

Introduction 

Iridaceae represents widely distributed plant family (especially in temperate and tropical climatic zones) that including 92 genera and about 1800 

species[1,2]. Among them, Iris is one of the most important genera of flowering plants with significant contribution to wild habitats of Eurasia and North 

America[2,3]. Iris species are rich in different secondary metabolites content[2,3]. Most phytochemical analyzes among Iris genera were performed on I. 

germanica (German iris) since it is commonly grown as ornamental plant in gardens and parks[4,5,6,7,8]. Also, information on phytochemical composition 

(especially flavonoids/isoflavones profiles) of I. pallida[7,8], I. albicans[8], I. kashmiriana[9] and I. lutescens[10] are available. According to literature[3] 122 

different compounds are detected in eleven Iris species. Most of them belong to flavonoids, simple phenolics, steroids and terpenoids. It is well known 

that phenolic compounds are among the most widespread class of secondary metabolites in plants that are characterized by antioxidant and 

antimicrobial properties. Different secondary metabolites can cause a healing effect for some diseases in human, including cancer. In case of some Iris 

species pharmacological activity has been confirmed several times[2,3,11,12,13] as well as antimicrobial activity[14,15]. I. pallida and I. germanica are 

commercially grown in Italy, Morocco and France for oil production from roots which has been used as precious and one of the most expensive 

component in perfume industry[3,16]. 

I. humilis, I. pumila L. and I. variegata L. are native to Eurasia including Serbia. I. humilis subsp. arenaria (Waldst. & Kit.) Á.Löve & D.Löve (hereinafter I. 

humilis) is a Pontic-Pannonian endangered and protected species (in Czech Republic, Slovakia, Hungary and Serbia) occurring in southeastern and 

southern part of Central Europe. This is a pioneer species of sandstone (Festucion vaginatae) and steppe (Festucion rupicolae) habitats, but in the 

spontaneous extinction. I. variegata inhabits areas of central and southeastern Europe. It grows on grassy and open forest habitats. I. pumila is a 

rhizomatous perennial clonal species widely distributed in the lowlands of Central and Southeast Europe. In Serbia, it is abundant in the dune system of 
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the special nature reserve - Deliblato Sands[17] However, very limited information is available on their phytochemicals composition- iron content in 

rhizomes of I. variegata as important component for perfume industry[18,19] and total anthocyanins content of  I. pumila leaves[20]. Literature review has 

found that there is no available information about chemical composition of rhizomes, green parts (stem and leaves) and flowers of I. humilis. 

Further, phenolics are well known as potential tool for chemotaxonomic characterization for different plant species[21,22,23,24,25,26] or materials such as 

pollen[27] and honey[28]. Knowing that xanthone, isoflavone and flavonoid derivatives are almost exclusively present in Iridaceae family plants[29] and 

antioxidant properties of polyphenols, the aim of this work was to characterize the phytochemical composition and antioxidant properties of rhizomes, 

green parts and flowers of three mentioned Iris species. The obtained results could be valuable for possible use of phenolic profiles as “botanical 

fingerprint” of Iris species and estimation of their possible use in pharmaceutical industries. 

Results and Discussion 

Phytochemical profile 

UHPLC-Orbitrap MS characterization of three Iris extracts in a negative ionization mode, resulted in the detection of 52 compounds in total. The 

identified compounds represented four structurally distinct groups: 1) xanthone and their derivatives (12 compounds); 2) flavonoid C-glycosides (8 

compounds); 3) flavonoid O-glycosides (11 compounds); and 4) isoflavones and their derivatives (21 compounds). Chemical structures of phytochemicals 

found in three investigated Iris species are shown in Figure 1.  
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FIGURE 1. Structures of phytochemicals found in rhizomes, green parts (stem and leaves) and flowers of three Iris sp. (I. humilis, I. pumila, and 

I.variegata); Hex – hexosyl; Ac – acetyl; CH3 – methyl; Pent – Pentosyl; Rham – rhamnosyl; pCou – p-coumaroyl; HexA – hexuronyl; HMG – 3-hydroxy-3-

methylglutaryl. 

 

Among all identified compounds, six were confirmed using standards, while the others were identified by exact mass search of their deprotonated 

molecule [M−H]−, MS2, MS3, and MS4 fragmentation behavior, as well as by comparison with the available literature. The peak numbers, compound 

names, molecular formulas, calculated and exact masses ([M−H]−, m/z), mean mass accuracy errors (mDa), as well as presence of selected compound in 
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various parts of three Iris species are summarized in Table 1, while the retention times (tR, min) and major MS2, MS3, and MS4 fragment ions are 

summarized in Table 2. 

Table 1. High resolution MS data phytochemicals found in Iris spp. 

Peak 

No 
Compound name 

Molecular 

formula, 

[M–H]– 

Calculated 

mass, 

[M–H]– 

Exact 

mass, 

[M–H]– 

Δ 

mDa 

Iris humilis Iris pumila Iris variegata 

R AGP F R AGP F R AGP F 

Xanthones 

1 Iriflophenone 4-O-hexoside C19H19O10
‒ 407.09837 407.09503 3.34 − − − + − − + + + 

2 Mangiferin C19H17O11
‒ 421.07763 421.07440 3.23 − − + + + + + + + 

3 Iriflophenone 2-O-hexoside C19H19O10
‒
 407.09837 407.09564 2.73 − − − + − − + + + 

4 7-O-Methyl-mangiferin C20H19O11
‒
 435.09329 435.08981 3.48 − − − + − − + − − 

5 Isomangiferin C19H17O11
‒ 421.07763 421.07425 3.38 + + + + + + + + + 

6 
Iriflophenone 4-O-(6"-acetyl)-

hexoside 
C21H21O11

‒ 449.10893 449.10536 3.57 + − − − − − − − − 

7 Polygalaxanthone III C25H27O15
‒ 567.13554 567.13086 4.68 + − − − − − − − − 

8 7-O-Methyl-isomangiferin C20H19O11
‒ 435.09329 435.09012 3.17 + − − + + + + − − 

9 Nigricanside C19H17O11
‒ 421.07763 421.07401 3.62 − − − − − − + − − 

10 Iriflophenone C13H9O5
‒ 245.04555 245.04370 1.85 + − − + + + + + + 

11 4-O-Methyl-iriflophenone C14H11O5
‒
 259.06120 259.05939 1.81 + − − + + − + + + 

12 Bellidifolin C14H9O6
‒ 273.04046 273.03815 2.31 − − − + + − − − − 

Flavonoid C-glycosides 

13 Luteolin 8-C-hexoside C21H19O11
‒ 447.09329 447.08975 3.54 − − − − − + − − − 

14 Luteolin 6-C-glucoside C21H19O11
‒ 447.09329 447.08987 3.42 − − − − + + − + + 

15 Apigenin 8-C-(2"-hexosyl)-hexoside C27H29O15
‒ 593.15119 593.14642 4.77 − − − − − + − − − 

16 
Apigenin 8-C-(2"-pentosyl)-

hexoside 
C26H27O14

‒ 563.14063 563.13611 4.52 − − − − − + − − − 

17 Apigenin 8-C-glucoside C21H19O10
− 431.09837 431.09515 3.22 − − − − + + − + − 

18 Apigenin 6-C-hexoside C21H19O10
−
 431.09837 431.09500 3.37 − − − − + + − + − 

19 4'-O-Methyl-apigenin 8-C-hexoside C22H21O10
−
 445.11402 445.11096 3.06 − − − − + − − + + 

20 4'-O-Methyl-apigenin 6-C-hexoside C22H21O10
−
 445.11402 445.11041 3.61 − − − − + − − + + 

Flavonoid O-glycosides 

21 Quercetin 3-O-galactoside C21H19O12
‒ 463.08820 463.08426 3.94 − − + − − − − − − 

22 
Isorhamnetin 3-O-(2"-rhamnosyl)-

hexoside 
C28H31O16

–
 623.16176 623.15715 4.61 − − + − − − − − − 

23 Quercetin 3-O-glucoside C21H19O12
‒ 463.08820 463.08423 3.97 − − + − − − − − − 

24 
Kaempferol 7-O-(6"-rhamnosyl)-

hexoside 
C27H29O15

–
 593.15119 593.14636 4.83 − − + − − + − − + 

25 Irisdichotin B C23H25O12
‒ 493.13515 493.13168 3.47 + − − + − − + − − 

26 
Isorhamnetin 3-O-(6"-rhamnosyl)-

hexoside 
C28H31O16

–
 623.16176 623.15764 4.12 − − + − − − − − − 

27 Kaempferol 3-O-galactoside C21H19O11
‒ 447.09329 447.08942 3.87 − + + − − − − − − 
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28 Isorhamnetin 3-O-galactoside C22H21O12
– 477.10385 477.10022 3.63 − − + − − − − − − 

29 Kaempferol 3-O-glucoside C21H19O11
‒ 447.09329 447.08945 3.84 − + + − − − − − − 

30 Isorhamnetin 3-O-glucoside C22H21O12
–
 477.10385 477.09991 3.94 − − + − − − − − − 

31 
Luteolin 7-O-(2"-p-coumaroyl)-

rhamnoside 
C30H25O12

‒
 577.13515 577.13068 4.47 − − − + + − − − − 

Isoflavones and derivatives 

32 Tectoridin C22H21O11
– 461.10893 461.10478 4.15 − − − + − − + − − 

33 Iristectorin B C23H23O12
– 491.11950 491.11554 3.96 − − − + + − + − − 

34 Iristectorigenin A 7-O-hexuronide C23H21O13
–
 505.09876 505.09464 4.12 − + − − − − − + − 

35 Iristectorin A C23H23O12
– 491.11950 491.11588 3.62 − − − + + − + − − 

36 Irilone 4'-O-(6"-hexosyl)-hexoside C28H29O16
– 621.14611 621.14203 4.08 + − − − − − − − − 

37 3'-Hydroxyltectoridin C22H21O12
– 477.10385 477.10043 3.42 − − − − − − + − − 

38 Iridin C24H25O13
–
 521.13006 521.12610 3.96 + − − + − − + − − 

39 
Dichotomitin 3'-O-(6"-hexosyl)-

hexoside 
C30H33O18

– 681.16724 681.16233 4.91 + − − − − − − − − 

40 
7-O-Methyl-tectorigenin 4′-O-(6"-

hexosyl)-hexoside 
C29H33O16

– 637.17741 637.17310 4.31 + − − + − − + − − 

41 
Nigracin 4'-O-[6"-(3-hydroxy-3-

methylglutaryl)]-hexoside 
C30H32O16

– 647.16176 647.15692 4.84 + − − − − − − − − 

42 Irifloside C23H21O12
– 489.10385 489.09981 4.04 + − − + − − + − − 

43 Irilone 4'-O-hexoside C22H19O11
– 459.09328 459.08973 3.55 + − − + − − + − − 

44 Irisolidone 7-O-hexoside C23H23O11
‒ 475.12458 475.12178 2.80 + − − + − + + + − 

45 Tectorigenin C16H11O6
‒ 299.05611 299.05347 2.64 + + − + + − + − − 

46 Dichotomitin 3'-O-hexoside C24H23O13
‒ 519.11441 519.11078 3.63 + − − − − − − − − 

47 
Irilone 4'-O-[6"-(3-hydroxy-3-

methylglutaryl)]-hexoside 
C28H27O15

‒ 603.13554 603.13055 4.99 − − − − + − − − − 

48 Iristectorigenin A C17H13O7
‒ 329.06668 329.06372 2.96 − + − + + − + + − 

49 Irigenin C18H15O8
‒ 359.07724 359.07422 3.02 + − − + + − + − − 

50 Irilone C16H9O6
‒ 297.04046 297.03809 2.37 − − − + − − + − − 

51 Iriflogenin C17H11O7
‒ 327.05103 327.04840 2.63 − − − + − − + − − 

52 Irisolidone C17H13O6
‒ 313.07176 313.06857 3.19 − − − + − − + − − 

 

Peak No – peak numbers (corresponding to Fig. 1); mDa – mean mass accuracy; R – rhizome; AGP – above-ground vegetative parts; F - flower; + stands for detected 

and − stands for not detected compound. 

 

Table 2. Negative ion MS4 fragmentation data for the phytochemicals found in Iris spp. 

Pea

k 

Noa 

Compound name tR, min 
Parent 

ion, m/z 

MS2 Fragments, m/z (% Base 

Peak) 

MS3 Fragments, m/z (% Base 

Peak) 

MS4 Fragments, m/z (% Base 

Peak) 

Xanthones 

1 Iriflophenone 4-O-hexoside 3.90 407 359(10), 287(15), 245(100) 
201(30), 157(5), 151(100), 

125(10), 107(15) 
107(100), 83(20), 65(5) 
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2 Mangiferin 4.21 421 403(20), 331(75), 301(100) 
273(60), 258(100), 229(5), 

191(5) 

258(50), 229(50), 214(100), 

108(30) 

3 Iriflophenone 2-O-hexoside 4.92 407 245(100) 
201(25), 177(5), 161(5), 

151(100), 125(15) 
107(100), 83(5) 

4 7-O-Methyl-mangiferin 5.30 435 
417(10), 399(10), 357(10), 

345(20), 315(100) 
300(20), 272(100) −d 

5 Isomangiferin 5.50 421 403(20), 331(70), 301(100) 
273(60), 258(100), 229(5), 

191(10), 137(10) 

241(20), 230(100), 203(80), 

188(40), 158(10) 

6 
Iriflophenone 4-O-(6"-acetyl)-

hexosideb 
5.93 449 389(10), 287(5), 245(100) 

201(50), 177(5), 151(100), 

125(15), 107(10) 
− 

7 Polygalaxanthone IIIb 6.23 567 
486(10), 399(10), 345(40), 

315(100), 272(20) 
300(40), 272(100) − 

8 7-O-Methyl-isomangiferin 6.30 435 
417(10), 345(30), 315(100), 

300(5) 
300(25), 272(100) 

272(20), 255(10), 243(100), 

227(40), 199(20) 

9 Nigricanside 6.59 421 
403(10), 383(5), 331(90), 

301(100), 281(10) 

284(10), 273(100), 258(70), 

230(20), 165(20) 
− 

10 Iriflophenone 6.83 245 
201(10), 171(10), 175(5), 

151(100), 125(5) 
107(100), 83(5), 65(10) 65(100) 

11 4-O-Methyl-iriflophenone 8.51 259 222(15), 191(5), 165(100) 
150(40), 121(100), 97(15), 

91(5), 65(15) 
− 

12 Bellidifolin 10.34 273 259(15), 258(100) 
258(10), 230(100), 229(70), 

213(10), 202(20) 
− 

Flavonoid C-glycosides 

13 Luteolin 8-C-hexoside 4.98 447 
429(15), 401(10), 371(10), 

357(100), 327(90) 
− − 

14 Luteolin 6-C-glucosidec 5.99 447 
429(20), 411(5), 357(60), 

327(100) 
299(100), 284(10) 

281(40), 271(50), 255(100), 

243(40), 227(50) 

15 
Apigenin 8-C-(2"-hexosyl)-

hexosideb 
6.15 593 

413(100), 341(10), 311(5), 

307(10), 293(30) 
− − 

16 
Apigenin 8-C-(2"-pentosyl)-

hexosideb 
6.24 563 

515(5), 433(5), 413(100), 

355(10), 293(35) 
293(100) 

264(20), 251(20), 237(20), 

219(25), 173(100) 

17 Apigenin 8-C-glucosidec 6.25 431 413(10), 341(30), 311(100) 283(100) 
235(10), 239(100), 224(20), 

196(30), 183(50) 

18 Apigenin 6-C-hexoside 6.49 431 
413(5), 383(5), 341(30), 

311(100) 
283(100) 

235(25), 239(100), 224(40), 

197(80), 183(60) 

19 
4'-O-Methyl-apigenin 8-C-

hexoside 
7.83 445 427(5), 355(20), 325(100) 297(65), 282(100) 

282(50), 253(100), 209(80), 

183(20), 161(60) 

20 
4'-O-Methyl-apigenin 6-C-

hexoside 
8.00 445 409(10), 355(30), 325(100) 297(60), 282(100) 

282(30), 253(100), 211(60), 

189(15), 162(30) 

Flavonoid O-glycosides 

21 Quercetin 3-O-galactosideb,c 6.43 463 302(20), 301(100), 300(25) 272(10), 257(10), 193(5), − 
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179(100), 151(30) 

22 
Isorhamnetin 3-O-(2"-O-

rhamnosyl)-hexoside 
6.51 623 

592(10), 503(5), 459(20), 

315(50), 314(100) 
299(100), 285(10), 271(10) 

271(100), 255(15), 243(10), 

227(5) 

23 Quercetin 3-O-glucoside
b,c

 6.61 463 302(20), 301(100), 300(30) 
272(20), 256(20), 229(10), 

179(100), 151(60) 
− 

24 
Kaempferol 7-O-(6"-rhamnosyl)-

hexosideb 
6.77 593 327(5), 285(100), 267(5) 

267(70), 257(100), 241(30), 

239(20), 229(70) 
− 

25 Irisdichotin B 6.85 493 
465(50), 351(10), 331(100), 

303(90), 246(40) 
303(100) 

288(100), 270(15), 254(5), 

205(10), 165(10) 

26 
Isorhamnetin 3-O-(6"-

rhamnosyl)-hexosideb 
6.86 623 

315(100), 300(20), 271(10), 

255(5) 
300(100), 287(5), 272(5) 271(100), 255(50), 151(5) 

27 Kaempferol 3-O-galactoside 6.87 447 
327(20), 285(99), 284(100), 

255(20) 

267(40), 256(100), 241(30), 

227(40), 213(80) 
− 

28 Isorhamnetin 3-O-galactosideb 6.95 477 
357(20), 315(50), 314(100), 

300(10), 285(10) 

300(40), 285(100), 271(50), 

257(10), 243(20) 
270(100) 

29 Kaempferol 3-O-glucosidec 7.05 447 
327(10), 285(60), 284(100), 

255(15) 
− − 

30 Isorhamnetin 3-O-glucosideb,c 7.16 477 
357(10), 315(50), 314(100), 

300(5), 285(10) 

300(20), 285(100), 271(90), 

257(10), 243(20) 
270(100) 

31 
Luteolin 7-O-(2"-p-coumaroyl)-

rhamnosideb 
9.98 577 

431(10), 413(5), 291(5), 

286(10), 285(100) 
257(90), 241(100), 151(15) − 

Isoflavonoids and derivatives 

32 Tectoridin 6.68 461 
446(5), 341(5), 299(100), 

298(10), 284(10) 
284(100) − 

33 Iristectorin B 7.04 491 
477(20), 476(100), 329(10), 

328(20) 

314(15), 313(100), 299(5), 

298(20), 270(10) 
298(100), 285(50), 270(30) 

34 
Iristectorigenin A 7-O-

hexuronideb 
7.20 505 

485(5), 459(5), 329(100), 

314(5), 274(10) 
315(10), 314(100) 300(15), 299(100), 285(20) 

35 Iristectorin A 7.25 491 
477(20), 476(100), 329(10), 

328(10), 314(5) 

314(25), 313(100), 299(5), 

298(10), 269(10) 
298(100), 285(30), 270(20) 

36 Irilone 4'-O-(6"-hexosyl)-hexoside 7.51 621 
323(50), 298(25), 297(100), 

263(20) 
− − 

37 3'-Hydroxyltectoridin 7.54 477 
417(100), 345(10), 315(50), 

272(5) 
402(100) 

385(60), 368(15), 342(100), 

314(70), 286(40) 

38 Iridin 7.55 521 
506(15), 360(20), 359(100), 

344(20), 329(10) 
344(100), 329(5) 329(100) 

39 
Dichotomitin 3'-O-(6"-hexosyl)-

hexoside
b
 

7.70 681 358(70), 357(100), 323(70) − − 

40 
7-O-Methyl-tectorigenin 4′-O-(6"-

hexosyl)-hexoside 
7.77 637 313(100), 299(20) 298(100) 283(100), 255(10) 

41 Nigracin 4'-O-[6"-(3-hydroxy-3- 8.02 647 585(10), 545(10), 342(20), 326(100) 311(100), 298(5), 283(10), 
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methylglutaryl)]-hexosideb 341(100) 269(15) 

42 Irifloside 8.13 489 327(100) 312(100) 284(100), 256(20), 179(10) 

43 Irilone 4'-O-hexoside 8.18 459 297(100) 
269(100), 241(40), 255(30), 

204(30), 147(60) 
− 

44 Irisolidone 7-O-hexoside 8.56 475 355(10), 313(100), 298(5) 298(100) − 

45 Tectorigenin 8.60 299 284(100) 
256(100), 240(70), 227(90), 

211(30), 158(30) 
− 

46 Dichotomitin 3'-O-hexoside 8.64 519 
475(10), 358(30), 357(100), 

312(5), 259(10) 
342(100), 328(10), 314(5) − 

47 
Irilone 4'-O-[6"-(3-hydroxy-3-

methylglutaryl)]-hexosideb 
8.71 603 

541(10), 459(15), 441(10), 

297(100) 

269(100), 251(15), 241(10), 

227(30), 176(50) 
− 

48 Iristectorigenin A 9.79 329 
315(20), 314(100), 311(5), 

293(10), 171(20) 

299(100), 284(5), 271(15), 

255(10), 227(5) 

271(100), 255(20), 243(5), 

227(10), 199(5) 

49 Irigenin 9.93 359 345(15), 344(100) 329(100), 326(10), 314(5) 
314(100), 311(5), 301(50), 

298(10), 285(10) 

50 Irilone 11.08 297 
269(100), 251(10), 241(10), 

228(10), 211(10) 
− − 

51 Iriflogenin 11.34 327 312(100), 284(5) 
284(100), 256(15), 227(10), 

200(5), 179(10) 

256(100), 227(60), 212(10), 

200(20), 158(15) 

52 Irisolidone 11.80 313 
299(15), 298(100), 294(10), 

267(10) 

283(100), 255(15), 228(5), 

211(5), 199(5) 

255(100), 239(7), 211(40), 

195(25), 159(5) 

aPeak numbers corresponding to Fig. 1; tR - retention time. 

bIdentified in some of Iris sp. for the first time. 

cConfirmed using avaliable standards. All the other compounds were identified based on MS data. 

d„−“ stands for not detected fragments. 

 

Xanthones 

Xanthones, commonly present in Iris species[13], in our study were found as free and in form of glycosides. 

Xanthone derivative, iriflophenone (compound 10), which in its narrow structure is actually benzophenone, and four of their derivatives were identified in 

the several of tested samples (Table 1). Two isomeric iriflophenone derivatives, 1 (3.90 min) and 3 (4.92 min), with identical molecular ion ([M−H]− at 407 

m/z), but showing slightly different MS fragmentation patterns, were identified as iriflophenone 4-O-hexoside and iriflophenone 2-O-hexoside, 

respectively. Both compounds generated MS2 base peak at 245 m/z (loss of hexoside; 162 Da) corresponding to deprotonated iriflophenone. By studying 

the MS3 fragmentation patterns of these two derivatives, the existence of a 161 m/z fragment was found to be characteristic for iriflophenone 2-O-

hexoside[13]. In addition, iriflophenone 4-O-(6"-acetyl)-hexoside (compound 6) and 4-O-methyl-iriflophenone (compound 11) were also identified. 

Compound 6 at 5.93 min and 449 m/z generated MS2 base peak at 245 m/z and MS2 secondary peak at 389 m/z (corresponding to loss of acetic acid – 60 

Da). The present study provides the first report of tentative identification of iriflophenone 4-O-(6"-acetyl)-hexoside in some herbs belonging to Iris species. 

Compound 11 was previously reported in I. germanica and I. pallida extracts[7]. 

As for other xanthones, three compounds (2, 5, and 9) at same [M−H]− (421 m/z) were identified as mangiferin, isomangiferin, and nigricanside, 

respectively. Tentative identification of these compounds was based on chromatographic and MS data previously reported[30]. Confirmation of compound 

9 was based on existence of a 383 m/z fragment in MS2 spectrum, which were absent in the case of the other two above-mentioned isomers[30]. 
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Compound 5 were the only compound found in all samples (all three Iris species; in rhizome, above-ground vegetative parts, and flower). Compounds 4 

and 8, with same accurate masses (435 m/z) and very similar fragmentation patterns, were marked as 7-O-methyl-mangiferin and 7-O-methyl-

isomangiferin[30] (Table 2). Compound 7 at 6.23 min and 567 m/z was tentatively marked as polygalaxanthone III, according to available literature about 

chemical constituents in Kai-Xin-San herb formula[31]. The last one from the xanthones group, bellidifolin (273 m/z; compound 11), previously isolated 

from rhizomes of I. nigricans[32], was found in the current study in I. pumila rhizome and above-ground vegetative parts (Table 1). It produced MS2 base 

peak at 258 m/z (corresponding to loss of methyl group) and MS3 base peak at 230 m/z (formed by further loss of CO group). 

Flavonoid C-glycosides 

From the flavonoid C-glycoside group, flavone derivatives (apigenin and luteolin) were found in our samples and their identification was largely based on 

the evaluated MS fragments and previously reported spectroscopic data about phytochemicals found in various Iris species[33,34]. Presence of compounds 

14 and 17 (luteolin 6-C-glucoside and apigenin 8-C-glucoside) were confirmed using available standards. Specific fragmentation pattern of this two 

compounds, as well as their isomers, compounds 13 and 18 (luteolin 8-C-glucoside and apigenin 6-C-glucoside) were found in literature[35]. Compounds 15 

(6.15 min; 593 m/z) and 16 (6.24 min; 593 m/z) with similar fragmentation pathway were identified only in I. pumila flower, as apigenin 8-C-(2"-hexosyl)-

hexoside and apigenin 8-C-(2"-pentosyl)-hexoside (respectively). A search of literature did not find that such compounds were isolated from Iris species 

before, but their fragmentation is well known and described in the literature[36]. Peaks 19 and 20, with the same accurate masses but different ions in MS 

spectrum, were tentatively identified as 4'-O-methyl-apigenin 8-C-hexoside and 4'-O-methyl-apigenin 6-C-hexoside, respectively. These compounds 

were already isolated and identified in rhizomes of I. pseudopumila[34]. 

Flavonoid O-glycosides 

Among eleven flavonoid O-glycosides, four of them were identified using avaliable standards (quercetin 3-O-galactoside – 21, quercetin 3-O-glucoside – 

23, kaempferol 3-O-glucoside – 29, and isorhamnetin 3-O-glucoside – 30). Kaempferol 3-O-galactoside (27) was already decribed in I. pseudopumila 

rhizome[34]. Isorhamnetin 3-O-galactoside (28) was found only in I. humilis ssp. arenaria flower in the present study. Derivatives with the same molecular 

masses showing very similar fragmentation pathways were marked as galactose and glucose isomers, although it is known that galactoside has a shorter 

retention time[37]. By studying MS fragmentation of two isorhamnetin derivatives (compounds 22 and 26) at 623 m/z, it can be concluded from the results 

of the present study that these two derivatives differ by interglicosidic linkage between sugars[38], and they were marked as isorhamnetin 3-O-(2"-

rhamnosyl)-hexoside and isorhamnetin 3-O-(6"-rhamnosyl)-hexoside, respectively. Compound 22 was already characterized in I. hookeriana rhizome[39]. 

Compound 24 at 6.77 min and 593 m/z gave MS2 base peak at 285 m/z and MS3 spectrum which corresponds to the fragmentation of kaempferol. This 

compound, kaempferol 7-O-(6"-rhamnosyl)-hexoside, was characteristic for flowers of all three investigated Iris species. Irisdichotin B (compound 25), 

eluted at 6.85 min with molecular ion at 493 m/z, was confirmed by examination of its MS data. It is well known that this compound is specific to Iris sp. 

because it was previously identified in the I. dichotoma rhizome[40]. Compound 31 at 9.98 min, with molecular ion at 577 m/z, and MS2 base peak at 285 m/z 

(mass of deprotonated luteolin, obtained by elimination of 292 Da corresponding to p-coumaroyl (146 Da) + rhamnosyl (146 Da) residue) was tentatively 

identified as luteolin 7-O-(2"-p-coumaroyl)-rhamnoside. MS3 spectrum with base peak at 241 m/z confirmed the presence of luteolin as aglycone. 

Proposed fragmentation pathway of compound 31 is depicted in Scheme 1. 
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Scheme 1. Proposed fragmentation pathway of compound 31 (Luteolin 7-O-(2"-p-coumaroyl)-rhamnoside). 

 

Isoflavones and their derivatives 

Isoflavones and their glycosides are the main classes of polyphenolic compounds found in Iris species[3]. Many isoflavones were named after the type of 

Iris from in which they were common or firstly isolated. Identification of isoflavones and their derivatives, in the absence of standards, was achieved using 

the available literature on phytochemicals previously isolated or just identified in some of Iris spp. [5,7,13,30,41,42,43], as well as by studying of its MS 

fragmentation pattern (exact mass and MS4 fragmentation). Table 1 and 2 summarized MS data for all isoflavone derivatives (compounds 32−52) found in 

our Iris species. Bearing in mind that most of these compounds are already known to be present in Iris species, this paragraph will only give a brief 

overview of the identification of compounds that have not been identified so far in the aforementioned plant species. Thus, compound 34 (7.20 min; 505 

m/z) generated MS2 base peak at 329 m/z resulting by the loss of hexurinide moiety (176 Da). MS3 spectrum showed base peak at 314 m/z (generated by 

elimination of methyl group) and this compound was marked as iristectorigenin A 7-O-hexuronide. Iristectorigenin A (compound 48), known to be 

present in I. tectorum[42], was also identified in the test samples. Compound 39 (found only in I. humilis rhizome) at 7.70 min and molecular ion at 681 m/z 

was identified as dichotomitin 3'-O-(6"-hexosyl)-hexoside. It produced MS2 base peak at 357 m/z, corresponding to the mass of deprotonated 

dichotomitin. Dichotomitin 3'-O-hexoside (compound 46) was also identified only in I. humilis rhizome, and its fragmentation was confirmed by available 

literature[13]. Nigracin, known to be present in extracts of I. germanica and I. pallida[7], in this study it was not found in the form of aglycone, but only 

glycoside and it was marked as nigracin 4'-O-[6"-(3-hydroxy-3-methylglutaryl)]-hexoside (compound 41). In the literature there is no known case of the 
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presence of isoflavone derivatives with 3-hydroxy-3-methylglutaryl group, but this structure is proposed as the most logical, because it fits into exact 

mass and MS fragmentation. Similar to that, peak 47 eluted at 8.71 min with 647 m/z (MS2 base peak fragment at 297 m/z and MS3 base peak fragment at 

269 m/z) was tentatively identified as irilone 4'-O-[6"-(3-hydroxy-3-methylglutaryl)]-hexoside. It was only found in above-ground vegetative parts of I. 

pumila. Detailed fragmentation pathway proposed for compound 47 is shown in Scheme 2. 

 

Scheme 2. Proposed fragmentation pathway of compound 47 (Irilone 4'-O-[6"-(3-hydroxy-3-methylglutaryl)]-hexoside). 

 

Chlorophylls and carotenoids content 

Content of photosynthetic pigments (chlorophyll A and B) and total carotenoids in plant materials is shown in Table 3. Significant differences in the 

content of these pigments were recorded in the analyzed plant parts. Expectedly, the highest chlorophyll content has been detected in above-ground 

vegetative parts of Iris plants, a significantly lower content of these pigments was observed in flowers, while presence of both chlorophylls has not been 

recorded in underground part of plants - rhizomes. High positive correlation was found between the content of chlorophyll A and chlorophyll B (r = 0.95) 

and chlorophyll A/ chlorophyll B and carotenoids (r = 0.87, r = 0.80, respectively). Results related to the content of chlorophylls are similar (AGP 2 and AGP 

3) or lower (AGP 1) than results obtained for leaves and stems of different Mentha species[44]. In case of carotenoids the highest content was found in 
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green parts of I. pumila (165.7 μg/g of dry weight) and I. humilis (102.9 μg/g of dry weight). Similar results were reported in case of Mentha green parts[44]. 

Rhizomes of Iris species didn’t contain carotenoids except in case of I. pumila rhizome (0.92 μg/g of dry weight). 

 

 

Table 3. Content of phytochemicals, soluble sugars, starch and Trolox equivalent antioxidant capacity (TEAC) in different parts of Iris species expressed on dry weight (DW). 

 R* 1** R 2 R 3 AGP 1 AGP 2 AGP 3 F 1 F 2 F 3 

chlorophyll A (μg/g of DW) n.d.*** n.d. n.d. 217.3±0.1 603.3±0.1 388.2±0.8 9.8±0.1 32.3±0.3 38.0±0.3 

chlorophyll B (μg /g of DW) n.d. n.d. n.d. 45.6±1.0 136.7±1.1 88.4±2.6 4.6±0.1 53.2±1.8 n.d. 

carotenoids (μg /g of DW) n.d. 0.92±0.01 n.d. 70.3±0.1 165.7±0.3 102.9±1.0 83.8±0.5 21.5±1.3 61.1±1.2 

total phenolics (mg GAE/g 

of DW) 

13.8±0.6g 8.8±0.6b,f 11.2±0.4d 11.0±0.7d,h 9.3±0.4c,e 8.4±0.6a,b,c 12.8±0.8g 9.8±0.6e,f,h 7.4±0.5a 

total flavonoids (mg QE/g 

of DW) 

2.9±0.2a 0.98±0.06b 1.04±0.07b 4.0±0.2 2.8±0.2a 2.9±0.2a 3.5±0.2 1.74±0.06 0.79±0.03 

soluble sugars (mg/g of 

DW) 

17.9±0.8a 15.5±0.5 9.9±0.2 28.8±0.8b 18.9±0.8a 29.7±0.7b 23.6±0.7c 22.6±0.9c 23.0±1.1c 

starch (mg/g of DW) 37.4±1.2 6.3±0.5 12.0±0.8 1.61±0.06 2.3±0.1 1.10±0.06a 4.7±0.3 1.17±0.06a 1.10±0.06a 

TEAC (μmol Trolox/g) 178.3±5.2a 148.2±4.0b,c 80.4±3.1 156.1±4.8c 141.9±3.0b 71.1±2.8 184.4±4.6a 110.7±3.1 49.9±2.5 

* R- rhizome; AGP – above-ground vegetative parts; F – flower **1- Iris variegata L.; 2- Iris pumila L.; 3- Iris humilis 

*** n.d.- not detected 

Means with the same letters in the same row are not significantly different (p<0.05). 

Total phenolic content (TPC) and total flavonoids content (TFC) 

Total phenolic content (Table 3) in plant samples was ranged from 7.4 mg GAE/g of dry weight, which was found in flowers of I. humilis, to 13.8 mg GAE/g 

of dry weight presented in rhizomes of I. variegata. According to obtained results analyzed samples can be compared to results obtained for 45 selected 

medicinal plants[45] with very similar the highest content found in plant Smilax glabra Roxb. (14.24 mg GAE/g). Furthermore, in two species (Cynanchum 

atraum Bge and stem of Lonicera japonica Thunb) TPC values (7.75 i.e. 7.81 mg/g GAE DW) were in range of the lowest TPC for Iris species. Phenolic 

content in above-ground part of I. pumila was similar to result obtained for Tossa jute leave[46]. In case of flavonoids a similar distribution was recorded as 

for total phenolic content – I. variegata possessed maximal amounts of flavonoids in green part (4.0 mg QE/g) while I. humilis flowers, again, have shown 

the lowest flavonoids content (0.79 mg QE/g of dry weight). TFC in above-ground part of I. variegata was in accordance with results for ethanolic extract 

of Corchorus olitorus L. leave[46]. Determination of the amount of bioactive compounds, such as phenolics, flavonoids or terpenes, is important because of 

their further use. For instance, presence of four different irones compounds (cis-α-irone, trans-α-irone, β-irone and cis-γ-irone) in Iris spp. represents the 

basis for application of their essential oils as perfumes components in cosmetic industries[47]. Furthermore, the application of plant tissue culture 

techniques, based on embryogenic callus and somatic embryos production, it is possible to produce the desirable quantity of plant metabolies and 

overcome the problems connected with Iris plants such as long cultivation perod, difficultes to collect and rapide decline of population size[47].   

Soluble sugars and starch content 

According to obtained results (Table 3) for sugars content I. humilis contains maximum (above-ground vegetative parts) and minimum (rhizomes) 

amounts of soluble sugars depending on plant part. In case of starch the lowest contents were found in leaves, stems and flowers of this specie (1.10-1.17 

mg/g). Rhizomes of I. variegata can be described as best “reservoir” of starch with 37.4 mg of starch/g of dry weight. The remaining two rhizomes, also, 

showed increased content of starch, which is in accordance with the role of this part of the plant. Comparing to results of Ranwala and Miller [48] soluble 
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sugars content were slightly lower (rhizomes) or in range (above-ground vegetative parts and flowers) with results obtained for glucose, fructose and 

sucrose content in storage organs of four different Iris species (~ 30 mg/g DW) except in case of specie I. xiphium (~ 90 mg/g DW). On the other side starch 

content are significantly lower than contents found in same investigation (471-539 mg/g). 

Total antioxidant capacity 

One of the main advantages of applying the ABTS method compared to other antioxidant tests (such as DPPH) is that analysis can be performed at 

different pH levels and by using both aqueous or extracts prepared in some organic solvents[49]. This is important esspecialy in case of some phenolic 

compounds which are pH-sensitive such as anthocyanin pigments presented in Iris spp. flowers[10]. Further, in this investigation the methanolic extracts 

were used becasuse Shalaby and Shanab[49] have shown that methanol extracts of Spirulina platensis possessed the higher ABTS antioxidant activity 

compared to the aqueous ones. Total antioxidant capacity of plant extracts, expressed as Trolox equivalent antioxidant capacity (TEAC), was ranged from 

49.9 to 184.4 μmol Trolox/g of dry weight (Table 3). These results are comparative with results for different medicinal plants[45]. The highest TEAC value 

was equal as results that obtained for specie Scutellaria baicalensis Georgi[45]. Also, other thirteen plant species possessed TEAC values in similar range 

with analyzed three Iris species. Correlation analysis revealed that the significant positive correleation between TEAC and TPC (r = 0.72) existed whereas 

no correlation was found between TFC and TEAC. These results indicated that besides flavonoids other components present in extracts with reducing 

activity can contribute to the total antioxidant capacity of Iris extracts. These results were in accordance with findings of other authors[45] who 

demonstrated that the highest and the lowest TPC values are followed with highest and lowest TEAC values.  

 

Conclusions 

In current study phytochemical analysis of three different Iris species was conducted. A detailed xanthones, flavonoid-C-glycosides, flavonoid-O-

glycosides and isoflavones profiles of I. humilis, I. pumila and I. variegata were obtained by LC/MS analysis. In total, fifty two different compounds were 

identified among which 9 is reported for the first time. Plant rhizomes contained the largest number of identified compounds- both I. pumila and I. 

variegata rhizomes contain twenty five different compounds. Analysis of I. humilis ssp. Arenaria rhizome has shown presence of eighteen phenolics. 

Above-ground vegetative parts and flowers of Iris sp. possessed between six i.e. eighteen compounds. All investigated samples have shown high content 

of phenolic compounds which is comparable with different medicinal plants. Also, high antioxidative capacity, expressed through Trolox equivalent value, 

was determined. Given results for phenolic profile can be used as potential “botanical fingerprint” for investigated Iris species while good results for TPC 

and TEAC classify selected Iris sp. as potentially applicable for medical or some industrial purposes. In addition, these findings could be useful for 

estimation of potential of Iris species for production of plant metabolites by callus for pharmaceutical/cosmetics industries. 

Experimental Section 

General  

Acetonitrile, formic acid (both MS grade), acetone, methanol (both HPLC grade), Folin-Ciocalteu reagent and phenolic standards were purchased from 

Sigma-Aldrich (Steinheim, Germany). Perchloric acid, aluminum-chloride, sodium-nitrite, sodium-hidroxide and sodium-carbonate were obtained from 

Zorka Pharma (Šabac, Serbia). Ultrapure water (ThermoFisher TKA MicroPure, 0.055 μS/cm) was used to prepare standard solutions and blanks. Syringe 

filters (13 mm, PTFE membrane 0.45 μm) were purchased from Supelco (Bellefonte, PA). Three Iris species (I. humilis, I. variegata L., Iris pumila L.) 

investigated in the current study are presented on Figure 2.  
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FIGURE 2. Appearance of three Iris species: a) I. pumila L., b) I.variegata L., c) I. humilis. 

In Serbia populations of I. humilis (Sandy iris) were observed at only two sites in the protected areas: Subotica Sands and Selevenj heath, from where the 

plants were taken for the purpose of chemical analysis. This is a rhizomatous perennial species, with long thin rhizome, about 2–5 mm thick. Rhizome has 

many thickened branched nodes making clumps of plants. Leaves are grass-like (8-10 mm wide) and a stem is short. It blooms in April and May. There are 

one or two flowers per stem and they are pale yellow with thin purple veins and are fragrant (vanilla scented). Fruit are at the top of the stem. Flowering 

period is short and each flower lasts only one day. Plant specimens of I. variegata (Hungarian or variegated iris) and I. pumila (dwarf bearded iris) were 

taken from undisturbed natural populations growing in the Special Nature Reserve - Deliblato sands, the largest European continental sandy terrain 

located in the south-east part of the Pannonian Plain, in Serbia. Iris variegata L. is a perennial clonal herb while Iris pumila L. probably originated as a 

natural hybrid between I. pseudopumila Boissier & Heldreich and I. attica Tineo. Variegated iris grows up to 1m high and has stout rhizome with roots that 

can go up to 10 cm deep in the ground. Leaves are dark green, ribbed, around 2–3 cm wide. Usually there are 2-5 big flowers per stem. The scentless 

flowers appear in early summer, May – June. The flowers are yellowish-white with different networks of brown-purple veining on the falls. Contrary to 

other two Iris species in this research, I. pumila exhibits huge flower color genetic polymorphism (yellow, purple, violet, blue, cream and white). Fruit are 

at the bottom of the stem. From a very similar I. humilis it distinguishes with this fruit feature and also slightly broader leaves (up to 20 mm). Dwarf 

bearded iris is found growing along the forest edges at sun-exposed open sites, unlike I. variegata that inhabits almost equally often sun exposed and 

understory sites[50]. The collection of  biomass samples was made from its natural habitats in Serbia: 

I. humilis:- Selevenj heath, protected area  N 46° 08’ 67’’ E 19° 55’ 17’’ at 87 m a.s.l.; 

I. pumila:- Deliblato sands, protected area N 44° 57’ 36’’ E 21° 02’ 08’’ at 157 m a.s.l.; 

I. variegata:- Deliblato sands, protected area N 44° 57’ 48’’ E 21° 02’ 54’’ at 148 m a.s.l.; 

Minimal amount of biomass were sampled for the purpose of chemical analysis because these Iris species are endangered and protected. Since they are 

rhizomatous  perennial herb, the rest of each sampled plant were preserved in natural habitat and labeled for further analysis. Plant specimens were 

collected and identified by Dr S. Avramov (Institute for Biological Research „Siniša Stanković“, Serbia) during May-July 2016.  After excavation, plants 

were divided in three parts: rhizomes (R), above-ground vegetative parts (stem and leaf) (AGP) and flowers (F). All parts were thoroughly washed, dried 

and after that cut into the pieces, packed in plastic bags, vacuumed and placed at dark and cold place (- 80 °C) until further analysis. 

 

 

Experimental Title 

Extraction of plant materials 

Extraction procedure, based on Laware method[51] is presented on Scheme 3. 
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Scheme 3. Extraction procedure used for separation of selected phytochemicals – pigments, total phenolics, total flavonoids, soluble sugars and starch. 

 

UHPLC-MS/MS Orbitrap qualitative analysis 

 Separations of compounds of interest were performed using an ultrahigh-performance liquid chromatography (UHPLC) system consisting of a 

quaternary Accela 600 pump and Accela autosampler (ThermoFisher Scientific, Bremen, Germany). The UHPLC system was coupled to a linear ion trap - 

orbitrap mass spectrometer (LTQ OrbiTrap MS) equipped with heated electrospray ionization probe (HESI-II, ThermoFisher Scientific, Bremen, Germany) 

in negative mode. A Syncronis C18 column (100 × 2.1 mm, 1.7 µm particle size) at 40 ˚C was used for compounds separation. Flow rate was set of 0.250 

mL/min and the mobile phase was consisted of (A) water + 0.1% formic acid and (B) acetonitrile. The injection volumes were 5 µl and linear gradient 

programs were as follows: 0.0-1.0 min 5% B, 1.0-14.0 min from 5% to 95% (B), 14.0-14.1 min from 95% to 5% (B), and 5% (B) for 6 min. 

Parameters of the ion source were as in literature[52]. The MS spectra were acquired by full-range acquisition covering 100-1000 m/z. Resolution was set to 

30,000 for full scan analysis. The data-dependent MS/MS events were always performed on the most intense ions detected in the full scan MS. The ions of 

interest were isolated in the ion trap with an isolation width of 5 ppm and activated with 35% collision energy levels. Settings of dynamic exclusion were 

as previously described[53]. Xcalibur software (version 2.1) was used for the instrument control, data acquisition and data analysis. 

Determination of pigment content 

 During the first step of subsequent extraction procedure obtained acetone extract contains three different photosynthetic pigments: chlorophylls A and 

B and carotenoids which content was determined by spectrophotometric method[51]. Results for pigments content are expressed as μg/g of dry weight 

samples.  

Determination of total phenolic and total flavonoids content 

 The second stage of extraction procedure produced 80% MeOH extract which contains phenolics compounds and flavonoids as important sub-fraction of 

phenolics. Determination of total phenolic content was conducted by application of standard Folin-Ciocalteu method[54] while total flavonoids were 
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determined with aluminum-chloride method[55]. All results for phenolic content are expressed as mg of gallic acid equivalent (GAE) per gram of dry weight 

of samples. The obtained results for total flavonoid content are expressed as milligrams of quercetin equivalents per gram of dry weight of samples 

(mgQE/g). 

Determination of soluble sugars and starch 

 Soluble sugars content and starch content (part of 80% MeOH extract) were determined by standard Anthrone spectrophotometric method[56] using 

sugars and starch extracts generated after second and third steps of subsequent extraction procedure, respectively. 

Determination of Trolox equivalent antioxidant capacity (TEAC) 

 Antioxidant activity of Iris extracts were determined applying method of Li et al. [45] using 1 mL of MeOH plant extracts and 20 mL of ABTS solution. 

Obtained results are expressed as μmol Trolox/g of dry weight of used plant materials. 

Statistical analysis 

For determination of statistical parameters (mean values ± standard deviation) Duncan’s multiple range test was applied (p < 0.01). The correlation 

analysis between pigments content, total phenolic content (TPC), total flavonoids content (TFC) and antioxidant activity (TEAC values) were performed 

and expressed through Pearson’s coefficient (r). Correlations at p<0.05 were considered as significant.  
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