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Abstract 

-Amylase from Bacillus paralicheniformis (BliAmy), belonging to GH13_5 subfamily of 

glycoside hydrolases, was proven to be a highly efficient raw starch digesting enzyme. The ability 

of some -amylases to hydrolyze raw starch is related to the existence of surface binding sites 

(SBSs) for polysaccharides that can be distant from the active site. Crystallographic studies 

performed on BliAmy in the apo form and of enzyme bound with different oligosaccharides and 

oligosaccharide precursors revealed binding of these ligands to one SBS with two amino acids F257 

and Y358 mainly involved in complex formation. The role of this SBS in starch binding and 

degradation was probed by designing enzyme variants mutated in this region (F257A and Y358A). 

Kinetic studies with different substrates show that starch binding through the SBS is disrupted in 

the mutants and that F257 and Y358 contributed cumulatively to binding and hydrolysis. Mutation 

of both sites (F257A/Y358A) resulted in a 5-fold lower efficacy with raw starch as substrate and at 

least 5.5-fold weaker binding compared to the wild type BliAmy, suggesting that the ability of 

BliAmy to hydrolyze raw starch with high efficiency is related to the level of its adsorption onto 

starch granules.  

Keywords: -amylase, crystal structure, starch, surface binding site, mutant 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



2 
 

1. INTRODUCTION 

 

Industrially relevant polysaccharides are complex structures that can be enzymatically 

degraded by glycoside hydrolases (GHs). Starch is one of the most important polysaccharides for 

humans both in food and non-food applications, such as for bioethanol production, drug delivery, 

and in the paper and textile industries [1, 2]. As a component of dietary intake, raw starch behaves 

as resistant starch. It escapes digestion and absorption in the small intestine and is fermented in the 

large intestine by microorganisms, with production of short-chain fatty acids. There is now 

abundant evidence showing that short-chain fatty acids play an important role in sustaining health 

and that their formation and uptake may lower the risk of disease [3].  

The possibility of raw starch hydrolysis would be a major breakthrough in the starch 

processing industry, since the overall cost of producing starch-based products might be reduced 

through energy savings and by more effective use of starch-containing resources [4-6]. Amylases 

able to degrade granular or native starch below the gelatinization temperature of starch are known 

as raw starch degrading amylases (RSDA) and can be found in species from all kingdoms of life. 

Understanding the ability of such amylases to degrade raw starch will support their applicability in 

the starch-processing industry, with potential health benefits of food products [7]. 

Enzymes active towards polysaccharides exhibit different strategies for cleavage of raw 

starch. The most common solution is the presence of starch-binding regions that are distinct from 

the active site yet facilitate the action of the enzyme by a proximity effect that can at the structural 

level include directing the substrate chain towards the catalytic site. This non-catalytic carbohydrate 

binding is achieved either through additional carbohydrate-binding modules (CBMs) often located 

at separate domains that are connected to the catalytic domain by a polypeptide linker or via one or 

more surface binding sites of the catalytic domain itself (SBSs, sometimes called secondary binding 

site). The structures and functions of CBMs have been extensively studied [8-11], and recently 

comprehensive review of starch binding domains (sometimes referred to as SBDs) was published 

[12], but there is a lack of information on SBSs since they occur less frequent and cannot be easily 

identified from sequence similarity studies. SBSs are usually found only by structural studies. So 

far, approximately 60 enzymes from 20 CAZy (www.cazy.org) families were found to possess one 

or more SBSs [13], and almost half of these enzymes belong to GH13 α-amylase family. 

Examination of X-ray structures obtained from -amylase crystals soaked or co-crystallized with 

substrates or substrate analogs revealed the presence of SBSs separate from the active site. 

However, studies to elucidate their functional significance have been done in only a few cases [14-

17].  

Literature on the role of SBSs has been recently reviewed [18, 19], including papers with 

emphasis on GH13 -amylase family [20, 21]. Several SBSs have been described in enzymes 

participating in starch degradation. For the hydrolysis of raw starch physical adsorption of 

amylolytic enzymes is often referred to as conditio sine qua non. Most likely the role of SBS is 

related to the processivity of the enzymes: localization of the enzyme on the polymeric substrate 
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enabling the active site to perform multiple catalytic cycles without dissociation of the enzyme from 

the ES complex [17]. Other important roles of SBSs include disruption of the complex carbohydrate 

structure, guidance of the polymer strand into the active site, and allosteric regulation [19]. 

Recently, a thermostable and highly efficient RSDA from Bacillus licheniformis ATCC 

9945a (BliAmy) was described [22]. The enzyme was overproduced in high yield in E. coli and 

could efficiently hydrolyze highly concentrated raw corn starch, showing its potential value for 

starch-processing industries [23]. Whereas some bacterial α-amylases are capable of hydrolysis of 

raw starches at high concentration (30 % w/v) [24-26], BliAmy accomplished complete hydrolysis 

of 91 % upon prolonged incubation [23]. BliAmy was more efficient than -amylase from 

Anoxybacillus flavothermus which lead to 77 % hydrolysis of a 31 % raw corn starch suspension 

after 96 h at 61°C [24] or -amylase from Geobacillus thermoleovorans that hydrolysed 40 % of 

raw corn starch (30 % slurry) at 60°C [25].  

The enzyme belongs to the GH13_5 family of -amylases (EC 3.2.1.1), which share a 

typical tertiary structure consisting of three distinct domains called A, B and C. The catalytic 

activity is located in the A domain which has a (β/α)8 (TIM-barrel) structure [27, 28]. There is no 

separate carbohydrate- or starch-binding domain and structural features that contribute to the high 

activity with raw starch are unclear. Furthermore, no crystal structures of ligand complexes of 

BliAmy are available.Consequently, in this work we seek to elucidate whether the highly efficient 

raw starch digestion activity of BliAmy is influenced by other interactions with starch, e.g. by the 

presence of starch-binding sequences in the catalytic domain or elsewhere in the protein. Using X-

ray crystallography studies with different ligands, we identified an SBS on the surface of the 

catalytic A domain of BliAmy. The role of this SBS was investigated by kinetic studies with 

different substrates and with BliAmy variants carrying mutations in the SBS region. We show that 

the ability of BliAmy to hydrolyze raw starch with high efficiency is related to adsorption of the 

enzyme onto the starch granule mediated by this SBS. 

 

2. MATERIAL AND METHODS 

2.1 Protein preparation for crystallography: The untagged wild-type BliAmy protein 

(GenBank accession number JN042159) was overexpressed and purified as previously described 

[23, 29]. Purity (>95%) was checked by sodium dodecyl sulfate−polyacrylamide gel electrophoresis 

(SDS-PAGE). The protein was concentrated to 3 mg/mL in a buffer solution containing 25 mM 

HEPES (pH 7.5) and 10% (v/v) glycerol. 

2.2 Protein preparation for biochemical characterization: Wild-type BliAmy and 

mutants were expressed with an N-terminal 6xHis-tag and purified using a standard IMAC 

procedure on Ni-Sepharose. Briefly, enzymes were overexpressed and purified according to the 

following procedure: an overnight culture in LB medium with ampicillin of E. coli NEB10β cells 

carrying the desired plasmid was diluted 100-fold into 400 mL TB medium with 50 μg/mL 

ampicillin (TBamp) in 2 L baffled flasks (Sigma Aldrich). Cells were induced at OD600 = 2 by adding 
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0.02% (w/v) L-arabinose (final concentration) and incubation was continued at 24 °C for 40 h (135 

rpm). Cells were harvested by centrifugation at 6000 rpm at 4 °C for 20 min. Cell pellet was then 

resuspended in 50 mM potassium phosphate (KPi) buffer, pH 8.0. To prevent unwanted proteolysis 

0.1 mM phenylmethylsulfonyl fluoride was added to the extraction buffer. Cells were disrupted by 

sonication and centrifuged at 4 °C 12,000 rpm for 60 min. The cell-free extract was applied on a 4 

mL Ni-Sepharose FF gravity column pre-equilibrated in 50 mM KPi buffer pH 8.0. Stepwise 

elution was used to wash away non-specifically bound proteins and elution of BliAmy was achieved 

with 50 mM KPi buffer pH 8.0 containing 0.3 M imidazole. After SDS-PAGE analysis, fractions 

that contain the pure protein were pooled and the buffer was exchanged to 50 mM KPi, pH 6.5. The 

samples were flash frozen in liquid nitrogen and stored at -20 °C until use. Protein concentrations of 

purified BliAmy and mutants were determined using the Bradford assay. 

2.3 Crystallization, data collection, structure determination and refinement: Initial 

sitting-drop crystallization screening was performed using a Mosquito crystallization robot (TTP 

Labtech) in a 96-well MRC2 plate (Molecular Dimensions) with a protein concentration of 7.5 

mg/mL in 50 mM HEPES (pH 7.5), 5 mM CaCl2 and 150 mM NaCl. The screening solutions used 

for the experiments were PACT, Wizard and JCSG+ (Molecular Dimensions) and Index and Grid 

Screen Salt (Hampton). Bipyramidal crystals appeared after 1 week of incubation at 294 K in 

solutions containing malonate at pH 5 to 6. Crystallization conditions were optimized using sitting-

drop set-ups with 42-46% (v/v) tacsimate (Hampton), containing 1.36 M malonic acid, 0.25 M 

ammonium citrate tribasic, 0.12 M succinic acid, 0.3 M D,L-malic acid, 0.4 M sodium acetate, 0.5 

M sodium formate, 0.16 M ammonium tartrate dibasic at pH 6.0 and 10 mM CaCl2, as precipitant. 

Drops contained 0.1 μL protein solution and 0.1 μL reservoir solution. Crystals grown from 

malonate or tacsimate without CaCl2 showed worse morphology and did not diffract.  

Before data collection, crystals were briefly soaked in a cryoprotectant solution consisting of 

60% (v/v) tacsimate and 10 mM CaCl2. Ligand complexes were obtained by soaking crystals in 25 

mM acarbose (Tokyo Chemical Industry Co., Ltd.), a glycoside hydrolase inhibitor, and 100 mM 

maltose (ACR-MAL) for 20 min, 100 mM maltose (MAL), 100 mM maltohexaose (G6) or 20 mM 

β-cyclodextrin (-CD) added to the cryoprotectant for a few min. X-ray diffraction data were 

collected on an in-house MarDTB Goniostat System using Cu-Kα radiation from a Bruker 

MicrostarH rotating-anode generator equipped with HeliosMX mirrors. Intensity data were 

processed using iMosflm [30]. 

BliAmy crystals belong to the tetragonal space group P43211 with one monomer of 55 kDa 

in the asymmetric unit. The VM is 3.0 Å
3
/Da [31] with a solvent content of 59%. Data collection 

statistics are listed in Table 1. The structure of the BliAmy was determined by the molecular 

replacement method using Phaser [32] with mixed model coordinates of B. licheniformis alpha-

amylase (BLA) [33] (PDB code:1BLI) as search model.  

The model was refined with REFMAC5 [34] and Coot [35] was used for manual rebuilding 

and map inspection. Continuous density in 2mFo-DFc and mFo - DFc maps for two acarbose 
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molecules per protein molecule was observed in the ACR-MAL crystal, one bound in the active site 

and one bound at a remote location. In the secondary substrate binding site electron density is 

visible for four of the six sugar residues in the G6 experiment; maltose in the MAL experiment and 

β-cyclodextrin in the β-CD experiment. One TLS group was used in the last rounds of refinement. 

The quality of the models was analyzed with PDB_REDO [36] and MolProbity [37]. Atomic 

coordinates and experimental structure factor amplitudes have been deposited in the Protein Data 

Bank (PDB) (Table 1). 

2.4 Strains, plasmids and site directed mutagenesis: The Agilent primer design tool 

(www.agilent.com) was used to design primers to create mutants F257A, Y358A and 

F257A/Y358A using QuikChange site-directed mutagenesis. Oligonucleotide sequences used for 

generation of mutants are available upon request. Two primers were used in each PCR reaction, 

using the PfuUltra II Master Mix (Agilent) as recommended by the supplier. The pBad-6xHis-

BliAmy construct was used as a template which results in expression of BliAmy mutants with an N-

terminal His tag. The pBad-6xHis-BliAmy F257A construct was used as a template to introduce the 

Y358A mutation and thus generate the construct for expression of double mutant, pBad-6xHis-

BliAmy F257A/Y358A. Obtained constructs were transformed into chemically competent NEB10β 

cells. Plasmid sequences were verified by sequencing (GATC). 

 2.5 Kinetic studies with pNP-G6: The chromogenic substrate 4-nitrophenyl α-D-

maltohexaoside (pNP-G6) was purchased from Merck (Kenilworth, NJ, United States). 

Determination of kinetic parameters of BliAmy variants for pNP-G6 was monitored by the increase 

in absorbance at 405 nm using a Shimadzu UV spectrophotometer UV-1800. The concentration of 

enzyme used was 110 nM for all assays. All experiments were carried out in triplicate. Initial rates 

were measured using five to seven different pNP-G6 concentrations ranging from 0.05 to 5 mM in 

100 mM Tris∙HCl buffer, pH 8.0, at 25°C and fit to the Michaelis – Menten equation by nonlinear 

regression using GraphPad Prism 5 to obtain Vmax (kcat) and Km. 

2.6 Kinetic studies with soluble starch: Rates of enzymatic hydrolysis of soluble starch 

were determined by quantifying the concentration of sugar reducing ends using the DNS assay [38]. 

A stock solution (50 mg/mL) of soluble potato starch (Merck) was made in 50 mM phosphate 

buffer, pH 6.5. Starch solutions at various concentrations (0 to 42 mg/mL) were prepared by 

diluting with buffer. Purified BliAmy variants (final concentration 75 nM) were added to starch 

solutions and incubated at 60°C for an appropriate length of time. The reactions were stopped by 

addition of an equal volume of DNS solution and the color was developed by boiling the samples 

for 5 min, followed by cooling at room temperature. The absorbance was measured 

spectrophotometrically at 540 nm and values were plotted versus reaction time. Maltose was used 

as a standard. All experiments were carried out in triplicate. The initial rates were plotted against 

substrate concentration and fitted to the Michaelis – Menten equation by nonlinear regression using 

GraphPad Prism 5 to obtain Vmax (kcat) and Km. 

2.7 Kinetic studies with starch granules: Purified BliAmy variants (3 to 540 nM) were 

added to corn starch granules suspended at 10 concentrations (0 to 270 mg/mL) in 50 mM 
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phosphate buffer, pH 6.5, and 0.005% (w/v) BSA. All experiments were carried out in triplicate. 

After incubation at 60°C for 1 h reducing sugars were measured in supernatants after centrifugation 

(16,000g for 3 min). Catalytic coefficients (kcat/ Km) for all variants were obtained from the slopes 

of vi/[E] versus [S], where vi represents initial rates [14], using GraphPad Prism 5.  

2.8 Starch granules adsorption assays: Purified BliAmy variants (16 nM) and corn starch 

granules at 10 concentrations (0 – 100 mg/mL) in 50 mM phosphate buffer, pH 6.5, and 0.005% 

(w/v) BSA were incubated in triplicate at 4°C for 30 min with continuous shaking at 300 rpm and 

centrifuged (16,000g and 4°C for 15 min) [14]. Enzyme remaining in the supernatants was assayed 

by measuring activity toward soluble starch and expressed as the percentage of bound enzyme when 

compared with a no-starch control. No-starch control was also confirmation that the stability of the 

active enzyme was completely retained in the starch granule binding assays under the experimental 

conditions used. Values were plotted against the starch concentrations, and the data were fitted to a 

one-site binding model using GraphPad Prism 5. The dissociation constant Kd was obtained by 

fitting the Langmuir adsorption isotherm to the fraction of bound enzyme (eq 1) B being the bound 

enzyme fraction, [S] the starch granule concentration, and Bmax the maximum binding capacity [14].  

 

𝐵 =
𝐵𝑚𝑎𝑥 [𝑆]

𝐾𝑑+[𝑆]
                                                                                                       (1) 

 

 

3. RESULTS AND DISSCUSION 

 

3.1 The crystal structure of BliAmy 

The crystal structure of Bacillus paralicheniformis strain ATCC 9945a amylase was 

determined with molecular replacement to 1.95 Å resolution. The structure consists of three 

domains. The N-terminal catalytic domain A, comprising 291 residues (3 to 103 and 206 to 396), 

forms a (β/α)8-barrel structure. Domain B (residues 104-206) is inserted between the third β-strand 

and the third α-helix of domain A and consists of two extended loops. The C-terminal domain C 

(residues 397-482) folds into an eight-stranded antiparallel β-barrel (Fig. 1). 

The structure of the BliAmy is similar to that of amylases from Bacillus licheniformis 

(BLA). The sequence of BliAmy is 96% identical to the calcium-free wild-type BLA (PDB code 

1VJS, 0.46 Å rmsd) [39] which is identical to PDB 1BPL (0.62Å rmsd) [40]. BliAmy is 95% 

identical to a calcium-containing variant BLA (PDB 1BLI, 0.43 Å rmsd) [33] and a 

thermostabilized α-amylase (PDB 1OB0, 0.79Å rmsd) [41].  

In the BliAmy structure, the Ca-Na-Ca metal triad, necessary for structural integrity and 

enzymatic activity [33], is situated between domains A and B (Fig. 1), and is identical to that in the 

Ca
2+

-containing BLA (1BLI). A Na
+
 ion in the structure of BliAmy is replacing the third Ca

2+ 
ion 

between domains A and C (Fig. 2 A-D). The anomalous difference Fourier map did not confirm a 
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Ca
2+ 

ion at this location. The ligands for this Na
+ 

ion are G300-O (2.5 Å), Y302-O (2.1 Å), H406-O 

(2.6 Å), H406-ND1 (3.3 Å), N407 OD1 (2.4 Å), and D430-OD1 and OD2 (both 2.5 Å). A Cl
-
 ion 

reported for some other structures was also not visible in the anomalous map [40]. The cis peptide 

bond between W184 and E185 is vital for maintaining the integrity of the cage surrounding the Ca-

Na-Ca metals [33]. In the native structure of BliAmy W184 is observed with two diverse side chain 

conformations while in the acarbose soak the tryptophan shows a third conformation. The different 

conformations are probably due to crystal contacts. In the native structure the tryptophan in both 

conformations has cation-π interaction with the symmetry related R93 and in the acarbose structure 

the W-NE1 has a hydrogen bond with the symmetry related D94-OD2. In the other determined 

structures, multiple conformations for W184 are also observed. 

The active site of BliAmy is located in a large cleft at the C-terminal end of the (β/α)8-barrel 

of domain A and is identical to the active site in the above-mentioned structures. In the native 

structure a malonate molecule from the crystallization medium is bound in the active site. It is 

hydrogen bonded to H235 (+1 sugar subsite) and E261-OE2, which exhibits a double conformation. 

 

3.2 Crystal structures of BliAmy in complex with oligosaccharides and oligosaccharide 

precursors 

The crystal structure of BliAmy in complex with acarbose (ACR-MAL) revealed that 

BliAmy binds two acarbose molecules, one in the active site, i.e. at the C-terminal end of the (β/α)8-

barrel (Fig. 1) and one at the N-terminal end (Fig. 2A). The acarbose molecule in the active site is 

bound in subsites -1 to +3, spanning the cleavage point at -1/+1. The enzyme utilizes a retaining 

mechanism with D231, E261, and D328 involved as catalytic residues. This acarbose has similar 

interactions to the enzyme as described by Davies et al. for B. halmapalus α-amylase (BHA) [42].  

At the +1 binding site, the acid/base catalyst E261-OE2 has hydrogen bond interactions (2.8 

Å) with the NH group of the valienamine of the acarbose. The proton donor D328 (OD2) has 

interaction with the NH group (3.1 Å) and O2 of the valienamine (2.6 Å) as well as between D328 

(OD1) and O3 of the valienamine (2.8 Å). Other interactions are between H327 (NE2) and both O2 

and O3 of the valienamine (both 2.9 Å), between H105 and D231 and O6 and between R229-NH1 

and O2. Stacking interaction is observed of the valienamine ring and Y56. At the -1 binding site 

E261-OE1 has interaction with O3 and H235-NE2 with O2. At the +2 binding site K234-NZ has 

interaction with O3 and O2, and E189-OE1 and OE2 have interaction with O2. At the +3 binding 

site stacking interaction with Y290 is observed. Because of steric hindrance by a symmetry related 

molecule in the crystal structure binding of a sugar molecule at the -2 binding site is not possible.  

The remotely bound acarbose molecule is situated at the bottom of the (β/α)8-barrel A 

domain at the other side of where the active site is located at a distance of ~35 Å (Fig. 2A). Its 

valienamine moiety has hydrogen bonds with T38-OG1, E255OE1 and OE2, and Y358-OH. 

Interactions of the protein with the dideoxy-glucose unit are of mainly hydrophobic nature. The 

sugar ring stacks on Y358 and with a T-shaped character on F257. One hydrogen bond is present to 
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the main-chain carbonyl atom of V318. The maltose moiety of the acarbose has hydrogen bond 

interactions with the amide backbone of G357, E355 OE1 and the backbone carbonyl of P317. 

BliAmy complexed with maltose (MAL) showed electron density for a disaccharide in the 

remote binding site (Fig. 2B). The two glucose units overlap with the acarviosin moiety of the 

acarbose and have similar contacts. The 6-hydroxyl of the maltose, absent in the dideoxy moiety, 

has backbone amide interaction with G5. A hydrogen bond is observed between the O5 of the 

glucose unit, located at the position of the cyclohexitol unit of acarbose, and the hydroxyl of Y98. 

This bond is absent in the BliAmy acarbose complex as in cyclohexitol the oxygen atom is 

substituted by a carbon atom.  

Furthermore, β-cyclodextrin (β-CD), the substrate analogue, is also bound only at the 

remote binding site (Fig. 2C). Of the seven glucose units in the ring, two overlap with the 2 glucose 

units of acarbose. They have similar interactions with the protein. Other interactions are of O2 and 

O3 with NZ of K319. On the other side O2 has interaction with E355-OE1. V318 binds to the 

hydrophobic cavity inside the β-CD. 

The crystal soaked with maltohexaose (G6) showed electron density for a maltotetraose in 

the remote binding the site (Fig. 2D). The 2
nd

 and 3
rd

 glucose units overlap with the maltose and 

have similar interactions to the protein. The non-reducing end sugar (glucose-1) has only hydrogen 

bond interaction via O6 to backbone carbonyls of D94 and T38. The reducing end sugar (glucose-4) 

overlaps with the first glucose unit of the acarbose and has the same interaction to the protein. The 

outer 2 glucose units are probably flexible, not showing interactions with the protein and are 

therefore not visible in electron density. No conformational changes have been observed in the 

structure of Bliamy upon binding of the oligosaccharides or oligosaccharide precursors. The active 

sites of the crystals soaked with maltose, β-cyclodextrin and maltohexaose contain malonate, as in 

the native structure. 

In conclusion, the crystallographic studies performed on BliAmy with oligosaccharides or 

oligosaccharide precursors soaked into crystals of BliAmy revealed one SBS with two key amino 

acids F257 and Y358 involved in binding (Fig. 2A-D) ), providing a hydrophobic platform for the 

carbohydrates. The PDB entries for each structure obtained are provided in Table 1.  

 

3.3 Presence of the BliAmy SBS in other GH13_5 amylases 

Glycoside hydrolase family 13 subfamily 5 (GH13_5), enclosing BliAmy, contains 

structures of ten different sources of which five have saccharide binding at a region corresponding 

to the remote SBS observed in BliAmy (Table 2 and 3). The chimeric amylase BA2, consisting of 

residues 1-300 from B. amyloliquefaciens and 301-483 from B. licheniformis has a maltotriose 

bound (PDB 1E40) (10 mM soak) which overlaps with glucose residues 1 to 3 of the tetraose in 

BliAmy [43]. The maltotriose molecule observed at the SBS in Bacillus sp. 707 (AmyG6) [44] 

(PDB 2D3N) overlaps with glucose residues 2 to 4 of the BliAmy tetraose structure. In the crystal 

structure of B. stearothermophilus STB04 (Bst-MFA) an acarbose molecule is bound at the SBS 

[45] (PDB code 6AG0) and has hydrophobic interactions with F4 (L3 in BliAmy). This acarbose 
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molecule is shifted 2 glucose units to the N-terminus of the enzyme compared to the acarbose and 

by one glucose unit compared to the tetraose in BliAmy. BHA [46] and Alicyclobacillus sp. 18711 

(AliC) [47] amylases have a glucose molecule bound near the ring of a tyrosine corresponding to 

Y358 (in BliAmy), which is an absolutely conserved residue in GH13_5 (Table 3). All ligands 

discussed have stacking interactions with Y358. Furthermore, an α-amylase from Pyrococcus 

woesei (PWA), a GH13_7 member (33% identity to BliAmy), has several SBSs [48] (PDB 1MXD 

& 1MXG) of which one is similar to BliAmy SBS. In PWA an acarbose molecule is interacting 

through hydrogen bonds and hydrophobic contacts with F279 (V318 in BliAmy). The F257/Y358 

pair of BliAmy is lacking in PWA and other residues involved in the SBS are different (Table 3). 

The unpublished structure of PWA (PDB 3QGV) contains a β-cyclodextrin which overlaps with the 

β-CD at the SBS of BliAmy. 

The structural comparisons show that whereas the crystallographic studies have been done 

with different ligands and often with high ligand concentrations, corresponding oligosaccharide 

binding regions are visible in multiple amylase structures suggesting these are genuine SBSs and 

serve a biological function. The conservation of SBS residues at the subfamily level tends to be 

quite high, suggesting a similar function as for starch binding domains. 

 

3.4 Other surface binding sites in GH13_5 glycosidases 

In GH13_5 glycosidases, six surface binding sites distinct from the SBS found in BliAmy 

are observed. A major docking platform is present in amylases AmyG6 (PDB 2D3N) [44, 59], BHA 

(2GJP) [46], AliC (6GXV) [47], Halothermothrix orenii (AmyB, PDB 3BC9) [63] (69, 72, 64 and 

44% seq, identity respectively) and in other enzymes mentioned in Table 2 with involvement of two 

conserved tryptophan residues (W138/W165 in BliAmy). In AmyG6 W140 and W167 stack with 

the glucose molecules at subsites -5 and -6 of the active site (Fig. 3A) [59]. W140 is located 24 Å 

away from the active site but plays a critical role in binding and hydrolyzing amylose [44]. This 

SBS is not accessible in the crystal structure of BliAmy as a result of crystal packing contacts. 

W165 of BliAmy has π-π interactions with W165 from a symmetry related molecule and W138 has 

hydrophobic interaction with the side chain of K70 from the same symmetry related molecule. AliC 

(PDB code 6GXV, 64 % seq. identity) has a similar 3-domain structure and an SBS near another 

conserved tryptophan of the (β/α)8 barrel domain (Fig. 3B) [47]. However, in BliAmy W184, 

required for the integrity of the metal binding cage, is also involved in crystal contacts with an 

arginine side chain of a symmetry related molecule and this site is therefore not available for 

saccharide binding. Another residue involved in crystal contacts is the conserved W342 of BliAmy. 

A maltose molecule is stacked on that tryptophan residue in BHA (Fig. 3C) (PDB 2GJP) [46], Bst-

MFA (PDB 6AG0) [45] and AmyG6 (PDB 2D3N) (72, 66 and 69% seq. identity respectively). 

W138/W165, W184 and W342 are involved in crystal contacts, artifacts of crystallization, and are 

not available as SBSs. Nevertheless, these SBSs will probably be accessible in BliAmy in solution. 

Another SBS is observed in BHA (PDB 2GJP, 66% seq. identity) in which a glucose 

molecule stacks on the platform of W439/W469 (Fig. 3D) [46]. BliAmy contains R437/W467 at the 
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corresponding positions. Having just one tryptophan residue probable lowers the affinity for 

saccharides as no binding was observed at this position in BliAmy. Additionally, AmyG6 (69% seq. 

identity) has a glucose/maltose binding site near another tryptophan (Fig. 3E) [44] (PDB 

2D3L/2D3N). The corresponding F279 of BliAmy shows no sugar binding. A further SBS is 

observed in Bst-MFA (PDB 6AG0, 66% seq. identity) near the conserved Y159 (Fig. 3F), here also 

no binding is observed in BliAmy.  

In summary, BliAmy probably has additional sugar binding sites at W138/W165, W184 and 

W342 but sugar binding is not observed in our structures since these residues are involved in crystal 

formation. The other tryptophan residues are located inside the enzyme or are not oriented in a 

parallel manner at the surface. 

 

3.5 SBSs in other GH13 amylases 

Many amylases, such as barley -amylase GH13_6 [49], human salivary amylase GH13_24 

[15], and pig pancreatic amylase GH13_24 [50] do not have a starch-binding CBM, but instead 

have one or more SBSs on the catalytic domain that enable raw starch utilization [16]. At these 

domains, aromatic amino acids play an important role in hydrophobic stacking interactions to 

carbohydrates complemented with hydrogen bonds [19]. 

Common SBSs architectures include two spatially locked aromatic residues, such as SBS1 

(starch granule binding site) in barley -amylase (PDB 2QPU) comprised of W278 and W279 (Fig. 

4A) [14, 49], SBS1 is absent in BliAmy which has a lysine and histidine at that location. The other 

sites in BliAmy involving tryptophans are blocked by crystal contacts as described above. Several 

other amylases contain such an SBS consisting of the two aromatic planes with an angle of 130° 

between them that thereby form an arc parallel to the surface of enzyme [19]. It is proposed that this 

arc is complementary to the natural helical twist of -glucan chains in many substrates, including 

starch, so their probable function is to act as initial starch recognition platform [14, 16, 49, 51]. 

SBS1-like motifs have been seen in other amylolytic enzymes such as Y276/W284 in porcine 

pancreatic α-amylase [52] and SBS7 in human pancreatic α-amylase [17] involved with the raw 

starch hydrolysis which also have a form of a platform that matches the lower faces of the sugar 

rings in the bound structure. Y276/W284 was also found in human salivary α-amylase [15] and 

W439/W469 in BHA (see above) [46], suggesting these sites perform similar functions in their 

respective enzymes as described for barley α-amylase [49]. 

Another example of an SBS architecture is SBS2 (pair of sugar tongs binding site) in barley 

-amylase [49] with two aromatic residues, Y380 and H395 (Fig. 4B) located on the C-domain. 

This type of interaction has been termed as “tweezers” since the site can bind accessible -glucan 

chains and position them correctly in the active site [14, 19, 49, 51]. BliAmy does not have the 

SBS2, instead G433 in BliAmy is located at the position of Y380, while a loop with residues T453 - 

N455 is situated at the position of H395.  
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SusG utilizes the architecture of an aromatic platform including W460 and Y469 of the A 

domain as SBS [16] (Fig. 4C, Table 2). The placement of the SBS adjacent to the active site is 

unique, whereas these SBSs in other amylases are typically separated by distances of 15 Å or more 

[16]. Further, in SusG, the reducing ends of the bound oligosaccharides are pointed toward each 

other, making it unlikely that a single -glucan chain spans both sites, which led authors to suggest 

that the role of this SBS is in retaining reaction products for subsequent passage to other proteins of 

the starch utilization system [16].  

In GH13_28 amylase from Bacillus subtilis 2633 [53] and GH13_32 amylase from 

Alteromonas haloplanctis [54] complexes with acarbose in the active site were observed, however 

SBSs were not detected.  

None of the architectures described in this section above correspond to the SBS found in this 

work. The two most determinant residues are Y358 and F257 which show edge-to-face π-π 

interaction with each other. The rings of F257 and Y98 show parallel displaced π-π interaction. 

These three residues form a platform for carbohydrate binding in which only Y358 has stacking 

interaction with the carbohydrate. This SBS was first observed in BHA [46] but was not further 

characterized.  

 

3.6 Biochemical characterization of BliAmy surface binding site 

To understand the possible role of SBS in BliAmy, the two most important amino acids 

were mutated both individually and simultaneously to obtain variants F257A, Y358A and 

F257A/Y358A. This approach was aimed at removing the hydrophobic stacking interactions with 

carbohydrates observed in the crystal structure with β-cyclodextrin and other oligosaccharides 

mentioned above. Mutagenesis is an effective tool for eliminating binding at SBS sites which 

allows evaluation of the impact on activity and binding characteristics, as shown in several cases of 

different amylases [14, 16, 17, 55].  

Kinetic parameters for hydrolysis of the amylase substrate pNP-G6 [56] were first 

determined for each variant protein and wild type BliAmy and are listed in Table 4, as a  

confirmation of the integrity of the active site [17]. All variants show almost the same kcat/Km values 

indicating that they had all folded into the catalytically active form, i.e. binding at the active site 

was not significantly affected by structural changes at remote surface site. A similar outcome was 

observed for human pancreatic α-amylase SBSs [17].  

Kinetic parameters for hydrolysis of the soluble starch were determined for each variant 

protein and WT BliAmy and are listed in Table 4. The hydrolysis efficiency of soluble starch by the 

double mutant was slightly compromised since the double mutant showed a decrease of kcat/Km to 

47% as compared to the wild type (Table 4), while mutating only one of the two SBS residues 

(Y358A or F257A) did not affect kcat. However, a 2-fold reduction of the kcat of F257A/Y358A 

mutant suggests possible impact of the SBS in formation of productive complexes between enzyme 

and longer -glucan chains. 
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For all SBS mutants and WT, like in the work of Nielsen et al. [14], only the catalytic 

efficiency (kcat/Km) and not the individual kcat and Km values for hydrolysis of raw starch granules 

could be determined. The results obtained (Table 4, Fig. 5) suggest that the hydrolysis of raw starch 

is affected by both F257A and Y358A mutations, both showing ~50% reduction in catalytic 

efficiency. For the F257A/Y358A mutant we can observe additive effect on catalytic efficiency. 

The double mutant had 5-fold lower efficacy with corn starch as a substrate compared to WT 

BliAmy, suggesting that both amino acids F257 and Y358 play a role in processing of an insoluble 

-glucan (Table 4, Fig. 5).  

The ability of BliAmy and its variants to get adsorbed to the raw corn starch was 

investigated to establish the role of F257 and Y358 as a surface binding site for starch. A commonly 

employed assay for the binding of enzymes to starch granule shows that in BliAmy mutation of 

SBS at F257A and Y358A led to a 1.6- and 3.5-fold reduction in affinity for starch granules, 

respectively (Fig. 6, values obtained from eq. 1). Mutation of both sites (F257A/Y358A) results in 

at least 5.5-fold weaker binding compared to the WT (apparent Kd values, Fig. 6). Increase in 

apparent Kd along with the significant drop in starch saturation binding level Bmax for the double 

mutant confirms that SBS enhances the ability of BliAmy to bind insoluble corn starch. F257 and 

Y358 each contributed cumulatively to ensure optimal binding to the starch granule, although 

having just one tyrosine for stacking (and hydrogen bonds and Van der Waals interactions).  

The functional relevance of SBSs in several -amylases was investigated by mutational 

analysis. The SusG mutant constructed by mutating the SBS (W460A/Y469A/D473V) showed up 

to 56% decrease in activity when tested for raw corn starch hydrolysis [16], while seriously 

diminished binding of a mutant at SBS 7 (Y276A/W284A) to starch granules was observed for 

human pancreatic amylase [17]. The complete loss of affinity for barley starch granules was found 

when both SBSs were mutated (W278A/W279A/Y380A) at the same time and it retained only 0.2% 

of the wild type hydrolytic activity for barley starch granules [14]. For a 6-fold mutant involving 

four SBSs of human salivary -amylase the specific activity for starch hydrolysis resulted in a 

significant reduction in enzyme activity (10-fold) compared to wild type enzyme [15]. At the same 

time the raw starch-binding ability of wild type enzyme was 91% and for the mutant only 13%.  

 

4. Conclusions 

An unusual starch binding site was found in a groove on the surface of the BliAmy protein.  

Significance of the starch binding site was verified by mutational analysis of two key amino acids 

F257 and Y358. Removal of the aromatic residues in the SBS led to weaker raw starch binding and 

raw starch-hydrolyzing activity, confirming that the SBS is an important site in -amylases for 

increasing raw starch digestibility. This SBS may support the identification of potential SBSs in 

other GH13_5 amylases due to quite high conservation of SBS residues at the subfamily level or in 

similar enzymes from other subfamilies within the α-amylase family GH13 despite the lack of 

sequence conservation.  
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Table 1. Data collection and refinement statistics. Numbers in parenthesis are for the highest resolution 

shell. 

 wt BliAmy ACR-MAL MAL G6 β-CD 

Data collection      

Unit cell a, c (Å) 83.5, 188.5 83.1, 188.1 83.0, 187.4 82.1, 186.3 82.9, 187.2 

Resolution (Å) 1.95 1.93 2.04 1.94 1.93 

No. of observations 
361367 

(24852) 

486367 

(18832) 

343755 

(17936) 

385962 

(17936) 

377706 

(17047) 

No. of unique reflections 
49554 

(3415) 

49402 

(2263) 

42384 

(2385) 

48251  

(2575) 

49463  

(2544) 

Rpim (%) 4.7 (31.8) 4.4 (19.9) 5.8 (25.7) 7.1 (37.8) 7.1 (33.0) 

CC(1/2) (%) 99.3 (63.7) 99.7 (78.1) 99.5 (80.5) 99.4 (62.3) 99.3 (60.9) 

Completeness (%) 100 (100) 97.6 (68.0) 98.2 (76.3) 98.6 (79.9) 98.5 (77.1) 

Mean I/σ (I) 11.1 (2.2) 13.5 (3.5) 11.1 (2.8) 8.3 (1.8) 7.8 (2.0) 

Redundancy 7.3 (7.3) 9.8 (8.3) 8.1 (7.5) 8.0 (7.0) 7.6 (6.7) 

Wilson B factor (Å
2
) 21.1 12.4 12.5 14.2 9.7 

Refinement      

R / Rfree (%) 17.0 / 20.4 15.6/ 18.1 15.6 / 18.5 16.4 / 20.1 17.1 / 20.0 

Ligand active site malonate acarbose malonate malonate malonate 

Ligand remote site - acarbose maltose maltotetraose β-CD 

Waters 475 468 405 403 419 

Geometry:      

RMSD Bond lengths (Å) 1.48 1.41 1.39 1.46 1.46 

RMSD Bond angles (
o
) 0.011 0.010 0.010 0.011 0.011 

Ramachandran favored (%) 96.7 96.9 97.1 96.7 96.9 

Ramachandran outliers (%) 0.0 0.0 0.0 0.0 0.0 

Molprobity score 1.14 0.97 1.07 0.99 0.96 

PDB accession code 6TOY 6TOZ 6TP0 6TP1 6TP2 

Abbreviations used: ACR = acarbose, β-CD = β-cyclodextrin, MAL= maltose, G6=maltohexaose. 
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Table 2. Overview of GH 13 structures covered in the present paper. 

GH13 subfamily Id. (%) Rmsd (Å) PDB Reference 

GH13_5     

Bacillus licheniformis 

(AmyA, AmyL, AmyS, or BLA) 

95 

95 

94 

96 

0.4 

0.8 

0.6 

0.5 

1BLI 

1OB0 

1BPL 

1VJS 

[33] 

[41] 

[40] 

[39] 

Chimera (BA2) 85 
0.5, 0.6 

0.5, 0.4 

1E40, 1E3X,  

1E3Z, 1E43 
[43] 

Bacillus amyloliquefaciens 

(Amy1;AmyQ;BAA) 
80 0.5 3BH4 [57] 

Bacillus halmapalus (BHA) 72 0.7 
2GJP, 2GJR, [46] 

1W9X [42] 

Bacillus sp. KSM-1378 (AmyK) 69 0.7 2DIE [58] 

Bacillus sp. 707 (AmyG6) 69 0.7 
1WP6, 1WPC 

2D3N, 2D3L 

[59] 

[44] 

Bacillus stearothermophilus STB04 (Bst-

MFA) 
66 0.6 6AG0 [45] 

Geobacillus stearothermophilus (AmyS) 65 0.8 
1HVX 

4UZU 

[60] 

[61] 

Alicyclobacillus sp 18711 (AliC) 64 0.6 6GYA, 6GXV [47] 

Bacillus sp. KSM-K38 (AmyK38) 63 0.7 
1UD3, 1UD5, 1UD8, 1UD4, 

1UD6, 1UD2 
[62] 

Halothermothrix orenii (AmyB) 44 1.4 3BCF, 3BC9, 3BCD [63] 

GH13_6     

Hordeum vulgare (Barley) 28 2.3 2QPU  [64] 

GH13_1     

Aspergillus niger 20 2.7 2GVY, 2GUY [65] 

GH13_24     

Porcine Pancreatic   3L2M [52] 

Human Pancreatic 18  5TD4 [17] 

GH13_7     

Pyrococcus woesei (PWA) 33 2.1 
3QGV 

(Hein et al. 

unpubl.)  

1MWO, 1MXD, 1MXG [48] 

GH13_32     

Alteromonas haloplanctis 17 2.4 1G94 [54] 

GH13 no subfamily     

Bacteroides thetaiotaomicron (SuSG) 20 2.7 
3K8K, 3K8L, 3K8M [16] 

6BS6 [66] 

GH13_28     

Bacillus subtilis 2633 21 2.9 
1BAG, 

1UA7 

[67] 

[53] 
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Table 3. Determinant residues for SBS 

GH13_5 PDB ID Ligand 38 96 98 255 257 318 319 355 356 358 

BliAmy  

B. paralicheniformis 
 

MTT 

MAL 

ACR 

-CD 

T N Y E F V K E A Y 

B. licheniformis (BLA) 1BLI - T N Y E F L K E S Y 

Chimeric (BA2) 1E40 MLR T Q Y E F L K E S Y 

B. amyloliquefaciens 3BH4 - T Q Y E F E K E S Y 

B. halmapalus 2GJP GLC T Q Y E F M H E Q Y 

Bacillus sp. KSM-1378 

(AmyK) 
2DIE - T Q Y P F I H E Q Y 

Bacillus sp. 707 
2D3N, 

2D3L 
MLR T Q Y N F S H E Q Y 

B.stearothermophilus 

STB04 (Bst-MFA) 
6AG0 ACR T Q Y P F T L Q E Y 

G. stearothermophilus 

(AmyS) 
4UZU - T Q Y P F T L Q E Y 

Alicyclobacillus sp. 

18711 (AliC) 

6GYA, 

6GXV 

MAL 

GLC 
T Q Y N F I Q Q E Y 

Bacillus sp. KSM-K38 

(AmyK38) 
1UD2 - T N Y D F M H E G Y 

H. orenii (AmyB) 3BCD - T K Y D F N R E E V 

Other members GH13             

B. thetaiotaomicron 

(SUSG) 
3K8K - K K Y D Y - I D A H 

P. woesei 1MXG ACR S K I - W F K - E Q 

Alteromonas 

haloplanctis 
1G94 - A D Y  L S    Y 

Abbreviations used: ACR = acarbose, -CD = β-cyclodextrin, GLC= glucose,  MAL= maltose, MLR = 

maltotriose, MTT = maltotetraose. 
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Table 4. Catalytic efficiencies of BliAmy variants for hydrolysis of soluble starch, pNP-G6 and starch granules.  

 Soluble starch pNP-G6 Starch granules 

 
kcat  

(
 
x 10

3 
s

-1
) 

Km  

(mg/mL) 

kcat /Km 

(s
-1

/ mg/mL) 

(%) 

kcat 

(min
-1

) 

Km  

(mM) 

kcat /Km 

(min
-1

/ mM) 

(%) 

kcat /Km 

(
 
s

-1
/ mg/mL)  

(%) 

Wild type 1.19 ± 0.06 15.2 ± 1.5 78.3  

(100) 

2.02 ± 0.25 0.52 ± 0.18 3.9  

(100) 

2.17 ± 0.07  

(100) 

F257A 1.24 ± 0.08  26.2 ± 3.1 47.3  

(60) 

1.31 ± 0.13 0.31 ± 0.08 4.2  

(108) 

1.29 ± 0.04  

(59) 

Y358A 1.19 ± 0.05 13.3 ± 1.2 89.5  

(114) 

1.46 ± 0.11 0.28 ± 0.08 5.2  

(134) 

1.08 ± 0.07 

(50) 

F257A/Y358A 0.53± 0.02 14.3 ± 1.2 37.1  

(47) 

0.40 ± 0.02 0.08 ± 0.02 5  

(128) 

0.44 ± 0.01  

(20) 
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Figure captions 

 

Fig. 1. Cartoon representation of the crystal structure of Bacillus paralicheniformis strain ATCC 

9945a amylase (BliAmy) with a zoomed-in window of the active site (on the right side). The three 

domains A, B and C are colored green, red and yellow, respectively. The inhibitor acarbose 

indicated in cyan is bound at subsites -1 to +3 of the active site with the proton donor and acceptor 

shown in yellow. Acarbose binding at the remote surface binding site (SBS), at the bottom of the 

(β/α)8-barrel A domain, is shown in violet. The remotely bound acarbose molecule at the other side 

of where the active site is located, with a distance of ~35 Å, is indicated by the curved black arrow. 

Calcium ions are depicted in green and sodium ions in purple.  

 

Fig. 2. Views of the SBS of BliAmy in complex with oligosaccharides or oligosaccharide 

precursors. A) acarbose, B) maltose, C) β-cyclodextrin, D) maltohexaose. F257 and Y358 are 

shown in cyan sticks. Hydrogen bonds are shown as dotted lines.  

 

Fig. 3. Examples of various SBSs of GH13_5 amylases. A. AmyG6 (PDB 2D3N) W140 and W167 

stack with the oligosaccharide molecules at subsites -5 and -6 of the active site [59]. B. W187 of 

AliC (PDB 6GXV) in complex with glucose [47]. C. A maltose molecule is stacked on W347 in 

BHA (PDB 2GJP). D. BHA with a glucose molecule stacking on the platform of W439 and W469. 

E. G6 has a maltose binding site near W284. F. Bst-MFA (PDB 6AG0) in complex with acarbose 

near the conserved Y159. Calcium ions are depicted in green and sodium ions in purple. BliAmy 

probably has additional SBSs as shown in panel A – C but sugar binding is not observed in our 

structures since these residues are involved in crystal formation. SBSs shown in panels D – F are 

not conserved in BliAmy 

 

 

Fig. 4. Examples of various SBSs of other GH13 amylases. A. SBS1 (starch granule binding site) in 

barley -amylase (PDB 2QPU) comprised of W278 and W279. B. SBS2 (pair of sugar tongs 

binding site) involving Y380 and H395 in barley α-amylase [14, 49]. C. Aromatic platform 

including W460 and Y469 of the A domain of SusG (PDB 6BS6) [16, 66]. These SBSs are not 

conserved in BliAmy 

 

 

Fig. 5. Hydrolysis of raw corn starch granules by BliAmy variants. -●- WT, -■- F257A, 

 -▲- Y358A, -▼- F257A/Y358A. 

 

 

Fig. 6. Binding of BliAmy variants to corn starch granules. -▼- WT, -●- F257A, 

 -▲- Y358A, -■- F257A/Y358A. 
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International Journal of Biological Macromolecules, Bozic et al., Fig. 1 
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International Journal of Biological Macromolecules, Bozic et al., Fig. 2 
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International Journal of Biological Macromolecules, Bozic et al., Fig. 3 
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International Journal of Biological Macromolecules, Bozic et al., Fig. 4 
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International Journal of Biological Macromolecules, Bozic et al., Fig. 5 
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International Journal of Biological Macromolecules, Bozic et al., Fig. 6 

 

 

 

 

  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



31 
 

Author statement 

Submission of an article implies: that the work described has not been published 

previously; that it is not under consideration for publication elsewhere; that its publication is 

approved by all authors, and tacitly or explicitly by the responsible authorities where the work was 

carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or 

in any other language, including electronically without the written consent of the copyright holder. 

All authors have seen and approved the final version of the manuscript being submitted. The 

authors declare that they have no known competing financial interests or personal relationships 

that could have appeared to influence the work reported in this paper. 

 

  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



32 
 

Highlights 

 Structure determination of Bacillus paralicheniformis α-amylase ATCC 9945a 

 Binding of four different oligosaccharides and oligosaccharide precursors 

 Confirmation of the unusual starch binding site on the α-amylase 

 Verification of the starch binding site by mutational analysis 
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