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Synthesis and characterization 

Synthesis of ligand HL3Cl 

The ligand HL3Cl was synthesized by the reaction of 2-acetylpyridine and Girard’s T 

reagent in methanol according to the previously described method [1]. IR (ATR, cm–1): 3384 (w), 

3123 (m), 3095 (m), 3054 (m), 2952 (s), 1704 (vs), 1551 (s), 1485 (m), 1400 (m), 1300 (w), 1253 

(w), 1200 (s), 1153 (w), 1135 (m), 1095 (w), 944 (w), 914 (m), 683 (w). Elemental analysis calcd. 

for C12H19N4OCl: C 53.23%, H 7.07%, N 20.69%; found: C 53.15%, H 7.10%, N 20.59%. 

Synthesis of complex 3 ([ZnL2(NCS)2]×2H2O)  

The Zn(II) complex 3 was synthesized by the reaction of ligand HL2Cl, Zn(OAc)2×2H2O and 

NH4SCN according to the previously described method [2]. IR (ATR, ATR, cm–1): 3502 (s), 3383 

(s), 3124 (m), 2959 (w), 2088 (vs), 1612 (s), 1534 (s), 1475 (s), 1424 (s), 1405 (s), 1341 (m), 1290 

(w), 1151 (w), 1068 (w), 990 (w), 876 (w), 747 (w). Elemental analysis calcd. for C12H20ZnN6O3S3: 

C 36.71%, H 5.13%, N 21.41%, S 24.51%; found: C 36.73%, H 5.10%, N 21.45%, S 24.39%. λM = 

13.2 Ω–1cm2mol–1. 

Synthesis of complex 4 [Ni2L22(μ-1,1-N3)2(N3)2]×4H2O 

The Cu(II) complex 4 was synthesized by the reaction of ligand HL2Cl, NiCl2×6H2O and 

NaN3 according to the previously described method [3]. IR (ATR, ATR, cm–1): 3395 (m), 3096 (w), 

2148 (m), 2053 (vs), 2034 (vs), 1531 (s), 1480 (m), 1404 (m), 1247 (m), 1012 (m), 975 (w), 913 (w), 

888 (w), 736 (w), 641 (w). Elemental analysis calcd. for C20H40N20Ni2O6S2: C 28.66%, H 4.81%, N 

33.42%; found: C 28.59%, H 4.88%, N 33.38%. λM = 15.4 Ω–1cm2mol–1. 

Synthesis of complex 5 ([ZnL3(NCS)2]×0.5MeOH) 

The Zn(II) complex 5 was synthesized by the reaction of ligand HL3Cl, Zn(OAc)2×2H2O and 

NH4SCN according to the previously described method [1]. IR (ATR, ATR, cm–1): 3033 (w), 2065 

(vs), 1639 (w), 1595 (w), 1564 (m), 1535 (s), 1461 (m), 1434 (m), 1395 (m), 1364 (m), 1339 (m), 

1302 (m), 1200 (w), 1145 (w), 1074 (m), 1019 (m), 966 (w) 914 (w), 749 (w). Elemental analysis 

calcd. for C14.5H20N6O1.5S2Zn: C 38.75%, H 4.65%, N 19.37%, S 14.78%; found: C 38.71%, H 4.68%, 

N 20.05%, S 19.29%. λM = 13.8 Ω–1cm2mol–1. 

Synthesis of complex 6 ([Cu2L32(μ-1,1-N3)2](ClO4)2) 

The Cu(II) complex 6 was synthesized by the reaction of ligand HL3Cl and Cu(ClO4)2×6H2O 

excess of NaN3 according to the previously described method [4]. IR (ATR, ATR, cm–1): 3520 (m), 

3350 (m), 2040 (vs), 1628 (w), 1567 (w), 1524 (m), 1468 (w), 1339 (m), 1297 (m), 1146 (w), 1078 
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(w), 1027 (w), 910 (w), 779 (w), 684 (w). Elemental analysis calcd. for C24H36Cl2Cu2N14O10: C 

32.81%, H 4.13%, N 22.32%; found: C 32.79%, H 4.18%, N 22.18%. λM = 30.6 Ω–1cm2mol–1. 

Synthesis of complex 7 ([CdHL3(NCS)3]) 

The Cd(II) complex 7 was synthesized by the reaction of ligand HL3Cl, Cd(NO3)2×4H2O and 

NH4SCN according to the previously described method [1]. IR (ATR, ATR, cm–1): 3020 (w), 2092 

(vs), 2048 (vs), 1683 (s), 1637 (w), 1592 (w), 1550 (m), 1474 (m), 1436 (w), 1327 (w), 1254 (w), 

1227 (w), 1199 (w), 1155 (w), 1127 (w), 1101 (w), 966 (w), 929 (w), 779 (w). Elemental analysis 

calcd. for C15H19CdN7OS3: C 34.52%, H 3.67%, N 18.78%, S 18.43%; found: C 34.47%, H 3.68%, 

N 18.72%, S 18.39%. λM = 16.9 Ω–1cm2mol–1. 

Synthesis of complex 8 ([CuL3Cl](ClO4)) 

The Cu(II) complex 8 was synthesized by the reaction of ligand HL3Cl and Cu(ClO4)2×6H2O 

according to the previously described method [4]. IR (ATR, ATR, cm–1): 3096 (w), 3037 (w), 1603 

(w), 1573 (w), 1525 (s), 1473 (m), 1447 (s), 1400 (m), 1374 (w), 1339 (m), 1316 (w), 1263 (w), 1152 

(w), 1075 (vs), 966 (w), 930 (w), 912 (m), 785 (m), 682 (w), 625 (m), 568 (w). Elemental analysis 

calcd. for C12H18Cl2CuN4O5: C 33.31%, H 4.19%, N 12.95.%; found: C 33.29%, H 4.20%, N 12.91%. 

λM = 22.1 Ω–1cm2mol–1. 

Synthesis of complex 9 ([CuL3Cl](NO3))  

The Cu(II) complex 9 was synthesized by the reaction of ligand HL3Cl and Cu(NO3)2×3H2O 

according to the previously described method [5]. IR (ATR, ATR, cm–1): 3373 (vs), 3271 (vs), 3059 

(m), 3031 (m), 1595 (vs), 1561 (m), 1529 (w), 1482 (s), 1443 (s), 1365 (m), 1307 (m), 1265 (w), 1196 

(w), 1167 (m), 1118 (w), 1074 (w), 1048 (w), 1021 (w), 784 (s), 675 (w), 575 (w).. Elemental analysis 

calcd. for C12H18ClCuN5O4: C 36.46%, H 4.59%, N 17.72%; found: C 36.41%, H 4.60%, N 17.75%. 

λM = 21.8 Ω–1cm2mol–1. 

Synthesis of complex 10 ([CoL32][Co(NCS)4]BF4) 

The Co(III) complex 10 was synthesized by the reaction of ligand HL3Cl, Co(BF4)2×6H2O 

and NH4SCN according to the previously described method [6]. IR (ATR, ATR, cm–1): 3080 (w), 

2065 (vs), 1625 (w), 1601 (w), 1519 (s), 1466 (m), 1397 (m), 1375 (m), 1310 (m), 1264 (w), 1236 

(w), 1206 (w), 1152 (w), 1053 (s), 972 (w), 923(w), 766 (w). Elemental analysis calcd. for 

C28H36BCo2F4N12O2S4: C 37.14%, H 4.01%, N 18.56%, S 14.16%; found: C 36.11%, H 4.10%, N 

18.45%, S 14.39%. λM = 28.2 Ω–1cm2mol–1. 
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Synthesis of complex 11 ([Ni2L32(μ-1,1-N3)2(N3)2]×6H2O) 

The Cu(II) complex 11 was synthesized by the reaction of ligand HL3Cl, Ni(BF4)2×6H2O and 

NaN3 according to the previously described method [7]. IR (ATR, ATR, cm–1): 3345 (s), 3037 (w), 

2040 (vs), 1619 (w), 1595 (w), 1540 (s), 1469 (m), 1300 (m), 1245 (w), 1145 (w), 1023 (w), 973 (w), 

781 (w), 676 (w), 571 (w). Elemental analysis calcd. for C24H48N20Ni2O8: C 33.43%, H 5.61%, N 

32.49 %; found: C 33.39%, H 5.68%, N 32.38%. λM = 15.7 Ω–1cm2mol–1. 

Synthesis of complex 12 ([FeL3(NCS)3]) 

The Fe(III) complex 12 was synthesized by the reaction of ligand HL3Cl, Fe(NO3)3×9H2O 

and NH4SCN according to the previously described method [8]. IR (ATR, ATR, cm–1): 3074 (w), 

2036 (s), 2027 (s), 1620 (m), 1598 (m), 1566 (m), 1463 (m), 1392 (m), 1261 (w), 1166 (w), 1144 (w), 

1113 (w), 1025 (w), 968 (w), 906 (w), 806 (w), 675 (w). Elemental analysis calcd. for 

C12H20ZnN6O3S3: C 36.71%, H 5.13%, N 21.41%, S 24.51%; found: C 36.73%, H 5.10%, N 21.45%, 

S 24.39%. λM = 12.2 Ω–1cm2mol–1. 

Spectroscopic characterization of complexes 1 and 2 

IR spectra 

On the basis of IR spectroscopy results for complex 1, coordination of HL1Cl ligand in 

deprotonated α-oxyazine form was confirmed. The new band at 1518 cm−1 in the spectrum of Zn(II) 

complex, corresponding to ν(−O–C=N) vibration of deprotonated hydrazide moiety, appeared instead 

of the band of carbonyl group of non-coordinated hydrazide of HL1Cl at 1695 cm−1. In the IR 

spectrum of Zn(II) complex a strong band at 2075 cm−1 can be attributed to the vibration of 

coordinated thiocyanate ions.  

In the spectrum of complex 2, band corresponding to vibration of coordinated carbonyl group 

appeared at 1656 cm−1 instead of the bond of non-coordinated form of HL2Cl at 1701 cm−1. 

Coordination of azomethine nitrogen atom resulted in bathochromic shift of ν(C=N) vibration from 

1550 cm−1 in the spectrum of HL2Cl to 1529 cm−1 in the spectrum of Bi(III) complex. Coordination 

of thiazole nitrogen atom resulted in shift of the bond at 1486 cm−1 in the spectrum of HL2Cl to 1475 

cm−1 in the spectrum of Bi(III) complex. 

NMR (1H and 13C) spectra 

The signal of hydrazide NH is absent in the 1H NMR spectra of complex 1 indicating that the 

ligand is coordinated in deprotonated zwitter-ionic form. Coordination of azomethine nitrogen in 

Zn(II) complex can be confirmed from downfield shift of C9-H from 8.32 ppm in the spectrum of 

HL1Cl to 8.56 ppm in the spectrum of Zn(II) complex. Due to coordination of carbonyl oxygen atom, 
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signal of the carbonyl carbon (C10) is shifted downfield from 167.43 ppm in the spectrum of HL1Cl 

to 175.20 ppm in the spectra of complex. Upfield shift of azomethine carbon atom (C9) signal from 

146.05 ppm in the spectrum of HL1Cl to 144.00 ppm in the spectrum of Zn(II) complex indicates 

coordination of azomethine nitrogen. Coordination of quinoline nitrogen atom caused upfield shift of 

C2 atom signal from 153.33 ppm in the spectrum of HL1Cl to 149.41 ppm in the spectra of Zn(II) 

complex. In the 13C NMR spectrum of Zn(II) complex the signal of coordinated SCN− ion was 

observed at 134.73 ppm.  

Complex 2 is not stable in DMSO solution. Appearance of series of signals in 1H NMR 

spectrum of Bi(III) complex in DMSO-d6 solution indicates its instability and replacement of 

coordinated HL2Cl ligand by DMSO. A similar replacement occurs in D2O and methanol-d4, while 

in solvents with lower polarity Bi(III) complex was not soluble.  

UV-Vis spectra and molar conductivity 

The stability of complexes used for the biological study 1, 3–12 was investigated by UV-Vis 

spectroscopy and molar conductivity measurements in the freshly prepared DMSO solutions (Fig. 

S3). For complex 1 additional UV-Vis absorption spectra were recorded after 24 h. For all previously 

synthesized complexes, 3–12, data gathered by UV-Vis and molar conductivity showed agreement 

between structures in the solid and solution thus indicating their stability in solution. In the case of 

complex 1 no significant spectral shifts were observed upon comparing spectra of freshly prepared 

solution, and solution which was left overnight (Fig. S4). The low value of molar conductivity for 

complex 1 indicates nonelectrolyte type of solution which supports conclusions obtained from NMR 

and UV-Vis spectroscopy that no structural changes occurred in solution.  

Brine shrimp assay and DPPH radical scavenging activity 

About 20 g of commercially purchased lyophilized eggs of Artemia salina was added to 0.5 

L of tap water, and air was passed through the suspension by pump under illumination for 48 h. All 

tested compounds were dissolved in DMSO and various amounts (0.01–1 mg) were added to 950 μL 

of artificial seawater with freshly hatched nauplii. After 24 h illumination at room temperature, the 

number of dead and surviving nauplii were counted and statistically analyzed. LC50 was defined as a 

concentration of compounds that caused the death of 50% of the nauplii. All samples were done in 

triplicate. 

The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was determined by the 

method of Blois.[9] Commercially available free radical DPPH was dissolved in methanol at 

concentration of 6.58×10-5 M, while tested compounds were dissolved in DMSO. Into a 96-well 
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microplate, 50 μL solutions of the tested compounds at concentrations range 10 to 0.02 mg/mL were 

loaded (50 μL DMSO in the control), and 100 μL of DPPH solution were added. After incubation for 

30 min at room temperature in the dark, the absorbance was measured at 517 nm. All the 

measurements were performed in triplicate and the scavenging activity of the tested derivatives was 

calculated as:  

Scavenging activity (%) = 100 × (Acontrol – (Asample – A0)) / Acontrol 

where Acontrol and Asample refer to the absorbance of DPPH in control solution and sample, 

respectively, while A0 refers to the absorbance of the solutions of compounds, because of their colour.  

The IC50 was defined as the antioxidant concentration necessary to decrease the amount of the 

initial DPPH radical by 50 % and was calculated from the plotted graph of scavenging activities 

against the concentrations of the tested compounds. Ascorbic acid was employed as the positive 

control (concentrations from 50 to 500 μg mL–1). 

 

The results of toxicity of complexes and their precursors against nauplii of the Artemia salina 

as well as radical scavenging activity are given at Table S3. Neither of the tested ligands showed 

toxicity, while the salts Cu(ClO4)2×6H2O and Cu(NO3)2×3H2O showed the highest toxicity of the 

tested salts. All tested complexes showed generally low toxicity, except 1 the toxicity of which was 

twice lower than control compound K2Cr2O7. This result is not surprising. Since nauplii of the 

Artemia salina live in symbiosis with some types of bacteria and this complex displayed the strongest 

antibacterial activity, the toxicity may be due to the destruction of symbiotic bacteria.  

The DPPH test showed that the ability of the two complexes 10 and 12 to scavenge radicals 

is almost four times higher than ascorbic acid. It is likely that the mode of complexation of the 

bidentate ligand via nitrogen leaves sulfur free to exert the antioxidative activity. 

Interaction with BSA 

For BSA fluorescence measurements, BSA concentration in 40 mM bicarbonate buffer was 

kept constant in all samples, while the concentrations of the compounds were varied: in 1 mL of 

buffer 5 µL of stock solution of BSA (3 mg/mL) and 2.5 µL of stock solution of the compound 

were added and incubated for 30 min after which emission spectra in the range 295 to 500 nm were 

recorded (excitation wavelength 280 nm). Another 2.5 µL of the solution of complexes were 

successively added so that final concentrations of 1.25, 2.5, 3.75, 5, 6.25, 7.5 and 8.75 × 10–5 M 

were attained for HL1Cl and HL3Cl, and 5 × 10–6 M, 1, 1.5, 2, 2.5. 3 and 3.5 × 10–5 M for 1 and 12. 

The change in the fluorescence intensity was measured. 
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Bovine serum albumin is the major soluble protein of circulary system and it has many 

physiological functions, primarily in the transport of many endogenous and exogenous ligands. [10] 

BSA has often been used as a model protein to measure the albumin-binding ability of drugs and 

metal complexes. The emission spectra of BSA in the absence and presence of the increasing 

concentrations of compounds HL3Cl, 12, HL1Cl and 1 are shown in Fig. S9, a,b,c and d, respectively. 

In absence of a compound, a strong emission band at 335 nm was observed due to fluorescence of 

trypthophan residues. When a BSA was titrated with ligand HL3Cl and complex 12, similar spectral 

pattern was observed, however the decrease in fluorescence intensity at maximum wavelength was 

by 64% and by 85%, respectively. In case of ligand HL1Cl the fluorescence intensity reduction 

reached 85% at 335 nm with generation of new band at 372.5 nm, while complex 1 reduced the 

fluorescence intensity by 88%. These results indicated the binding of all of the compounds to BSA. 

The obtained strong decrease in fluorescence intensity suggested that the compounds interacted with 

tryphtophan residue present in the hydrophobic cavity of the protein probably via noncordianated 

hydrophobic parts of ligand moiety and/or cation–π interactions. It could also be concluded that 

neither iron nor zinc as the central metal ion affected the interaction with BSA significatly. The 

fluorescence quenching data were further analyzed with the Stern-Volmer equation (3) as follows 

[11].  

I0/I = 1 + Kqτ0[Q] = 1 + Ksv[Q]   (3) 

Kq = Ksv / τ0   (4) 

Where I and I0 are the steady state fluorescence intensities in presence and absence of a 

quencher, respectively. Ksv is Stern-Volmer constant and [Q] is concentration of quencher; τ0 is the 

average lifetime of the protein without the quencher. As shown in insets in Fig. S9a–d, Ksv for 

compounds HL3Cl, 12, HL1Cl and 1 were calculated from the plot I0/I versus [compound] as 

1.18×10–4 M, 5.02×10–4 M, 12.12×10–4 M and 15.52×10–4 M, respectively. Taking average lifetime 

of the biomolecule is around 10–8 Ms–1 [12] Kq values for HL3Cl, 12, HL1Cl and 1 were calculated 

as 1.18×10–12 M, 5.02×10–12 M, 12.12×10–12 M and 15.52×10–12 M, respectively indicating static 

quenching constant, i.e. a nonfluorescent complex formation occurs between the compound and BSA.  

During static quenching process, relation between the fluorescence intensity and 

concentration of a quencher can be described as in Eq (5) [11] 

log [(I0 – I)/I] = logKb +nlog[Q]   (5), 

where Kb denotes the degree of interaction of protein with quencher and n is the number of bidning 

sites. The values of Kb have been derived from the plots of log [(I0 – I)/I] versus log [compound] for 

HL3Cl, 12, HL1Cl and 1 (Fig. S10a–d) and were calculated as 0.249, 0.232, 0.205 and 0.199, 
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respectively. The obtained results confirmed the previous conslusion that that a hydrophobic 

interaction takes place between BSA and the compound. 
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Table S1. Crystal data and structure refinement for complexes 1 and 2 

Identification code 1 2 
Empirical formula C19H14N6OS2Zn C10.5H19BiCl4N4O1.5S 
Formula weight 471.85 608.14 
Temperature/K 300.5 300.5 
Crystal system triclinic monoclinic 
Space group P-1 C2/c 
a/Å 8.421(1) 14.106(1) 
b/Å 14.288(2) 9.3130(6) 
c/Å 17.258(3) 30.379(2) 
α/° 91.238(4) 90 
β/° 97.966(4) 106.114(2) 
γ/° 91.943(4) 90 
Volume/Å3 2054.4(6) 3834.1(5) 
Z 4 8 
ρcalcg/cm3 1.526 2.107 
μ/mm-1 1.422 9.870 
F(000) 960.0 2312.0 
Crystal size/mm3 0.10 × 0.10 × 0.09 0.07 × 0.07 × 0.06 
Radiation /Å MoKα (λ = 0.71073) MoKα (λ = 0.71073) 
2Θ range for data collection/° 4.768 to 51.532 5.272 to 56.058 

Index ranges 
–10 ≤ h ≤ 10,  
–17 ≤ k ≤ 17,  
–21 ≤ l ≤ 21 

–18 ≤ h ≤ 18,  
–12 ≤ k ≤ 12,  
–37 ≤ l ≤ 40 

Reflections collected 34725 23905 

Independent reflections 7813  
[Rint = 0.0392, Rsigma = 0.0389] 

4633  
[Rint = 0.0533, Rsigma = 0.0461] 

Data/restraints/parameters 7813/0/523 4633/13/213 
Goodness-of-fit on F2 1.044 1.106 
Final R indexes [I>=2σ (I)] R1 = 0.0407, wR2 = 0.1060 R1 = 0.0366, wR2 = 0.0611 
Final R indexes [all data] R1 = 0.0614, wR2 = 0.1226 R1 = 0.0602, wR2 = 0.0670 
Largest DF max/min / e Å-3 0.59/–0.42 0.97/–1.05 
 

Table S2. Comparison of the metal coordination geometry of the two independent molecules in 1 

  Length/Å     Length/Å 
Zn1 O1 2.190(3)   Zn2 O2 2.201(2) 
Zn1 N1 2.224(3)   Zn2 N7 2.255(2) 
Zn1 N2 2.043(3)   Zn2 N8 2.039(3) 
Zn1 N5 1.980(3)   Zn2 N11 1.955(3) 
Zn1 N6 1.955(3)   Zn2 N12 1.979(3) 

   Angle/˚      Angle/˚ 
O1 Zn1 N1 150.03(10)   O2 Zn2 N7 148.36(9) 
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N2 Zn1 O1 73.95(10)   N8 Zn2 O2 73.49(10) 
N2 Zn1 N1 76.13(10)   N8 Zn2 N7 75.75(10) 
N5 Zn1 O1 95.54(12)   N11 Zn2 O2 99.54(12) 
N5 Zn1 N1 102.00(11)   N11 Zn2 N7 103.52(12) 
N5 Zn1 N2 122.86(12)   N11 Zn2 N8 123.65(12) 
N6 Zn1 O1 95.08(13)   N11 Zn2 N12 105.43(14) 
N6 Zn1 N1 102.20(12)   N12 Zn2 O2 96.13(11) 
N6 Zn1 N2 128.51(13)   N12 Zn2 N7 98.27(11) 
N6 Zn1 N5 108.01(13)   N12 Zn2 N8 130.74(13) 
C11 O1 Zn1 109.6(2)   C28 O2 Zn2 109.1(2) 
C1 N1 Zn1 111.3(2)   C18 N7 Zn2 110.9(2) 
C5 N1 Zn1 129.4(2)   C22 N7 Zn2 129.8(2) 
N3 N2 Zn1 120.10(19)   N9 N8 Zn2 120.4(2) 
C10 N2 Zn1 119.2(2)   C27 N8 Zn2 119.3(2) 
C35 N5 Zn1 169.7(3)   C37 N11 Zn2 167.5(3) 
C36 N6 Zn1 174.7(3)   C38 N12 Zn2 154.6(3) 
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Table S3. Brine shrimp assay and DPPH radical scavenging activity. 

 

 

 

 

 

 

 

 

  

 LD50 (mM) DPPH (mM) 

HL1Cl 1.57±0.14 / 

1 0.19±0.03 0.90±0.08 

HL2Cl 1.14±0.11 0.49±0.06 

2 1.14±0.10 7.29±0.20 

3 1.27±0.14 / 

4 0.86±0.04 / 

HL3Cl 1.02±0.10 / 

5 0.98±0.09 / 

6 0.46±0.04 1.53±0.08 

7 0.53±0.04 0.50±0.06 

8 1.04±0.07 / 

9 1.54±0.10 7.14±0.11 

10 0.65±0.07 0.02±0.01 

11 0.82±0.06 7.72±0.13 

12 0.49±0.03 0.02±0.01 

NH4SCN 0.98±0.06 / 

NaN3 0.54±0.05 / 

Zn(BF4)2×6H2O 0.88±0.07 / 

Zn(OAc)2×2H2O 1.18±0.10 / 

Ni(BF4)2×6H2O 0.64±0.05 / 

Cd(NO3)2×4H2O 0.50±0.02 / 

Fe(NO3)3×9H2O 1.24±0.09 / 

Co(BF4)2×6H2O 1.51±0.07 / 

Cu(ClO4)2×6H2O 0.28±0.02 / 

Cu(NO3)2×3H2O 0.24±0.02 / 

BiCl3 ND ND 

K2Cr2O7 0.077±0.016  

Ascorbic acid / 0.079±0.018 
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Scheme S1. Synthesis of the HL1Cl ligand and Zn(II) complex (1). 

 

 

Scheme S2. Synthesis of the HL2Cl ligand and Bi(III) complex (2). 
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Fig. S1 Packing arrangement of 1, displaying a chalcogen bond (dotted) and quinoline stacking 

 
 

Fig. S2 Crystal packing of 2, showing supramolecular ribbons held together by NH‧‧‧Cl and Cl‧‧‧S 
hydrogen and chalcogen bonds (left), decorated by hydrogen bonded solvation methanol molecules 
(right) 
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Fig. S3. UV–Vis absorption spectra of complex 3–12 

 

 

Fig. S4. UV–Vis absorption spectra of HL1Cl and complex 1 
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Fig. S5 Changes in UV–Vis absorption spectra of CT-DNA (48.5 µM) after interaction with 
different concentrations of the compounds: (a) HL3Cl (25, 50 and 100 µM); (b) 12 ([FeL3(NCS)3]) 
(25, 50 and 100 µM); (c) HL1Cl (25, 50 and 100 µM) and (d) 1 ([ZnL1(NCS)2]) (25, 50 and 100 
µM). In insets, comparison of absorbance at 258 nm between the CT-DNA–compound and the sum 
values of CT-DNA and compound 
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Fig. S6 UV−Vis absorption spectra of: (a)ligand HL3Cl; (b)complex 12; (c) ligand HL1Cl and (d) 
complex 1 in the absence and presence of CT-DNA in 40 mM bicarbonate buffer (pH 8.0). 
Concentration of compounds was kept constant (50 µM) and concentrations of DNA varied ((4.85, 
5.82, 6.79, 7.76, 8.73, 9.73, 10.67, 11.64, 12.61, 13,58, 14.55, 15.32, 16.49 and 17.46) x 10–5 M). 
The arrows show the changes in absorbance with increasing amounts of CT-DNA. Insets: plot of 
[DNA]/(εA – εF) versus [DNA] 

 

 



18 
 

 

Fig. S7 Changes in emission spectra of Hoechst 33258 (2.5×10–5M) bound to CT-DNA (9.7×10–

5M) by (a) ligand HL3Cl, (b) complex 12 ([FeL3(NCS)3]), (c) ligand HL1Cl and (d) complex 1 
([ZnL1(NCS)2]) at increasing concentrations (2, 4, 6, 8, 10, 12, 14, 16, 18 ×10–5 M). The arrows 
show that fluorescence intensity either decreased or increased with increasing concentration of the 
compound. The insets show fluorescence quenching curves of H bound to DNA at λmax=441 nm by 
(a) HL3Cl, (b) 12 ([FeL3(NCS)3]), (c) HL1Cl and (d) 1 ([ZnL1(NCS)2]). The quenching constant 
Ksv were calculated using Eq(2) by linear regression of a plot I0/I against [Q], where I0 and I 
represent the fluorescence intensities of H−CT-DNA in absence and presence of the compound, 
respectively, Ksv is the quenching constant and [Q] is the concentration ratio of the compound to 
DNA ([compound]/[CT-DNA] 

 

Fig. S8 Fluoresence spectra of H (2.5×10–5M, curve 2); HL3Cl (1×10–4M, curve 1); HL1Cl (1×10–

4M, curve 3); HL1Cl−CT-DNA (1×10–4M, curve 4); HL1Cl−H (1×10–4M, curve 5); 12 (1×10–4M, 
curve 6); 12−H (1×10–4M, curve 7); 12−CT-DNA (1×10–4M, curve 8); 1−CT-DNA (1×10–4M, 
curve 9); 1 (1x10–4M, curve 10); 1−H (1×10–4M, curve 11) 
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Fig. S9 Fluorescence spectra of BSA in the absence and presence of increasing concentrations of 
HL3Cl, 12 ([FeL3(NCS)3]), HL1Cl and 1 ([ZnL1(NCS)2]) (a, b, c and d, respectively). Values of Ksv 
were calculated from the plot I0/I versus [compound] shown in insets. The arrows show the decrease 
in fluorescence intensities with increasing concentrations of the compounds. 

 

 

Fig. S10 Determination of Kb values for (a) HL3Cl, (b) 12, (c) HL1Cl and (d) 1, from the plots of 
log [(I0 – I)/I] versus log [compound] 
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