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Abstract: The identification of agricultural food production systems has gained importance in
order to protect both human health and the environment. The importance of organic production
system of agriculture which involves the application of natural processes and substances, and
limits or completely eliminates the use of synthesized means is emphasized. Knowledge of the
mineral composition in tomato samples can be used as a potent tool in the identification of chemical
markers as potential indicators of the farming system. A set of tomato samples taken from two
factorial randomized trials were comprehended eight different varieties, belonging to four tomato
types: large—BEEF and CLUSTER, and mini and midi—CHERRY and PLUM tomatoes, cultivated
under two different farming systems: integral (IPM) and organic (O) were characterized based on
the composition of the minerals. A total of 44 elements were quantified. To establish criteria for
the classification of the samples and confirm a unique set of parameters of variation among the
types of production, sophisticated chemometric techniques were used. The results indicate that
the accumulation of elements varies between 8 tomato varieties and 2 different growing systems.
The contents of Al, Mn, As, Pb, and some of the rare-earth elements (REEs) are able to distinguish
between production types. Examination of different hybrids, which belong to different types in
two production systems: organic and integral within Zeleni hit (official Enza and Vitalis trial and
breeding station), was done with the aim of reaching a methodology of diversification, ie complete
traceability of organic production, and to contribute to distinguishing types of agricultural systems
and enhancing the possibility of acquiring a valuable authenticity factor about the type of agricultural
production system employed for the cultivation of tomatoes.

Keywords: tomato; ICP-OES; ICP-MS; rare-earth elements; macroelements; microelements and
potentially toxic elements; organic and integral type of production

1. Introduction

Tomato (Lycopersicon esculentum L.) is one of the most widely grown vegetables in
the world [1]. It is cultivated for consumption as fresh products and for processing
into finished products including tomato pureed, ketchup and flour [2]. Tomato contains
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many nutrients and secondary metabolites that are important for human health, including
minerals, vitamins, lycopene, flavonoids, organic acids, phenolics, and chlorophyll [3].
Due to the importance of minerals for human metabolism, their analysis is an important
part of public health studies. The presence of nutritive and toxic minerals in tomato
samples depends on the growing conditions and the utilization of pesticides and fertilizers.
In addition, the accumulation of metals varies greatly between examined tomato types
and cultivars [4,5]. Because of its high sensitivity, wide dynamic range, and relatively low
possibility of interferences as well as its multi-elemental characteristics, inductively coupled
plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass
spectrometry (ICP-MS) have been chosen as one of the most commonly used analytical
techniques for the analysis of the complex food matrices [6].

Minerals are micronutrients necessary for the growth, maintenance, and proper func-
tioning of the human body [7,8]. An adequate micronutrient intake is essential for im-
proved human health, primarily prevention or treatment of various diseases, such as
bone demineralization and arterial hypertension, and for maintaining overall cardiovas-
cular health [9]. Also, an adequate micronutrient intake is essential for the prevention
of “hidden hunger”—a state which occurs due to mineral deficiency and manifests itself
as insidious effects on immune system functioning which are connected to an increased
risk for many girded and debilitating health conditions and diseases [10]. As humans
cannot synthesize essential and trace elements, they must be introduced as part of the diet
in regular quantities [7,11]. No less than 22 mineral elements are necessary for normal
functioning of humans [7,12], and tomato is an excellent source of these minerals. The
mineral elements are not synthesized in the plant but are absorbed from the soil by the
root of the plant. The content of minerals in tomato tissues is changed during the plant’s
growth wherein the most significant changes occur in the days after the fruit initiation [13].
However, the concentration of minerals remains unchanged during the final stages of
crop development [7]. The content of mineral elements in tomato is influenced by the
availability of minerals in the soil and it is strongly dependent on local geological setting
and agronomic practice, such as conventional, integral, or organic farming system [14].
Given the growing concern for human health and the environment due to the increased
use of pesticides in agriculture, the identification of agricultural food production systems is
gaining importance, and therefore organic production is recommended [15]. Compared to
integral production, organic production involves the application of natural processes and
substances while respecting environmental principles, the use of renewable energy sources,
conservation of natural diversity and environmental protection, and limits or completely
eliminate the use of synthetic materials [5,16]. It should also be kept in mind that despite
the lack of reliable data that support claims that the quality of organically produced food is
superior to the quality of foods produced in the conditions of integral production, there
is an increasing consumer demand for foods cultivated under organic system of farming.
Therefore, in this paper, the mineral content of tomato samples produced in organic and
integral cultivation systems will be compared with the aim of investigating whether com-
prehensive mineral content could be used as indicators of tomato cultivation systems in
order to provide sufficient information to consumers when choosing food.

Only a small number of studies reported the connection between the metal content in
tomato and the farming systems used in its production [17–19]. In addition, it is assumed
that the metal content in tomato crops is influenced by different factors such as type of soil,
climatic conditions, crop type, and variety choices [18]. However, many so far performed
comparative studies have been criticized for not controlling these factors and consequently
showing contradictory results [7,20]. Therefore, the main objective of this paper was to
identify which elements can be used as specific chemical markers, i.e., indicators of the
type of tomato production. Also, the objective of this work was to establish criteria for
element-based classification in order to define the mineral composition of tomato which
is important for both the assessment of its authenticity and the assessment and fortifica-
tion of the type of agricultural system, which is a current issue for both consumers and
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producers. Therefore, in order to find reliable chemical markers of particular varieties
and to distinguish farming systems of tomato production, a set of tomato samples from
two factorial randomized trials which comprehended eight different varieties, four types
and grown in two growing systems, integral (IPM) and organic (O), was analyzed and
characterized based on the composition of the elements. Seven macroelements (Ca, Fe, K,
Mg, Na, P, S), sixteen microelements and potentially toxic elements (Li, Al, V, Cr, Mn, Co,
Ni, Cu, Zn, Mo, Cd, W, Bi, As, Hg, Pb), and twenty-one rare-earth elements (Sc, Ga, Se, Y,
La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Tl, Th, U), were quantified using
ICP-OES and ICP-MS. The obtained results were processed in Matlab (Principal component
analysis), and in NCSS statistical software package (Mann–Whitney U-test). The used
statistical procedures confirm a unique set of parameters that could be used as potential
phytochemical biomarkers to differentiate tomato samples belonging to different cultivars
produced in different systems of production. This kind of investigation contributes to
distinguishing types of agricultural systems, integral and organic, and consequently con-
tributes to increasing the possibility of assessing and obtaining main factors for validating
the authenticity of the tomato variety and the type of its production. This further raises
awareness of the significance of product authenticity due to the importance of food quality
data, which are necessary to protect both consumers and producers.

2. Materials and Methods
2.1. Chemicals and Materials

Hydrogen peroxide and nitric acid, both of analytical grade of purity, were purchased
from Merck (Darmstadt, Germany). Standard solutions and blanks were prepared with
ultra-pure water obtained by the Milli-Q system (Millipore Simplicity 185 System incorpo-
rating dual UV filters, 185 nm and 254 nm). A semi-quantitative stock solution containing
0.0100 g L−1 of major and trace elements (Alfa Aesar—Ward Hill, MA, USA) and a stock so-
lution containing 0.5000 g L−1 of major elements (VHG Labs, Manchester, NH 03103, USA,
United States of America) were used to prepare intermediate multi-element standard solu-
tions for determination on ICP-MS (iCAP Q, Thermo Scientific X series 2, Loughborough,
UK, United Kingdom) and ICP-OES (Thermo Fisher Scientific, Waltham, Massachusetts
USA). Commercial calibration stock standards, used in this study, were Multi–Element
Plasma Standard Solution 4, Specture®, Alfa Aesar, John Mutthey Company; Vanadium
Plasma Standard Solution, Specture®, Alfa Aesar, John Mutthey Company; Tungsten,
Specture®, Alfa Aesar, John Mutthey Company; Major Elements Stock, EPA Method Stan-
dard, VHG Labs; 6020A ICS Stock, EPA Method Standard, VHG Labs; Multi–Element
Aqueous CRM, Comprehensive Mix A, VHG Labs; Selenium Standard for AAS, Fluka;
Mercury Standard, Merck; Arsen Standard, Merck.

2.2. Sample Preparation—Cultivation Experiments

This study included eight varieties, belonging to four tomato types: large—BEEF and
CLUSTER, and mini and midi—CHERRY and PLUM tomatoes, grown in two types of
farming systems, integral and organic (Table 1). In a two factorial greenhouse trial, eight
tomato hybrids were observed in two cultivation systems in three replicates. The total
size of the heated greenhouse was 320 m2 and individual plots have considered 12 to
16 plants, depending on recommended density for different tomato hybrids. Young plants
were produced according to the certified procedure for the organic and integral growing
systems, using Vitalis (organic) and Enza (conventional) seeds of 8 different varieties. All
samples were properly taken at the same time of harvest and stored in the refrigerator
for later preparation of samples and analysis, with adequate size, which excludes errors
related to uniformity in quality and chemical composition of the fruit. For each tomato
variety, there were three replicates, each of which had an average weight of 500–600 g, i.e.,
it contained 2 to 20 fruits, depending on the type of tomato to which the variety belongs
(depending on whether it is large—BEEF and CLUSTER, or mini and midi—CHERRY
and PLUM tomatoes). Tomato samples were thoroughly washed with lukewarm water
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and sliced to the thickness of 1–2 cm to enhance the drying process. In order to obtain a
representative sample, all replicates were dried separately. The samples were oven dried
on glass plates for 24 h at 105 ◦C, after which the temperature in oven was reduced to 55 ◦C
and the samples were dried to constant weight. Then, the replicates of the same variety
were ground together, pulverized in a blend, and thus homogenized. The obtained powder
was kept in plastic containers in a dark place at 4 ◦C until the analysis was performed.

Table 1. Tomato types and varieties in two production systems, integral (IPM) and organic (O).

No. of Sample
(Type of

Production)
Large Varieties

No. of Sample
(Type of

Production)
Finer Varieties

1a (IPM)
VELOCITY Beef

5a (IPM)
VESPOLINO Plum1b (O) 5b (O)

2a (IPM)
RALLY Beef

6a (IPM)
ARDILES Plum2b (O) 6b (O)

3a (IPM)
AVALAVTINOCluster

7a (IPM)
TOMAGINO Cherry

3b (O) 7b (O)

4a (IPM)
DIRK Cluster

8a (IPM)
SAKURA Cherry

4b (O) 8b (O)

The soil was prepared according to standard technology using both organic and con-
ventional mineral fertilizers for an integral production system, and only organic certified
and mineral fertilizers for an organic one. The long trellising crop was planted at the begin-
ning of March and grown until the end of the season end of October. The assimilation and
growth differences as well yield and fruit quality were regularly analyzed and compared
between tomato varieties and different growing systems.

In the integral production system the use of fertilizers and pesticides is reduced
in comparison to the conventional production, whereas various biological components
(sometimes even predators) are used for plant protection [21]. The use of mineral fertilizers,
growth regulators and pesticides is not allowed in what is called organic farming. This
system is based on minimal use of non-agricultural substances and the natural ecological
balance in management practices [21]. In this case, for integral production system adequate
Integrated Pest Management system was used combining both, some fungicides and
biological protection systems, whole for an organic system of production only certified
biopesticides and predators, massive pheromone traps and other plant protection methods
being considered organically certified.

Weed suppression accordingly was achieved by covering raised beds with polyethy-
lene mulch with silver color in Integral tomato growing system and with organic peat moss
mulch layer 7–10 cm of thickness, providing also high thermic stability and soil water and
nutrients conservation.

2.3. Mineral Analysis—Microwave Digestion

Microwave digestion was performed in the SpeedWave XPERT instrument, manu-
factured by Berghof. About 0.3 g of dehydrated tomato was measured in teflon cuvettes
individually and 6 mL of purified nitric acid, HNO3, and 2 mL of 30% hydrogen peroxide,
H2O2 were added. Purified nitric acid was made by purification of 65% HNO3 in a 2000 W
microwave oven Berghof-purification apparatus-BSB-939-IR. Degradation was performed
according to Microwave Digestion of Fruit, Application Note Food & Feed, Digestion,
Berghof [22] by setting it to reach a temperature of 180 ◦C in 15 min, maintaining the same
temperature for 10 min. Then, the temperature was set to 200 ◦C in 10 min, which was
maintained for 15 min. After completion of the program and cooling of the cuvettes, the
samples were quantitatively transferred and diluted with ultra-pure water in normal flasks
of 50 mL. Two blank digestions were performed using the same procedure as for the sam-
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ples. All samples were measured the same day on both instruments. For quality control and
method validation, standard reference material BCR–679 was used with recovery between
93% and 104%. The standard material went through the same preparation procedure as the
samples themselves. It was digested with the same volume of nitric acid and hydrogen
peroxide, diluted with ultra-pure water, and analyzed for ICP-OES and ICP-MS.

2.4. Measuring Settings of ICP-OES and ICP-MS

Operating conditions for the ICP-OES and ICP-MS were set by the manufacturer. For
ICP-OES ICP RF power was set at 1150 W, nebulizer gas flow at 0.5 L min−1, coolant gas
flow at 12 L min−1, and pump rate was set to work at 50 rpm. In the case of ICP-MS,
operating conditions were slightly different. ICP RF power was set at 1050 W, nebulizer gas
flow at 0.75 L min−1, lens voltage at 7 V, pulse stage voltage at 950 V, and sample uptake
rate was set at 25 rpm.

2.5. Statistical Analysis

The PLS ToolBox, v.6.2.1, for MATLAB 7.12.0 (R2011a) was used to conduct the
principal component analysis (PCA). PCA was carried out as an exploratory data analysis
by using a singular value decomposition algorithm (SVD) and a 0.95 confidence level for
Q and T2 Hotelling limits for outliers. The PCA grouped the parameters based on their
similarity and resulted in a less number of principal components that, in turn, reduced the
dimensionality of the retention data space, thus further simplifying the analysis [23].

In order to verify the existence of statistically significant differences between samples,
and types of agricultural systems, the Mann–Whitney U-test was applied using a demo
version of NCSS statistical software [24], as well as descriptive statistics.

3. Results
3.1. Multielemental Composition Assessment

In the 16 different types of tomato samples (Table 1), 44 elements were quantified,
including 7 macro (major) elements (Na, Ca, K, Mg, Fe, P and S) which were analyzed on
ICP-OES, 16 micro (trace) elements and potentially toxic elements (Li, Al, V, Cr, Mn, Co, Ni,
Cu, Zn, Mo, Cd, W, Bi, As, Hg, Pb) and 21 REEs (Sc, Ga, Se, Y, La, Ce, Pr, Nd, Sm, Eu, Gd,
Tb, Dy, Ho, Er, Tm, Yb, Lu, Tl, Th, U) which were analyzed on ICP-MS (Table S1). Standard
series were made from internal standards (500 mg L−1 for macroelements, 1000 µg L−1

for microelements and REEs). Internal standards were made by diluting the commercial
calibration stock standards. The data are given in the form of an Excel datasheet (Table S1),
and represent the average value of three repeated measurements. Also, the contents of
macroelements, microelements and potentially toxic elements, and rare-earth elements in
the samples of 8 different tomato varieties in two different systems of tomato production
expressed as mg kg−1 dw (dry weight), are presented in Figure 1 for integral and in Figure 2
for organic production. Vertical bars denote 0.95 confidence intervals.

3.2. Data Analysis

In order to understand the data structure and determine similarities and particular
grouping patterns, PCA was conducted on quantified mineral elements (Table S1) in tomato
samples. Before application of the statistical operations, all data were mean-centered and
scaled to the unit standard deviation in order to reduce the possibility of predominant
components significantly influencing the final result at the expense of those less present.
Since the values for the content of elements are below the limit of detection only in the
case of element V in sample 2a, element Hg in samples 5a–8a and 5b–8b, and element Se in
sample 6a, and in all other samples the concentrations of these elements as well as everyone
else elements were above the limit of detection (Table S1), no element was excluded when
processing the results by PCA test.
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Figure 1. Contents of macroelements, microelements and potentially toxic elements, and rare-earth
elements in the set of 8 different varieties of tomato (Table 1) grown in integral (IPM) agricultural
system expressed as mg kg−1 dw. Vertical bars denote 0.95 confidence intervals. The concentrations
of elements (mg kg−1) were plotted on the y-axis; the symbols of elements were plotted on the x-axis.



Agriculture 2021, 11, 1009 7 of 16

Figure 2. Contents of macroelements, microelements and potentially toxic elements, and rare-earth
elements in the set of 8 different varieties of tomato (Table 1) grown in organic (O) agricultural system
expressed as mg kg−1 dw. Vertical bars denote 0.95 confidence intervals. The concentrations of
elements (mg kg−1) were plotted on the y-axis; the symbols of elements were plotted on the x-axis.
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PCA was performed in order to establish the differences between two different produc-
tion systems as well as between tomato types and varieties. Principal component analysis
based on the content of 44 minerals in tomato samples resulted in a twelve-component
model that explained 95.45% of the total variability among the data. Statistical parameters
(the number of principal components and the percentage of variance they explain) are
shown in Table 2.

Table 2. The number of principal components and the percentage of variance they explain.

Principal
Component Number

Eigenvalue of
Cov(X) % Variance Captured % Variance Captured

Total

1 8.47×103 19.24 19.24
2 7.59×103 17.26 36.50
3 4.92×103 11.17 47.68
4 3.54×103 8.05 55.73
5 3.41×103 7.76 63.48
6 3.37×103 7.67 71.15
7 2.33×103 5.29 76.45
8 2.26×103 5.13 81.58
9 2.11×103 4.80 86.37
10 1.60×103 3.64 90.02
11 1.30×103 2.96 92.98
12 1.09×103 2.47 95.45

Mutual projections of factor scores and their loading for the first two PCs for 44
minerals are shown in Figure 3.

Figure 3. Principal component analysis based on the content of 44 minerals in tomato samples
(Table 1) produced under two different production systems, integral (IPM) (samples 1a–8a) and
organic (O) (samples 1b–8b): (a) Score plot and (b) Loading plot.

Since principal component analysis based on the content of all 44 minerals showed
that REEs can serve as a potential factor for distinguishing types of production (Figure 3),
PCA based only on the content of macroelements as well as PCA based only on the content
of microelements and potentially toxic elements were also carried out. Principal component
analysis based on the content of macroelements resulted in a two-component model that
explained 68.45% of the total variability among the data, while PCA based on the content
of microelements and potentially toxic elementsresulted in a six-component model that
explained 80.66% of the total data variance (Table 3).
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Table 3. The number of principal components for macroelements (A) and microelements and potentially toxic elements (B),
and the percentage of variance they explain.

(A) Principal Component Number Eigenvalue of Cov(X) % Variance Captured % Variance Captured Total

1 3.24×103 46.33 46.33
2 1.55×103 22.12 68.45

(B) Principal component number Eigenvalue of Cov(X) % Variance captured % Variance captured total

1 3.89×103 24.30 24.30
2 2.70×103 16.85 41.16
3 1.89×103 11.82 52.98
4 1.81×103 11.32 64.30
5 1.44×103 9.00 73.30
6 1.18×103 7.36 80.66

Mutual projections of factor scores and their loadings for the first two PCs for macroele-
ments (A), and microelements and potentially toxic elements (B) are shown in Figure 4.

Figure 4. Principal component analysis—mutual projections of factor scores and their loadings for
the first two PCs for macroelements (A), and microelements and potentially toxic elements (B) in
the samples of tomato (Table 1) produced in two types of the agricultural system, integral (IPM)
(samples 1a–8a) and organic (O) (samples 1b–8b).

In order to determine the existence of a statistically significant difference between the
systems of production used for the different tomato variety cultivation, the Mann–Whitney
U-test was performed. This test was used to discover if the two populations (organic and
integral type of production) had the same distribution of metal content or not (Table 4,
Figures 1 and 2). Due to the significant deviation from the normal distribution of each of the
studied variables a nonparametric test was used. The Mann–Whitney U-test was performed
to clearly see which minerals were responsible for the existence of a statistically significant
difference between the production systems, i.e., which elements could serve as potential
indicators for distinguishing organic from the integral production systems (Table 5).
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Table 4. Parameters of descriptive statistics obtained from macroelements (A), microelements and potentially toxic elements (B), and rare-earth elements (C) content analysis (mg kg−1 dw)
of different tomato varieties in two production systems. Elements below the limit of detection are marked with BLOD.

(A) Ca Fe K Mg Na P S

Integral system of
production

mean 1410 643 22,300 1640 625 4300 1470
median 1490 737 22,100 1720 608 4380 1430
stdev 401 358 2680 239 241 458 265
min 704 143 17,900 1280 192 3470 1180
max 1990 1130 25,700 1950 918 4870 1900

Organic system of
production

mean 1210 894 21,700 1630 760 3930 1580
median 1120 828 20,300 1520 733 4080 1660
stdev 667 484 3450 317 279 457 355
min 389 296 18,100 1340 440 3220 916
max 2400 1550 27,300 2160 1300 4360 2000

(B) Li Al V Cr Mn Co Ni Cu

Integral system of
production

mean 0.14 24.7 0.0074 0.29 9.47 0.033 0.33 3.82
median 0.12 22.2 0.0031 0.25 9.18 0.032 0.30 3.98
stdev 0.07 8.55 0.0089 0.16 0.93 0.006 0.08 0.69
min 0.09 16.6 BLOD 0.18 8.60 0.025 0.26 2.85
max 0.30 38.8 0.0234 0.66 11.1 0.042 0.44 4.62

Organic system of
production

mean 0.13 17.6 0.0034 0.29 11.6 0.043 0.27 3.68
median 0.13 17.6 0.0038 0.28 10.9 0.039 0.24 3.59
stdev 0.03 4.99 0.0018 0.10 2.06 0.018 0.11 0.89
min 0.10 8.52 BLOD 0.18 9.27 0.018 0.16 2.76
max 0.18 26.4 0.0060 0.46 15.5 0.072 0.47 5.48

(B)-continued Zn Mo Cd W Bi As Hg Pb

Integral system of
production

mean 5.73 1.09 0.024 2.06 0.037 0.014 0.033 2.67
median 5.22 0.79 0.022 1.54 0.028 0.013 0.006 2.26
stdev 1.72 0.60 0.007 1.51 0.029 0.004 0.043 1.83
min 4.01 0.65 0.017 0.54 0.012 0.011 BLOD 0.83
max 9.07 2.24 0.037 4.90 0.100 0.022 0.098 5.78

Organic system of
production

mean 6.49 1.31 0.030 0.91 0.075 0.023 0.018 0.38
median 6.01 1.15 0.018 0.83 0.054 0.018 0.010 0.25
stdev 1.39 0.51 0.031 0.57 0.065 0.014 0.024 0.36
min 5.16 0.74 0.013 0.23 0.010 0.012 BLOD 0.08
max 9.11 2.29 0.104 1.89 0.178 0.054 0.064 1.22
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Table 4. Cont.

(C) Sc Ga Se Y La Ce Pr Nd Sm Eu

Integral system of
production

mean 0.0381 0.0127 0.0076 0.0032 0.0061 0.0128 0.0010 0.0096 0.0007 0.0049
median 0.0352 0.0125 0.0090 0.0029 0.0052 0.0077 BLOD 0.0057 0.0005 0.0041
stdev 0.0086 0.0026 0.0056 0.0011 0.0039 0.0092 0.0007 0.0085 0.0005 0.0039
min 0.0299 0.0093 BLOD 0.0018 0.0024 0.0058 BLOD 0.0029 0.0003 BLOD
max 0.0545 0.0163 0.0147 0.0052 0.0125 0.0295 0.0027 0.0274 0.0017 0.0112

Organic system of
production

mean 0.0300 0.0094 0.0096 0.0033 0.0146 0.0083 0.0009 0.0050 0.0006 0.0034
median 0.0297 0.0095 0.0101 0.0033 0.0072 0.0074 0.0008 0.0046 0.0005 0.0011
stdev 0.0028 0.0015 0.0063 0.0007 0.0189 0.0033 0.0003 0.0016 0.0003 0.0060
min 0.0268 0.0069 BLOD 0.0024 0.0047 0.0055 0.0006 0.0030 0.0003 0.0005
max 0.0332 0.0117 0.0174 0.0044 0.0604 0.0162 0.0016 0.0086 0.0011 0.0180

(C)-continued Gd Tb Dy Ho Er Tm Yb Lu Tl Th U

Integral system of
production

mean 0.0012 0.0001 0.0005 0.0002 0.0003 0.0001 0.0002 0.0001 0.0024 0.0091 0.0009
median 0.0008 0.0001 0.0004 0.0001 0.0003 0.0001 0.0002 0.0001 0.0018 0.0080 0.0007
stdev 0.0009 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0016 0.0045 0.0005
min 0.0005 0.0001 0.0003 0.0001 0.0002 0.0001 0.0001 0.0001 BLOD 0.0041 0.0005
max 0.0032 0.0002 0.0006 0.0002 0.0003 0.0002 0.0003 0.0002 0.0054 0.0173 0.0021

Organic system of
production

mean 0.0007 0.0001 0.0004 0.0001 0.0002 0.0001 0.0001 0.0001 0.0010 0.0049 0.0005
median 0.0007 0.0001 0.0004 0.0001 0.0002 0.0001 0.0001 0.0001 0.0009 0.0051 0.0004
stdev 0.0002 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0003 0.0011 0.0003
min 0.0004 0.0001 0.0003 0.0001 0.0002 BLOD 0.0001 BLOD 0.0007 0.0031 0.0003
max 0.0010 0.0001 0.0006 0.0001 0.0003 0.0001 0.0002 0.0001 0.0014 0.0062 0.0011
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Table 5. Man-Whitney U-test for organic (O) and integral (IPM) production system.

Metal p * Man-Whitney U-Test (Z-Value and Ho **)

Al 0.03569 2.1004 I (O)
Bi 0.40081 0.8402 /
Cd 0.24800 1.1552 /
As 0.03569 2.1004 I (O)
Ca 0.34456 0.9452 /
Ce 0.18926 1.3147 /
Co 0.14148 1.4703 /
Cu 0.52861 0.6301 /
Dy 0.34456 1.0519 /
Cr 0.52861 0.6301 /
Er 0.01172 2.9047 I (O)
Eu 0.14148 1.4725 /
Ga 0.01359 2.4716 I (O)
Fe 0.34456 0.9452 /
Gd 0.43090 0.7935 /
Hg 0.67442 0.4487 /
Ho 0.20758 1.8605 /
K 0.67442 0.4201 /
La 0.17217 1.3653 /
Li 0.52861 0.6301 /

Mg 0.83363 0.2100 /
Lu 0.12781 2.0108 I (O)
Mo 0.14148 1.4703 /
Mn 0.02086 2.3105 I (O)
Na 0.52861 0.6301 /
Ni 0.05871 1.8904 /
Nd 0.63650 0.4729 /
P 0.09289 1.6803 /

Pb 0.00232 3.0456 I (O)
Pr 0.83363 0.2111 /
S 0.40081 0.8402 /

Sc 0.01813 2.3665 I (O)
Se 0.49484 0.6831 /
Sm 0.71319 0.3723 /
Tb 0.09289 2.2361 I (O)
Tl 0.01813 2.3752 I (O)
Th 0.02086 2.3173 I (O)
Tm 0.04871 2.3238 I (O)
U 0.03569 2.1288 I (O)
V 1.00000 0.0000 /
W 0.07420 1.7854 /
Y 0.79290 0.2633 /

Yb 0.18926 1.6137 /
Zn 0.24800 1.1552 /

* Differences between two sets of data are significant when p-value is less or equal to 0.05. ** Medians significantly
different if z-value > 1.9600, and the bold values were Accepted Ho, while the others were Rejected Ho.

4. Discussion

The results obtained by analyzing the first two main components, their mutual pro-
jections of score values, and their loading vectors, based on the content of macroele-
ments, microelements, potentially toxic elements, and REEs in different tomato samples
(Tables 1 and S1, ) are shown in the score and loading plots (Figure 3). The first main
component covers 19.24% of the variability, while the second covers 17.26%, and each next
principal component explains less than 12% of the total variance. It is not unusual to get the
low overall data variance captured by a few PCs, especially in the case when the number
of samples is small, but the variability among the samples is relatively high because it is
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a group of natural samples and a diverse set of parameters (variables) is considered. On
the score plot (Figure 3a) it can be clearly seen that two distinct groups of samples were
obtained. The first one consisted of samples of tomato cultivated in the organic type of
production (1b–8b) while the second encompasses the tomato samples cultivated in the
integral type of production (1a–8a) (Figure 3a).

Loading plot (Figure 3b), a plot of the direction vectors that define the model, revealed
that the highest positive influences on the separation of samples produced in the organic
cultivation system (1b–8b) (Table 1, Figure 3a), have variables S, microelements As, Mn,
Co, and Mo, and rare-earth elements Se and La (Figure 3b) which is consistent with
the fact that their concentration is higher in different tomato varieties produced under
organic production system (Tables 4 and S1, Figures 1 and 2). S is necessary for normal
metabolic processes in plants and highly influences the biosynthesis of chlorophyll. It
is an essential component of the structure of lipids, proteins and amino acids and is, as
such, used to activate important vitamins and enzymes in plants [25]. The majority of
S in plants is absorbed through their roots as SO42− [26]. Unlike s, As is not essential
for plants and, as F. Burlo et al. showed, it does not influence some metabolic reactions
at lower concentrations. However, when found in higher amounts, As can hinder plant
growth or even lead its death. Taking that into account, over the last few decades the
inorganic arsenical pesticides were replaced by organic herbicides such as methylarsonic
and dimethylarsinic acids. When used at lower concentrations these herbicides are less
toxic for both animals and humans [27]. Mn supports several biochemical processes but
due to its immobility, this element moves only towards the leaves through the xylem. Once
there, it cannot be transferred anywhere else in the plant. Higher concentration of Mn in
samples produced in the organic type of production and variations in its concentrations
is caused by the arbuscular mycorrhizal fungi usually found in the soil used for organic
crop production [28]. Increased availability of Co is in correlation with the content of
organic matter and depends on soil properties. Co has a significant synergistic effect
on tomato growth, yield, nutrients status, physical and chemical composition, especially
under organic fertilization which can explain its higher concentration in samples of tomato
from organic production [29]. The essential micronutrient with the least concentration in
most plant tissues is Mo. The foliar fertilization by Mo can compensate the internal Mo
deficiencies and that is a possible explanation for higher concentration of this element
in tomato samples. The effects of Mo on plant growth are significantly higher than the
amount usually found in plants [30].

Variables that potentially have the highest influence on the separation of tomato
samples along the PC2 axis were macroelements Mg, K, and Ca, as well as potentially
toxic element Hg (Figure 3) whose concentrations in samples of organic production are
lower compared to samples produced in the conditions of an integral cultivation system
(Tables 4 and S1, Figures 1 and 2). The higher content of K and Ca in the samples pro-
duced in integral system can be explained with the fact that the integral farming system
requires the application of fertilizers based on K and Ca salts, which secures the devel-
opment and growth of tomato plants, while in the organic farming systems their use is
prohibited [7,31,32]. The higher content of Mg also can be explained by the foliar appli-
cations of fertilizers which is simple and affordable. Foliar application of adequate Mg
concentration plays important role in biochemical and physiological processes of plants like
protein synthesis, metabolism of carbohydrates, enzymes activation, and energy transfer,
just as Mg likewise proceeds as an impetus in oxidation and reduction reaction inside the
tissues of the plant along and enhance the resistance against dry spell in the plant [33]. Also,
higher Mg content can be correlated with increased mercury content. Shekar et al. proved
that even at low concentrations of Hg (10 mg L−1) there is a significant increase in the
amount of chlorophyll [34], and as Mg is known to be the central chlorophyll atom [32], we
can take advantage of this fact and thus explain the positive correlation of these elements.

Rare-earth elements Th, Tl, and Sc, as well as U, Tm, Lu, and microelements Al and
Pb (Figure 3b) have the most positive influence along the PC1 axis on the separation of
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the tomato sample produced in the integral cultivation system (1a–8a) (Table 1, Figure 3a),
while along the PC2 axis the greatest influence have the rare-earth elements Nd, Gd, Ce,
Sm, Dy, Ga, Tb, Ho, and Er. The rare-earth elements in samples of integral production have
higher concentrations than samples of organic production (Tables 4 and S1, Figures 1 and 2).
The content of REEs in tomato plants was previously rarely used to determine differences
between two examined production systems. Earlier studies showed the enhanced effects of
organic acids on the accumulation of light REEs by plants [35,36]. Shan et al. found evidence
that organic acids are responsible for the accumulation of REEs in plants by treating the soil
with histidine and malic and citric acids [35]. As the result, the concentrations of light REEs
increased. Additionally, the exposure to low concentrations of some REEs, in particular Ce,
Nd, La, and Sm, is known to enhance crop production. They can increase photosynthesis,
uptake, and utilization of nutrients and water, and enhance respiration and stress tolerance.

Since PCA based on the content of all 44 mineral elements showed that rare-earth
elements can serve as a potential factor for distinguishing types of production (Figure 3),
PCAs based only on the content of macroelements and on the content of microelements and
potentially toxic elementswere also done (Table 3, Figure 4). A clear separation of organic
production samples (1b–8b) from tomato samples grown in the integral cultivation system
(1a–8a) cannot be observed based on the content of macroelements and microelements and
potentially toxic elements (Figure 4). This confirms the assumption that REEs are actually
the ones responsible for separating the two data sets, i.e., tomato samples produced in the
integral cultivation system, from the samples of organic production system (Figure 3).

Considering that PCA was used to understand the data structure and identify similar-
ities and particular grouping patterns, in order to determine the existence of a statistically
significant difference between two different systems of tomato production, and confirmed
in that way the previous interpretation of the results—whether and which minerals lead
to a difference in the production systems as well as whether REEs can be used as po-
tential indicators of the production systems, the Mann–Whitney U test was performed.
Based on this test, the contents of Al, Mn, As, Pb, Sc, Ga, Tb, Er, Tm, Lu, Tl, Th, and
U were identified as parameters that showed a significant difference among the organic
and integral production systems (p < 0.05; Table 3). The assessment of the distribution
pattern of REEs in the different varieties of tomatoes produced under different production
systems provides information that improves the understanding of the soil uptake and plant
translocation mechanisms for these elements. This allows us to estimate the possibility of
using comprehensive REEs content as indicators of tomato cultivation systems, i.e., which
elements could serve as potential indicators of distinguishing organic from the integral
system of production on the territory of Serbia, in order to confirm products’ authenticity
and provide sufficient information to consumers when choosing food.

5. Conclusions

Taking into consideration all aforementioned, it may be concluded that the mineral
profile is a parameter of utmost importance for assessing the productive characteristics of
tomato samples taken from two factorial randomized trials. This work employed the use of
eight different varieties, belonging to four tomato types: large—BEEF and CLUSTER, and
mini and midi—CHERRY and PLUM tomatoes, cultivated under two different farming
systems: integral (IPM) and organic (O). A total of 44 mineral elements were quantified
using ICP-OES and ICP-MS analytical techniques. A clear separation of tomato samples
cultivated under organic production systems from the integral type cannot be observed
based on the content of macroelements and microelements and potentially toxic elements.
PCA based on the content of all 44 minerals showed that rare-earth elements can serve as a
potential factor for distinguishing types of production. The rare-earth elements in samples
of integral production have higher concentrations than samples of organic production. In
order to see whether and which elements lead to a difference in the production systems as
well as whether REEs can be used as potential indicators of the production systems, the
Mann–Whitney U test was performed. Based on this test, the contents of Al, Mn, As, Pb, Sc,
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Ga, Tb, Er, Tm, Lu, Tl, Th, and U were identified as parameters that showed a significant
difference among the organic and integral production systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agriculture11101009/s1, Table S1: Excel datasheet—Contents of macroelements, microelements
and potentially toxic elements, and rare-earth elements (mg kg−1 dw) in samples of tomato, eight
different varieties, belonging to four different tomato types: large—BEEF and CLUSTER, and mini
and midi—CHERRY and PLUM tomatoes, which were cultivated in two different types of agricultural
systems: integral (IPM) and organic (O).
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