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Abstract: Cadmium (Cd) is a highly toxic metal that is distributed worldwide. Exposure to it is
correlated with a vast number of diseases and organism malfunctions. Exopolysaccharides (EPS)
derived from Lactiplantibacillus plantarum BGAN8, EPS-AN8, previously showed great potential for
the in vitro protection of intestinal cells from this metal. Here, we investigated the potential of food
supplemented with EPS-AN8 to protect rats from the hazardous effects of Cd exposure. After thirty
days of exposure to lower (5 ppm) and higher (50 ppm)-Cd doses, the administration of EPS-AN8 led
to decreased Cd content in the kidneys, liver, and blood compared to only Cd-treated groups, whereas
the fecal Cd content was strongly enriched. In addition, EPS-AN8 reversed Cd-provoked effects on
the most significant parameters of oxidative stress (MDA, CAT, GST, and GSH) and inflammation
(IL-1β, TNF-α, and IFN-γ) in the duodenum. Moreover, micrographs of the duodenum were in line
with these findings. As the gut microbiota has an important role in maintaining homeostasis, we used
16S rRNA amplicon sequencing and investigated the effects of Cd and EPS-AN8 on one part of the
microbiota presented in the duodenum. Although Cd decreased the growth of lactobacilli and mostly
favored the blooming of opportunistic pathogen bacteria, parallel intake of EPS-AN8 reversed those
changes. Therefore, our results imply that EPS-AN8 might be extremely noteworthy in combatting
this toxic environmental pollutant.

Keywords: cadmium; exopolysaccharides; sequestration; inflammation; oxidative stress; microbiota

1. Introduction

Cadmium (Cd) is a hazardous, non-biodegradable metal that is persistent in the
environment. Epidemiological studies reported that even low exposures to Cd are linked to
a number of adverse health effects related to malfunctioning of the kidney, liver, lungs, and
cardiovascular and reproductive systems [1]. The bioaccessibility of Cd is a result of mining,
smelting, and industrial use. Furthermore, anthropogenic activities are also a significant
threat. Despite public health efforts, for the general population, contaminated food and
water are the main routes of Cd exposure, except for exposure from smoking or occupational
activities [2,3]. Widespread contamination of the soil, atmosphere, and water leads to Cd
being ingested by plants and aquatic organisms and easily entering the food chain. It was
documented that leafy vegetables, cereals, shellfish, potatoes, legumes, nuts, stem/root
vegetables, and contaminated water contributed the most to Cd intake [3,4]. Therefore,
humans are constantly exposed to this environmental pollutant. Properties of this metal,
such as a long half-life [5] and low rate of excretion [6], mark it as a dangerous widespread
pollutant. Thus, orally administrated Cd has important and inevitable effects on health. The
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gastrointestinal tract is the main target for exerting toxicity. Besides tremendous disruption
and leakage of the intestinal barrier [7–9], Cd affects the gut microbiota, which is defined as
an important factor in maintaining health, and leads to lipopolysaccharide (LPS)-induced
up-regulation of proinflammatory gene expression [10,11]. In humans, 7% of Cd is absorbed
and transported by the blood to other organs [12]. Cd accumulates in multiple tissue types,
but the majority of Cd is accumulated in the liver and kidneys; consequently, its burden
on the body increases with age [13–15]. This leads to numerous chronic diseases of the
kidneys, liver, and lungs, as well as cardiovascular diseases, reproductive dysfunction, and
increased mortality [12,16,17].

Considering all these facts, in our previous study [18], we proposed a strategy for
putative protection against Cd’s hazardous effects using bacterial exopolysaccharides
(EPS) derived from lactic acid bacteria (LAB), which are naturally present in GIT and
have GRAS (‘generally recognized as safe’) status. Exopolysaccharides are known to
be strain-specific carbohydrate polymers that might be covalently bound to the surface
forming a capsule, loosely bound to surface, or secreted to the cell environment [19].
Bacterial EPS are commonly used in the food industry to stabilize products, improve
their rheology, and prevent syneresis [20]. Nonetheless, they have been recognized as
potent immunomodulatory and antioxidative molecules [21,22], which could be used as a
substitution for live bacteria to reduce health risks and/or reliance on variable bacterial
metabolism [23–25]. Furthermore, EPS contribute to the ability of bacteria to adsorb metal
ions to their surface [26]. It has been well documented that the adsorption of heavy metals
by EPS is based on physicochemical interactions between metal cations and negatively
charged acidic functional groups of EPS (e.g., carboxyl, acetate, hydroxyl, amine, phosphate,
and sulfate), which might result in physical sorption, ion exchange, complexation, and/or
precipitation [27–29]. Previously, we showed that EPS-AN8 derived from Lactiplantibacillus
plantarum BGAN8 exhibits a high Cd-binding capacity in an aqueous solution and provides
protection from Cd-mediated toxicity in intestinal epithelial Caco-2 cells [18].

In this paper, we have tested the ability of EPS-AN8 as a food supplement to alleviate
the hazardous effect of orally administrated Cd in an in vivo animal model. Therefore, the
aims of the present study were to examine the efficiency of EPS-AN8 as a putative tool to
mitigate adverse effects of prolonged Cd intake (30 days) related to the deposition of Cd in
organs, Cd-induced intestinal oxidative stress, and inflammation in Dark Agouti (DA) rats.
Furthermore, we followed the putative protective effect on gut microbiota.

2. Results
2.1. General Considerations

The administration of Cd was achieved through CdCl2 in distilled water and lasted
30 days. Rats were given Cd in a lower (5 ppm (mg/L)) and higher (50 ppm (mg/L))
concentration. Additionally, EPS-AN8 was administrated through food at a concentration
of 100 µg/mL. During the experiment, an increase in body mass was observed, but there
were no changes between groups. The average daily intake of Cd was based on the
calculated water consumption, and it was 0.72 ± 0.1 mg/kg for the 5 ppm Cd group,
7.2 ± 0.3 mg/kg for the 50 ppm Cd group, 0.83 ± 0.1 mg/kg for the EPS-AN8/5 ppm
group Cd, and 7.3 ± 0.3 mg/kg for the EPS-AN8/50 ppm Cd group. There were no
differences detected in food and water intake. There was no evidence of death.

2.2. EPS-AN8 Decreases Cd Deposition/Accumulation in Tissues and Increases in Feces

Consuming cadmium led to significantly higher accumulation in the organs of cadmium-
treated groups than in the control group. The concentration of Cd was measured in the
kidneys, liver, intestine, blood, duodenum, and fecal material (Figure 1). The organs most
affected by this toxic metal were the kidneys, liver, and duodenum (Figure 1A,B,D). How-
ever, the level of Cd in groups who received EPS-AN8 combined with two doses (5 and
50 ppm) of Cd was significantly lower in the kidneys, liver, and blood compared to groups
that administrated only Cd (Figure 1A–C). In the duodenum, there was no statistically
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significant difference between the levels of this harmful metal in groups treated with EPS-
AN8 and Cd simultaneously and groups treated with just Cd (Figure 1D). Contrarily, the
accumulation of Cd in feces was significantly higher in both groups that received Cd plus
EPS-AN8 than in groups that simply received Cd, indicating that the body was excreting
more cadmium (Figure 1E).
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Figure 1. Effects of EPS-AN8 on Cd deposition in rats exposed to lower (5 ppm) and higher (50 ppm)
dose of Cd in kidney (A), liver (B), blood (C), duodenum (D), and feces (E). Results are presented as
mean ± standard deviation (SD). Values that do not share a common letter are significantly different
(p < 0.05).

2.3. EPS-AN8 Reduces Histopathological Changes in Tissues

Under microscopic examination, the duodenums taken from control rats showed
normal histological structures (Figure 2A). Long slender villi were overlayed with well-
organized columnar epithelium comprising enterocytes and goblet cells with evenly aligned
nuclei. The lamina propria was thin with normal cellular content. Normal histology of
the duodenal mucosa was affected by orally ingested Cd in a dose-dependent manner.
In rats exposed to 5 ppm Cd (Figure 2B), villi were shortened and thickened, whereas
crypts were characterized by mild hyperplasia. The epithelium was damaged in places and
seemingly contained more mucin-producing cells. Increased leukocyte infiltration of the
lamina propria and submucosa was noted. Most of these changes were similar or even more
prominent in the 50 ppm Cd-treated group of rats (Figure 2D). Intake of EPS-AN8 visibly
reduced these changes in both groups (Figure 2C, E). Notably, in the EPS-AN8/50 ppm
Cd group, mucin-producing cells were less abundant, but an increase in the content of
intervillous material, which is thought to be secreted mucin, was observed.

2.4. EPS-AN8 Mitigates Cd Induced Oxidative Stress in Duodenum

The effects of the oral intake of Cd and EPS-AN8 on various parameters of oxidative
stress in duodenum homogenates are presented in Figure 3. Cadmium administration at
both doses significantly increased the amount of MDA in the duodenum (Figure 3A). Both
EPS-AN8-treated groups had a lower level of MDA. Furthermore, the activity of catalase
was higher in the Cd groups, but a decrease was observed in the groups given EPS-AN8
(Figure 3B). The activity of the enzyme GST, which catalyzes the conjugation of glutathione,
was not affected by the lower dose of Cd. In contrast, the activity was significantly increased
by 50 ppm Cd (Figure 3C). Oral intake of EPS-AN8 had a reversal effect on that alteration
and maintained the measured values at the control level. Changes in the activity of GST
might be considered to be adjustments to the increased level of GSH (Figure 3D). The lower
dose of Cd did not cause any significant changes in GSH content, whereas the amount of
GSH was increased in the duodenum of rats who received a higher dose of Cd. EPS-AN8
treatment decreased the level of GSH but without a statistical difference.
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Figure 2. Representative photomicrographs of duodenum of rats exposed to different concentrations
of Cd, with or without EPS-AN8. Normal appearance of duodenal mucosa in control rats (A).
Thickened and shortened villi, increased leukocyte infiltration of the lamina propria and submucosa,
and mild crypt hyperplasia after 5 ppm Cd treatment. Inset shows damaged surface epithelium along
the villi (B). Generally better-preserved morphology of the villi despite some of them displaying
apical damages after 50 ppm Cd (EPS-AN8 combined treatment. Arrow points to the damaged tip of
the villus (C). Partial destruction of the duodenal epithelium (arrow: denuded lamina propria), crypt
hyperplasia with frequent mitoses after 50 ppm treatment. Inset: flattening of the surface epithelium
(arrowhead) (D). Relatively maintained gross integrity of the villi, increased content of intervillous
material presumed to be secreted mucin (E). e: epithelium; lp: lamina propria; sm: submucosa;
original magnification 20×.
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Figure 3. The protective effect of EPS-AN8 on Cd-induced oxidative stress are expressed via (A) MDA,
(B) the acitivity of enzyme catalase, (C) the activity of glutathione-S-transferase, (D) the level of
reduced glutathione. Results are presented as mean ± SD. Values that do not share a common letter
are significantly different (p < 0.05).
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2.5. EPS-AN8 Alleviates Cadmium-Induced Cytokine Response in the Duodenum

The cytokine profile is demonstrated in Figure 4. Oral intake of 5 ppm and 50 ppm Cd
induced the overproduction of the potent pro-inflammatory cytokine IL-1β (Figure 4A).
Although parallel intake of EPS-AN8 significantly protected against alterations in IL-1β
content which was brought on by the higher dose of Cd, it did not appreciably reduce the
overproduction of this cytokine that was caused by the dose of 5 ppm Cd. Further on, both
groups of animals treated with only Cd had significantly upregulated production of TNF-α
(except for 50 ppm Cd) and IFN-γ, whereas oral administration of EPS-AN8 significantly
reduced this increase (Figure 4B,C). No changes were observed in the production of the
inflammatory cytokine IL-17 in any of the examined groups compared to the control
(Figure 4D). Immunoregulatory cytokine IL-10 was higher in Cd-treated groups compared
to the control (Figure 4E). There were no differences between the group that took a lower
dose of Cd and the group that was administrated EPS-AN8 and 5 ppm Cd. However,
parallel intake of EPS-AN8 with a higher dose of Cd showed a trend in decreasing IL-
10 production when compared to the 50 ppm Cd group, but those changes were not
statistically significant.
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production of (A) IL-1β, (B) TNF-α, (C) IFN-γ, (D) IL-17, (E) IL-10 Results are presented as mean ±
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2.6. EPS-AN8 Reverses Cd-Induced Changes in Gut Microbiota Composition

Alpha diversity as a parameter of biodiversity within the group was expressed via
Shannon’s index, Simpson’s index, the Chao1 index, and the number of observed species
(Figure S1). There were no changes between the control, Cd groups, and Cd groups
treated with EPS-AN8 that were noticed according to the Shannon’s and Simpson’s indices
(Figure S1A,B). More noticeable variations in microbial diversity and richness between
groups were detected according to the Chao1 index and observed species (Figure S1C,D);
however, the changes were not significant.

The beta diversity represents the composition of different microbial communities. PCoA,
which is used for its visualization, revealed different clusterings of groups (Figure 5A,B) that
were confirmed by Anosim (even though the difference was not statistically significant
between the Cd groups and the EPS-treated Cd groups) (Table 1) and Adonis, as shown in
Table 2.

In total, 18 OTUs had a relative abundance for genus and species higher than the
selected threshold (0.001) in all the groups and were used for further analysis. The
most changes in relative abundance were detected in phylum Firmicutes and phylum
Bacteroidetes (Figure 6). Lactobacillus was the most abundant genus in all groups, but
there was a significant decrease in its relative abundance in both pure Cd groups. In
contrast, a lower concentration of Cd significantly up-regulated the relative abundance
of five genera in the phylum Firmicutes (Ruminococcus, Dubosiella, Blautia, Roseburia,
and Eubacterium coprostanoligenes groups) and four genera in the phylum Bacteroidota
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(Prevotella, Alloprevotella, Prevotelaceae, and Bacteroides), whereas a higher concentration
significantly increased the relative abundance of two genera in the phylum Firmicutes
(Dubosiella and Blautia). It is important to emphasize that the above-mentioned changes
were not detected in Cd groups that were administrated EPS-AN8. In other words, the
relative abundance of those genera did not differ from the control group. Variation in
the relative abundance of species, which is reflected in a reduction in the abundance
compared to the control, was noted only for Lactobacillus murinus (new classification:
Ligilactobacillus murinus [30]).
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Figure 5. PCoA representation of microbial diversity comparison between control group and groups
treated with lower dose of Cd (A); PCoA representation of comparison of microbial content between
control group and groups treated with higher dose of Cd (B).

Table 1. Beta diversity of gut microbiota expressed through Anosim.

Anosim R Value p Value

Control: 5 ppm Cd 0.4625 0.0479

Control: EPS-AN8/5 ppm Cd 0.212 0.046

5 ppm Cd-: EPS-AN8/5 ppm Cd 0.3563 0.073

Control: 50 ppm Cd 0.5 0.0239

Control: EPS-AN8/50 ppm Cd 0.468 0.0085

50 ppm Cd: EPS-AN8/50 ppm Cd 0.075 0.285

Table 2. Beta diversity of gut microbiota expressed through Adonis.

Adonis R2 Value p Value

Control: 5 ppm Cd 0.3268 0.024

Control: EPS-AN8/5 ppm Cd 0.2426 0.035

5 ppm Cd-: EPS-AN8/5 ppm Cd 0.3088 0.052

Control: 5 ppm Cd 0.2909 0.032

Control: EPS-AN8/50 ppm Cd 0.3838 0.008

50 ppm Cd: EPS-AN8/50 ppm Cd 0.143 0.312
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The linear discriminant analysis effect size (LEfSe) method revealed which gen-
era and species were differentially represented among groups (Figures S2 and 7). This
method showed many different enriched genera between the control group and the EPS-
AN8/5 ppm Cd and 5 ppm Cd groups, with Akkermansia, Stenotrophomonas, Staphylococcus,
and UCG_002 being the most abundant in the EPS-treated 5 ppm Cd group, and with
Pseudomonas, Prevotela, Bacteroides, and the other differentially abundant genera in the
5 ppm Cd group having an LDA score above 2 (Figure S2A). Testing of the same groups in-
dicated twelve species to be more abundant in the control group (L. johnsonii and L. murinus
were specially enriched), five to be more abundant in the EPS-AN8/5 ppm Cd group
(Akkermansia muciniphila, Serratia marcescens, Staphylococcus aureus, Helicobacter cholecystus,
and Bacteroides uniformis), and thirteen to be more abundant in the 5 ppm Cd group (with
Pseudomonas veroni and Prevotella copri as the most abundant) (Figure 7A). Comparison of
the control, EPS-AN8/50 Cd ppm, and 50 ppm Cd groups demonstrated twelve genera to
be more abundant in the control (Streptococcus as the most present), five to be more abun-
dant in the EPS-AN8/50 ppm Cd group (Pseudomonas, Escherichia Shigella, Campylobacter,
Phascolarctobacterium, and Pseudarthrobacter), and sixteen to be more abundant in the 50 ppm
Cd group (Rikenellaceae RC9 gut group, Anerobiospirillum, Elusimicrobioum, and the others)
(Supplement Figure S2B). Figure 7B presents differentially abundant species between con-
trol, EPS-AN8/50 Cd ppm, and 50 ppm Cd. There are eleven species more abundant in
the control group (L. johnsonii and L. murinus having the highest LDA score), seven species
more abundant for the EPS-AN8/50 ppm Cd group (Pseudomonas veronii, Escherichia coli,
Helicobacter sp., Staphylococcus aureus, Helicobacter cholecystus, Campylobcter jejuni, and
Arthrobacter sp.), and thirteen species more abundant for the 50 ppm Cd group (Prevotela copri,
Bacteroides coprophilus, Bifidobacterium adolescentis, and the others).
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3. Discussion

The increased number of Cd sources and knowledge of its harmfulness are attracting
evermore attention [3]. Therefore, finding possible ways to limit, prevent, and remediate
Cd’s hazardous effects has been the subject of a plethora of scientific studies [31,32]. The
strategy of the application of microorganisms for the bio-removal of toxins and heavy met-
als has become favorable over the years. The reasons are due to the key characteristics of
microorganisms as a treatment that is environmentally friendly, reasonably simple, and eco-
nomically feasible [33]. Lactobacilli have stood out as one of the most promising beneficial
biological sorbents in processes of reducing the bio-availability of toxins and heavy metals.
The mixture of L. rhamnosus Rosel-11, L. acidophilus Rosel-52, and Bifidobacterium longum
Rosell-175 mitigated the genotoxicity in vitro and in vivo by increasing the Cd level in
feces and decreasing the Cd concentration in tissues and blood [34,35]. It was shown
that the probiotic L. plantarum CCFM610 alleviates acute and chronic Cd toxicity via Cd
sequestration, antioxidant effects, and protection of the intestinal barrier in mice [36–38].
The same probiotic strain promoted the growth and death arrest of Cd-exposed Nile tilapia
fish (Orechromis niloticius) by decreased Cd accumulation, alleviation of oxidative stress,
and normalizing of the hematobiochemical parameters [39]. Probiotics are defined as live
microorganisms that, when administered in adequate amounts, confer a health benefit on
the host (WHO-FAO, 2006). As such, they have been widely used to improve inherited
microbial composition and to facilitate a return to eubiotic status. Nevertheless, probi-
otics might impair the return of indigenous microbiomes and provoke inflammation in
compromised patients [25]. On the other hand, postbiotics, which are marked as bacterial-
free metabolites secreted by probiotic strains, are recognized as a better and safer option.
Therefore, recently, the substitution of probiotics with postbiotics has started to be a global
trend in scientific research [25]. Some lactobacilli are able to produce homo- and hetero-
polysaccharides with great structural diversity and divergent biological characteristics [40].
Based on their physio-chemical properties, some of them are highly potent in sequestering
metal ions [41]. In our previous paper [18], we showed that, among other EPS-producing
lactobacilli from our laboratory collection in aqueous solution, EPS-AN8 derived from
L. plantarum BGAN8, which was originated from soft cow-milk cheese, has a remarkable
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capacity to bind Cd2+ions (more than 70%), a capacity which was favored by its qualitative
composition. Additionally, in the same paper, we indicated that EPS-AN8 provides in vitro
protection against Cd-mediated disruption of the intestinal barrier, as well as inflamma-
tion and oxidative stress. Therefore, we concluded that EPS-AN8 is a good candidate for
further investigation.

To our knowledge, this is the first study with a unique approach that describes the
importance and role of isolated EPS molecules in the protection of Cd harmfulness in vivo.
Additionally, this study suggests that supplementing food with EPS might be an excellent
strategy to restrict Cd spreading in organisms in highly polluted areas. In parallel, EPS-
AN8 was administered to rats via rodent food. As mentioned above, Cd is accumulated
in organisms and is a long-term health threat [14]. In this study, during lower and higher
Cd exposure, EPS-AN8 was successful in significantly lowering Cd concentrations in the
kidneys, liver, and blood, thereby limiting the spread of this metal in the body. Interestingly,
in the duodenum, there was no significant change in the level of Cd deposition. The
obtained results may be a consequence of the experimental setup. Namely, animals were
given Cd-contaminated water and EPS-enriched food until the last day of the experiment.
Therefore, it is reasonable that Cd was detected by ICP-MS, even though it is sequestrated by
EPS-AN8 and forms a complex. It is known that Cd induces atony and decreases peristalsis,
which causes constipation and a delay in excretion [42]. However, some studies suggest
that EPS may improve the level of fecal moisture and wet weights of feces, thus preventing
constipation [43]. Consumption of EPS-AN8 led to significant increased excretion of Cd
through feces. This protective effect was also observed by probiotic strains [44], and this
study demonstrates a similar effect of orally administrated EPS-AN8.

In addition, microscopically demonstrated histopathological alterations of duodenal
mucosa in both Cd-treated groups indicate that Cd at applied doses and treatment durations
damaged the intestinal barrier. Moreover, observations under the microscope supported
the finding that EPS-AN8, when it was consumed together with Cd, protected from these
harmful effects.

Two of the most important mechanisms of Cd toxicity are oxidative stress and inflam-
mation [45]. These two processes are interconnected; one causes the manifestation of the
other, and vice versa. Some studies have shown that lactobacilli might decrease parameters
of oxidative stress such as MDA, CAT, SOD, and GSH in the liver and kidneys of mice
acutely and chronically exposed to Cd [36]. As it was mentioned, GIT is the first target of
orally ingested Cd; according to this, we have observed a range of oxidative stress and
inflammatory status in the first part of the small intestine, the duodenum. Oral intake
of EPS-AN8 significantly reversed the effects on Cd-mediated alterations of MDA, CAT
(except for higher dose), GST, and GSH. Interestingly, a lower concentration of Cd did not
significantly affect the GST and GSH. A low rate of Cd excretion causes terms of prolonged
inflammation in organisms [9]. After 30 days of exposure, up-regulations of IL-1β, TNF-α,
IFN-γ, and IL-10 were detected, whereas IL-17 was not affected. The administration of
rodent choke supplemented with EPS-AN8 inhibited the changes. The reason for this
amelioration effect of EPS-AN8 on Cd-mediated oxidative stress and inflammation might
be based on the vast capacity for Cd2+ ion sequestration and incapability of Cd2+ ions to
propagate a toxic effect, or it could be that EPS-AN8 directly affects the regulation of oxida-
tive stress and inflammation because there is some evidence indicating that EPS molecules
have a strong ability to reduce the inflammation. Such a case was with EPS derived from
L. paracasei IJH-SONE68, which was isolated from fig leaf. These EPS inhibited the catalytic
activity of hyaluronidase and the overexpression of ear IL-4 mRNA, which eventually led
to anti-allergy and anti-inflammatory effects in picryl chloride-induced contact dermati-
tis [46]. Moreover, the same EPS prevented and ameliorated the inflammatory response of
dextran-sulfate-sodium-induced ulcerative colitis in mice by decreasing mouse macrophage
inflammatory protein 2 mRNA and stimulating the production of immunoregulatory cy-
tokine IL-10 [47]. In addition, EPS which were isolated from L. plantarum YW11 reduced the
production of the proinflammatory cytokines (TNFα, IL-1β, IL-6, IFN-γ, IL-12 and IL-18)
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and up-regulated IL-10, and this resulted in an amelioration of inflammatory bowel disease
symptoms [48]. Our previous in vitro study [18] demonstrated that EPS-AN8 is capable of
reducing NFκB-mediated inflammation 24 h after Cd enters the cells, supporting the idea
that there may be more mechanisms by which EPS-AN8 protects against the detrimental
effects of Cd in addition to the sequestration of ions.

It was evidenced that Cd alters gut microbiota [49,50], but the affected taxa were
not consistent among studies. These discrepancies could be the result of differential gut
microbiota between experimental animals, diverse vendors, environments, and different
parts of gut microbiota used for the analysis. Furthermore, it is important to emphasize
that different forms of Cd (cadmium-chloride, cadmium-glutathione, cadmium-citrate and
cadmium-metallothionein), given by gavage, lead to distinct changes in the gut microbiota
of the mice [31]. The gut includes the stomach, duodenum, ilium, and colon. The environ-
ment of those parts, from stomach to colon, is in the ascending queue of pH and anaerobic.
In this study, we examined the microbiota found in the duodenum. Statistically insignificant
changes for the alpha diversity of the tested groups were in concordance with a previous
study by Richardson et al. (2018), in which the early stage response of rat gut microbiota to
Cd exposure was followed. The Anosim test showed that variations between groups were
higher than within groups, whereas Adonis indicated the percentage of different OTUs.
The phyla most affected by Cd were Firmicutes and Bacteroidetes. Both the doses of Cd led
to a reduction in the abundance of Lactobacillus, which confirmed the results from another
study [51], and, interestingly, EPS-AN8 treatment prevented that change in both groups,
which suggests its beneficial role in ameliorating Cd-induced perturbation of one part of the
gut microbiota. Furthermore, both doses of Cd up-regulated the relative abundance of the
genera Dubosiella and Blautia, which are Gram-positive anaerobic microbes. Although there
is evidence of the beneficial role of representative species of Dubosiella in decreasing in-
flammation and oxidative stress, Blautia is usually increased in glucose metabolic disorders
and metabolic syndromes in older adults and happens to be a marker of a prediabetic state
and type 2 diabetes illness (T2D) [52]. It should be noted that, nowadays, the attribution
of Cd, as an environmental pollutant, via its etiological role in the progression of T2D,
has more frequently been the subject of various studies [53,54], and this finding may have
an important role in describing its underlying putative mechanism. The administration
of EPS-AN8 with both doses of Cd completely disabled these shifts. Moreover, a lower
dose of Cd induced blooming of Ruminococcus and Roseburia; both genera are described as
putative useful microbes for alleviating diverse pathological conditions [55,56]. Regarding
the phylum Bacteroideta, the relative abundances of the genera Prevotella, Alloprevotella,
and Bacteroides were enhanced in the duodenums of the rats exposed to a low dose of Cd.
The tendency for the relative abundance of these genera to increase was also seen in the rats
exposed to a higher dose of Cd. Representatives of Prevotella are commonly described in the
literature as promotors of inflammation and inflammatory diseases such as ulcerative colitis
and rheumatoid arthritis [57,58], whereas representatives of Alloprevotela have been found
to be enriched in cancer tissue of oral squamous cell carcinoma [59] and up-regulated in
fecal samples of patients suffering from chronic kidney disease (CKD) [54]. This was espe-
cially interesting because of the positive correlation between kidney diseases and the renal
accumulation of Cd of people exposed chronically to this pollutant [60]. Bacteroides spp.
act as opportunistic pathogens that are able to translocate from the gut to extraintestinal
locations via extensive mucin degradation, which consequently leads to a compromised
intestinal barrier and tissue damage [61]. However, these perturbations in the genera
of phylum Bacteroides were reduced in the gut microbiota of animals whose food was
supplemented with EPS-AN8. The obtained results indicate that the oral administration
of EPS-AN8 shifted Cd-induced variation towards levels in the control group. Moreover,
these changes in the relative abundance of OTUs were supported by LEfSe analysis, which
revealed significant markers of diversity between the examined groups. Among others,
Prevotella copri, which is known for its ability to dominate the intestinal microbiota of mice
after colonization and increasing sensitivity for dextran sulfate sodium-induced colitis [62],
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was marked as a differential marker for a group of rats exposed to 5 ppm Cd. Furthermore,
Prevotella copri was also detected as one of the differential markers for the Cd 50 ppm group,
whereas Pseudomonas veronni appeared to be important in the same dose group but that
was treated with EPS-AN8, which was also a marker for the 5 ppm Cd group. Interestingly,
this was a non-pathogen species that could be a promising tool for sustainable wastewater
biotreatments (removal, recovery, and biosensing) of Cd and copper (Cu) [63]. Thus, it is
possible that this microenvironment with Cd that was presented in the lower range favors
blooming of P. veronni. For the group that exposed to 5 ppm Cd but was treated with EPS-
AN8, one marker was Akkermansia muciniphila. Intriguingly, A. muciniphila was identified
as one of the most promising candidates for a next-generation probiotic which improves
the gut barrier function and increases the production of mucins in the colon [64], but when
orally ingested by mice that were acutely and chronically exposed to Cd, it failed to fulfil
complete protection. The possible reasons are explained to be that it is highly sensitive
to heavy metals and strongly influenced by the gut micro-environment [65]. Therefore,
the presence of A. muciniphila is in concordance with our results of lower oxidative stress,
inflammation, and tissue damage in the EPS-AN8-treated group.

Considering all these results, we proposed two mechanisms by which EPS-AN8 acts
to combat orally ingested Cd (Figure 8). This paper evidenced changes after the parallel
oral consumption of cadmium and EPS-AN8. Hence, we concluded that the extraordi-
nary capacity of EPS-AN8 to bind with Cd2+ ions has an important role in protection.
Consequently, EPS-AN8 strongly limited the spread of Cd in organisms and reduced the
downstream effect on oxidative stress and inflammation. Thus, the first mechanism would
be completely based on sequestration of Cd2+ ions by EPS-AN8. The second proposed
mechanism assumed a direct effect of EPS-AN8′s role in recovery after Cd-induced damage
on oxidative stress, inflammation, and microbiota. This mechanism is unbiased to Cd
adsorption and may have a great impact on the protective role of EPS-AN8. However, to
confirm the second assumption, further investigations need to be conducted.
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4. Materials and Methods
4.1. Bacterial Strain, Media, and Growth Conditions

Lactiplantibacillus plantarum BGAN8 was grown at 30 ◦C in De Man Rogosa Sharpe
medium (MRS (Merck, GmbH, Darmstadt, Germany)). MRS plates were prepared by
adding 1.7% Agar (Torlak, Belgrade, Serbia).

4.2. Isolation and Purification of Exopolysaccharide

Exopolysaccharides produced by Lactiplantibacillus plantarum BGAN8 were extracted
following the protocol by [66], with slight modifications described by [22]. Initially, for
EPS isolation, 100 µL of overnight culture was spread on 500 MRS Agar plates. Isolation
and purification were followed with five days of dialysis in Milli-Q water. The molecular
mass cut-off of dialysis bags (Sigma-Aldrich, St. Louis, MO, USA) was 12–14 kDa. Finally,
extracted and purified EPS were lyophilized (Alpha 1-4 LSC plus freeze dryer, Martin
Christ, Germany).

4.3. Animals

All animal treatments and procedures were conducted in compliance with the Direc-
tive EU (86/609/EEC) on the care of animals used for experimental and other scientific
purposes. Experiments were approved by the Veterinary Directorate, Ministry of Agri-
culture, Forestry and Water Management (No. 323-07-11824/2020-05). Dark Agouti (DA)
10–12-week-old male rats were conventionally housed and bred at the Institute for Biologi-
cal Research “Sinisa Stankovic”, University of Belgrade, under controlled conditions (12 h
photoperiod, 21–24 ◦C temperature, and relative humidity of 60%).

4.4. Cadmium and EPS Treatment

Male DA rats were exposed to Cd through drinking water for a time period of 30 days
at a concentration of 5 ppm (5 mg/L), which is experienced by people suffering from ‘itai-
itai’ disease in Japan, whereas 50 ppm is proportionate to Cd found in people professionally
exposed to this metal or living in highly polluted areas [67,68]. Cadmium was used in
a form of cadmium chloride (CdCl2) and prepared in distilled water. Solutions of Cd
and water were freshly prepared and changed twice a week. EPS-AN8 was ingested
through rodent chow in a concentration 100 µg/mL, which corresponded to approximately
2 × 109 CFU/mL. Rats were randomly divided into five major groups (control group,
5 ppm Cd group, 50 ppm Cd group, 5 ppm Cd plus EPS-AN8 group, and 50 ppm Cd
plus EPS-AN8 group). Each group contained 4–5 animals. The control group received
distilled water and rodent chow. There was one rat per cage. After a period of 30 days,
animals were sacrificed by intraperitoneal injection of 15 mg/kg b.w. of Zoletil 100 (Virbac,
Carros, France).

4.5. Cadmium Determination

All chemicals were of analytical grade and were supplied by Merck (Darmstadt,
Germany). All glassware was soaked in 4 mol/L HNO3 for a minimum of 12 h and rinsed
with ultra-pure water. Ultra-pure water was prepared by passing doubly de-ionized water
from a Milli-Q system (Millipore Simplicity 185 System incorporating dual UV filters
(185 and 254 nm) to remove carbon contamination).

Samples of kidneys, liver, intestine, blood, and feces were prepared for cadmium
determination inside a clean laboratory without contamination. Microwave digestion was
performed. Samples were transferred into PTFE cuvettes, and 7 mL of 65% HNO3 (v/v)
and 1 mL 30% H2O2 (v/v) were added. Microwave digestion was performed in a Berghof
microwave oven (Speedwave, Berghof, Germany). The digestion system was equipped
with 12 PTFE vessels. Each sample was analyzed in duplicate, and each analysis consisted
of three replicates. Digestion of samples was performed under the following program:
heated for 10 min to 200 ◦C and held for 15 min at that temperature. After the cooling
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period, samples were quantitatively transferred into a volumetric flask (50 mL) and diluted
with ultra-pure water.

The measurements of Cd in all samples were carried out in an ICP-MS (inductively
coupled plasma mass spectrometry, iCAP Q, Thermo Scientific X series 2) that was equipped
with flat pole collision cell technology (CCT), a micro-concentric nebulizer, platinum cones,
and a peristaltic sample delivery pump and was running on quantitative analysis mode.
The entire system was controlled with Qtegra Instrument Control Software. Instrument
operating conditions are given in Table S1.

The stock solution containing 10 mg/L of Cd was used to prepare intermediate
standard solutions for ICP-MS measurements. The internal standards used were 45Sc,
115In, and 159Tb. In order to check the accuracy and precision of instruments, the certified
reference material DORM-2 (National Research Council of Canada, NRC-CNRC) was
treated and analyzed in the same way as the samples. The results of the analyses were in
accordance with the certified levels within a 95% confidence level.

4.6. Histology

The duodenums of rats were harvested and thoroughly rinsed in ice-cold physiological
saline. A small piece of duodenum was fixed in 4% formaldehyde solution, pH 6.9, for
48 h and routinely processed for light microscopy (dehydrated in a rising series of ethanol
solutions, cleared in xylene, and embedded in paraffin). Five-micrometer-thick tissue
sections were mounted onto glass slides and stained with hematoxylin and eosin (H&E).
Slides were evaluated for histomorphology changes and photographed using a Leica DMLB
light microscope (Leica Microsystems, Wetzlar, Germany) that was equipped with a Leica
DFC295 camera and LAS Core software.

4.7. Preparation of Duodenal Homogenates

Intestinal samples were homogenized by using an IKA T18 Basic Homogenizer (IKA
Works Inc., Wilmington NC, USA) in ten volumes of sucrose buffer (10 mM Tris–HCl pH 7.6,
1 mM EDTA, 250 mM sucrose) containing 1 mM phenylmethylsulphonyl fluoride (PMSF)
on ice. The following step was sonification (3× 15 s on ice, at 30% of the maximum intensity
amplitude) by a laboratory sonicator (Bandelin electronic, UW 2070, Berlin, Germany).
Homogenates were then centrifugated (1000× g for 20 min, at 4 ◦C), and the collected
supernatants were used for oxidative stress and cytokine measurements.

4.8. Lipid Peroxidation

The protocol described by [69] was used for the evaluation of lipid peroxidation.
A mixture of intestinal homogenates and thiobarbituric reagent (0.375 % thiobarbituric
acid, 15 % trichloroacetic acid, and Tris-HCl (pH 7.4)) was heated for 60 min 95 ◦C and
centrifugated. The absorbance of the gained supernatant was measured at 535 nm using a
spectrophotometer (Shimadtzu Corporation, Lakewood, CA, USA). The malondialdehyde
(MDA) content was estimated by reference to a standard curve generated by known
amounts of MDA and expressed as nmol of MDA/mg of protein.

Lowry assay was used for the determination of the protein concentration [70]. Briefly,
intestinal homogenates were mixed with reagent C (2% Na2CO3 (Carlo Erba, Milano, Italy)
in 0.1 M NaOH (LachNer, Neratovice, Czech Republic), 1% CuSO4×5H2O (Zorka, Šabac,
Serbia), 2% KNaC4H4O6 × 4H2O (Alkaloid, Skopje, North Macedonia)), and 1× Follin Cio-
calteu’s phenol reagent. As a reference for the calculation of the protein concentration, the
bovine serum albumin concentration was used (BSA, AppliChem, Darmstadt, Germany).
Absorbance was measured at 670 nm using a spectrophotometer.

4.9. Determination of Glutathione-S-Transferase (GST) and Reduced Glutathione (GSH)

The activity of glutathione transferase (GST) was measured as the rate of the produced
dinitrochlorobenzene (DNCB)–glutathione (GSH) complex catalyzed by this enzyme [71].
The GST activity directly corelates with the increase in the sample absorbance. The ab-
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sorbance was monitored spectrophotometrically at a wavelength of 340 nm every 30 s for
180 s at 25 ◦C, and activity was expressed as units per milligram of protein (U/mg protein).

The glutathione (GSH) content was determined following the protocol described
by [72]. Briefly, the supernatant fraction of intestinal homogenates was deproteinized (in
10% sulfosalicylic acid). Ellman’s reagent (5,5-dithio-bis-(2-nitrobenzoic acid)) in Tris–Cl
(pH 8.9) and reduced glutathione were used as standard. Absorbance was measured at
412 nm, and data are expressed as µmol/mg.

4.10. Measurement of Catalase (CAT) Activity

CAT activity was estimated as the amount of H2O2 decomposition [73]. Intestinal
homogenates were mixed with Tris-EDTA buffer (pH 8.8) and H2O2, and the absorbance
change was measured spectrophotometrically at 240 nm, using a Shimadzu UV-1800
spectrophotometer, for 3 min (every 30 s) at 25 ◦C.

4.11. Cytokine Determination

Commercially available enzyme linked immunosorbent assays (ELISA) were used to
determine cytokine concentrations in intestinal homogenates. IL-10, TNF-α, IL-1β (R&D
Systems, Minneapolis, MN, USA), IL-17, and IFN-γ (eBioscience Inc., San Diego, CA, USA)
were measured following the manufacturer’s instructions. The standard curve, which was
constructed from a known amount of recombinant cytokines provided by ELISA sets, was
used to calculate cytokine titer.

4.12. Duodenum DNA Extraction

Metagenomic DNA was extracted from the lumen of the duodenum using the commer-
cially available kit ZR Tissue DNA MiniPrep™ Kit (Zymo Research Corp., Irvine, CA USA).
The concentration of isolated DNA was measured on a BioSpec-nano spectrophotometer
(Shimadzu, Columbia, MD, USA) and kept at −20 ◦C. All samples had the necessary
concentration (≥12 ng/µL) and were sent to the Novogene Company (Cambridge, UK) in
a final volume of 30 µL. The library was constructed, and the V3-V4 hypervariable region
of 16S rRNA amplicon was sequenced using the Illumina NovaSeq paired-end platform.
Quality control was performed at each step of the procedure. Each sample had a flattened
refraction curve, which indicates a sufficing depth during sequencing.

4.13. Data Display and Statistical Analysis

FLASH (V1.2.7 http://ccb.jhu.edu/software/FLASH/, accessed on 3 June 2022) was
used to merge paired-end reads. Quality filtering on the raw tags was performed under
specific filtering conditions according to the Qiime (V1.7.0 http://qiime.org/scripts/split_
libraries_fastq.html, accessed on 3 June 2022) quality-controlled process in order to obtain
the high-quality clean tags. Species annotation of each representative sequence at each tax-
onomic rank was performed using Qiime (Version 1.7.0 http://qiime.org/scripts/assign_
taxonomy.html, accessed on 3 June 2022) with the Mothur method against the SSUrRNA
database of the SILVA Database. Normalized OTU data were used to perform Alpha and
Beta diversity analysis. Alpha diversity was expressed through 4 indices, including the
Shannon, Simpson, Observed-species, and Chao1 indices. Beta diversity was visualized
using principal coordinates analysis (PCoA) that was calculated in QIIME (Version 1.7.0),
displayed with R software (Version 1.4.1717), and expressed via Anosim,Adonis, and LefSe.

One-way analysis of variance (ANOVA) followed by Tukey’s tests was used for multi-
ple comparison. Statistical analysis and the preparation of graphs were performed with
GraphPad Prism 8 software. Different letters indicate significant differences between treat-
ments (p < 0.05), except for the presentation of relative taxa abundance. Data are presented
as mean values± the standard deviations from different experiments, except for the relative
abundances of OTUs, which are expressed as medians ± the standard deviations.

http://ccb.jhu.edu/software/FLASH/
http://qiime.org/scripts/split_libraries_fastq.html
http://qiime.org/scripts/split_libraries_fastq.html
http://qiime.org/scripts/assign_taxonomy.html
http://qiime.org/scripts/assign_taxonomy.html
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5. Conclusions

The findings from this study indicate the important role of bacterium-derived molecules,
EPS, in the protection of Cd harmfulness in vivo. Orally ingested EPS-AN8 showed tremen-
dous potential in alleviating the toxic effect of prolonged Cd exposure and might be a
promising putative solution as a food supplement for populations that are in contaminated
areas and are exposed to this dangerous metal. It still remains unclear if EPS-AN8 pro-
tection is based only on the vast capacity for Cd-binding ions and whether the improved
conditions after using EPS-AN8 are merely a result of that or whether EPS-AN8 has the
capability to act directly on Cd-induced damages. Therefore, future research should be
continued in that direction.
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Lukić, J. Exopolysaccharide Produced by Probiotic Strain Lactobacillus paraplantarum BGCG11 Reduces Inflammatory Hyperalgesia
in Rats. Front. Pharmacol. 2018, 9, 1. [CrossRef] [PubMed]

23. Tsilingiri, K.; Barbosa, T.; Penna, G.; Caprioli, F.; Sonzogni, A.M.; Viale, G.; Rescigno, M. Probiotic and postbiotic activity in health
and disease: Comparison on a novel polarised ex-vivo organ culture model. Gut 2012, 61, 1007–1015. [CrossRef] [PubMed]

24. Tsilingiri, K.; Rescigno, M. Postbiotics: What else? Benef. Microbes 2013, 4, 101–107. [CrossRef] [PubMed]
25. Mayorgas, A.; Dotti, I.; Salas, A. Microbial Metabolites, Postbiotics, and Intestinal Epithelial Function. Mol. Nutr. Food Res. 2020,

65, e2000188. [CrossRef]
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