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Streptomyces species produce impor-
tant drugs such as antibiotics, immuno-
suppressants, and antitumor compounds. 
The isolation of genomic DNA is imper-
ative for the understanding of the bio-
synthesis of these compounds and has 
led to the rational design of new analogs 
(1−5). Streptomyces are Gram-positive 
bacteria, making DNA isolation diffi-
cult due to their resistance to cell lysis 
(6,7). Most methods use lysozyme and 
sodium docecyl sulfate (SDS) for cell 
disruption. To further increase lysis, gly-
cine is often incorporated into media to 
minimize peptidoglycan cross-linking; 
muramidases such as mutanolysin or 
grinding of mycelia are also commonly 
used (1,8−10). Compared with DNA 
isolation methods for Escherichia coli, 
most methods are time-consuming or 
low yielding, or give low-quality DNA 
(1). This report details an improved 
method for DNA isolation from Strepto-
myces species using achromopeptidase, 
lysozyme, and SDS for cell lysis that 
results in higher yield compared with 
current standard methods. 

The addition of achromopeptidase 
was prompted by its use in protoplast 
generation in Streptomyces, suggesting 
that it interacts with the cell wall of the 
bacterium (11). It has also been used in 
the lysis of other Gram-positive organ-
isms (12,13). Presumably the mode of 
action of the protease in Streptomyces 
is to cause disruption of the peptidogly-
can layer through cleavage of N-ace-
tylmuramoyl-L-alanine amide bonds 
together with D-Ala-Gly and Gly-Gly 
bonds as reported for Staphylococcus 
aureus (14). When incubated simul-
taneously with lysozyme disrupting 
glycosidic linkages in the polymer, the 
resulting bacterial structures are more 
susceptible to SDS lysis. The increase 
in cell lysis would lead to an increase in 
DNA concentration for purification in 
the later stages of the protocol. 

Streptomyces nodosus (ATCC 
14899; American Type Culture Collec-
tion, Manassas, VA, USA), S. noursei 
(ATCC 11455), S. avermitilis (NRRL 
3165; Agricultural Research Service 
Culture Collection, Peoria, IL, USA) 
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S. coelicolor (NRRL B-16638), and 
Streptomyces sp., an uncharacterized 
soil isolate, were cultured in 30 mL 
of YMG medium (yeast extract 4 g/L, 
malt extract 10 g/L, glucose 4 g/L) or 
tryptone soya broth (Difco, Detroit, MI, 
USA) supplemented with 0.5% (w/v) 
glycine for 46 h with shaking at 28°C. 
Cells were harvested by centrifuga-
tion (5 min, 4000× g), washed [2× 10 
mL of 10% (w/v) sucrose] and either 
freeze-dried for dry weight measure-
ments or resuspended in 10 mL of lysis 
solution (0.3 M sucrose, 25 mM EDTA, 
25 mM Tris-HCl, pH 7.5, containing 2 
U of RNase) in a 50 mL Falcon tube 
(Becton Dickinson, Franklin Lakes, NJ, 
USA).

Lysozyme (10 mg) and achromo-
peptidase (5 mg; Sigma, St. Louis, 
MO, USA) were added as crystalline 
solids to the bacterial suspension and 
incubated at 37°C for 20 min. Ten per-
cent (w/v) SDS (1 mL) and proteinase 
K (5 mg; Sigma) were then added with 
further incubation at 55°C for 1.5 h. 
After addition of 5 M NaCl (3.6 mL) 
and chloroform (15 mL), the sample 
was rotated end-over-end for 20 min 
at 6 rpm. After centrifugation (20 min, 

5000× g), the aqueous 
phase was transferred 
with wide bore pipet 
into a clean tube. 
DNA was precipi-
tated by addition of 1 
volume of isopropa-
nol and spooled using 
a sealed Pasteur pipet 
before being trans-
ferred into a micro-

centrifuge tube and rinsed with 1 mL 
70% (v/v) ethanol. The air-dried DNA 
was dissolved in a minimal volume of 
prewarmed buffer containing 10 mM 
Tris-HCl, pH 7.4, and 10 mM EDTA 
at 60°C. Quantity and quality of DNA 
were determined by spectrophotometry 
and agarose gel electrophoresis. 

Using both characterized and un-
characterized Streptomyces isolates, 
the method reported here yielded 3.4 
± 0.5 mg genomic DNA per gram wet 
weight (wwt) of mycelia [10.6 ± 1.6 
mg/30 mL of stationary phase culture 
or 53 ± 8 mg/g dry weight (dwt) of my-
celia]. This is significantly higher than 
that reported for most genomic DNA 
isolation procedures that typically 
yield 0.5−1 mg DNA per gram of wet 
mycelia (1). 

To directly compare the yield of our 
method with other published protocols, 
we performed side-by-side DNA ex-
tractions from S. nodosus mycelia. As 
shown in Table 1, our method produced 
DNA of higher yield than two other 
commonly used procedures reported 
by Hunter et al. (2) and Kutchma et al. 
(7). Our yield for DNA obtained from 
mycelia using the method of Kutchma 

et al. corresponded well 
to the values originally 
reported (7). Although 
Kutchma et al. described 
yields of up to 5 mg/g 
wwt from spore samples, 
we obtained a yield of up 
to 2.4 mg/g wwt using 
their methodan amount 
that is still less than that 
obtained using our method 
on mycelial samples.

In addition to be-
ing high yielding, our 
method allows efficient 
preparation of high-qual-
ity DNA. The protocol 
of Kutchma et al. takes a 

similar amount of time as our proto-
col (approximately 3 h), but produces 
DNA of inferior quality as assessed by 
A260/A280 ratio (Table 1). The method 
of Hunter et al. produces DNA of more 
comparable purity to our method but 
is much more time-consuming (taking 
approximately 1−2 days).

The size of the DNA fragments 
isolated using this new method was 
assessed by agarose electrophoresis 
to be over 30 kb, with very little frag-
mentation even after storage at -20°C 
for 3 months (Figure 1). This should 
allow the DNA to be used for library 
construction where cloning of large 
gene fragments is required. The large 
fragment size obtained can probably be 
attributed to the rapidity of the method, 
which would be expected to limit the 
exposure of DNA to the many endonu-
cleases known to exist in Streptomyces 
species and shearing forces associated 
with multiple handling steps (15−17).

We have also successfully tested the 
DNA in PCR amplifications. We have 
amplified 16S rRNA fragments for 
taxonomic studies and have also gener-
ated polyketide gene fragments (data 
not shown). Furthermore, other studies 
have shown that the DNA is amenable 
to digestion using normal concentra-
tions of restriction enzymes and incu-
bation times (data not shown).

In summary, we have described a 
new method for isolating high-quality 
DNA from Streptomyces species. The 
procedure can be completed in 3 h 
using standard laboratory equipment. 
Yields are higher than those obtained 
by other commonly used protocols, and 
the DNA is of high molecular weight, 
which is important for genetic studies 
into the biochemistry of bioactive mol-
ecule synthesis.
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Figure 1. Total DNA isolated from Streptomyces species and 
separated on a 0.4% Tris-acetate-EDTA agarose gel. Lane 1, 5 
kb marker; arrow represents 30 kb. Lanes 2−7 are genomic DNA 
from S. nodosus, S. noursei, S. avermitilis, S. lividans, S. coeli-
color, and Streptomyces sp., respectively. 

Table 1. Comparison of Yield and Purity of DNA Obtained from 
Streptomyces nodosus

Method
(Reference)

Yield of DNA
(mg/g wwt)

DNA Purity 
(A260/A280)

This study 4.3 ± 0.1 (n = 4) 1.90 ± 0.15
Hunter (2) 1.0 ± 0.1 (n = 2) 1.75 ± 0.07
Kutchma et al. (7) 0.9 ± 0.3 (n = 3) 1.61 ± 0.43

wwt, wet weight.
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A variety of techniques have been 
developed for cell transfection includ-
ing chemical [e.g., calcium phosphate 
(1) and lipid-based methods (2)], 
physical [e.g., electroporation (3)], and 
viral [e.g., retrovirus (4)] approaches. 
Nonviral techniques tend to be rela-
tively safe and simple but also tend to 
be relatively inefficient compared with 
viral techniques. Lipid-based reagents, 
including liposomal and nonliposomal 
lipids, have become increasingly popu-
lar for in vitro and in vivo gene transfer 
(5). Despite the success of lipid-based 
methods, existing approaches may 
not be sufficient when an experiment 
requires transfection of the majority 
of cells in a population. We have de-
veloped an improved method using a 
commercial nonliposomal lipid reagent 
(Effectene; Qiagen, Valencia, CA, 
USA) to transfect cultured adherent 
cells that results in improved transfec-
tion efficiencies. We transfected C2C12 
skeletal myoblasts and NIH-3T3 fibro-
blasts immediately after trypsinization, 
while the cells were in suspension; the 

standard approach is to transfect adher-
ent cells several hours after they have 
attached to the culture dish. The trans-
fection efficiency of the new method 
(70%−80% of cells transfected) may 
obviate the need for time-consuming 
stable transfections in many situations.

For the standard transfection proce-
dure, cells were transfected following 
attachment to plastic culture dishes ac-
cording to the manufacturer’s protocol. 
C2C12 myoblasts and NIH-3T3 fibro-
blasts were obtained from American 
Type Culture Collection (Manassas, 
VA, USA).  Cells were seeded at 2 × 
105 cells per well in 6-well plates in 
2 mL of growth medium composed of 
Dulbecco’s modified Eagle’s medium 
(DMEM; Sigma, St. Louis, MO, USA) 
supplemented with 10% fetal bovine 
serum and 1% penicillin/streptomycin 
(GIBCO/Invitrogen, Grand Island, NY, 
USA). Cells were incubated overnight 
at 37°C and 5% CO2.  The following 
morning, lipid-DNA complexes were 
prepared according to manufacturer’s 
instructions using a 1:8 DNA-to-En-
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Figure 1. C2C12 myoblasts transfected with labeled plasmid DNA. C2C12 myoblasts transfected with 
rhodamine-labeled plasmid DNA showed greater DNA uptake when using the new transfection procedure 
(A) compared to the standard procedure (B).  For both procedures, 2 × 105 cells were transfected with 1 µg 
DNA, and cells were viewed using confocal microscopy 24 h after transfection.


