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Bacillus licheniformis 9945a a-amylase is known as a potent enzyme for raw starch hydrolysis. In this
paper, a mixed mode Nuvia cPrimeTM resin is examined with the aim to improve the downstream
processing of raw starch digesting amylases and exploit the hydrophobic patches on their surface.
This resin combines hydrophobic interactions with cation exchange groups and as such the

presence of salt facilitates hydrophobic interactions while the ion-exchange groups enable proper
selectivity. o.-Amylase was produced using an optimized fed-batch approach in a defined media and
significant overexpression of 1.2g L~* was achieved. This single step procedure enables simultaneous
concentration, pigment removal as well as purification of amylase with yields of 96% directly from
the fermentation broth.

In the past decades upstream processing has enabled remarkably high yields of industrially relevant pro-
teins. This development imposed new challenges for the protein purification field and traditional purifi-
cation schemes had to be abandoned. New problems arose, such as a higher viscosity of protein solutions
which prevents direct loading on chromatography columns. Alternative solutions have found their way
to industrial applications, such as PEG precipitation of monoclonal antibodies?. Thermostability of pro-
teins that originate from thermophilic and extremophilic organisms can be exploited for heat treatment
purification as host proteins are mostly denatured by this procedure®. Furthermore, secreted expression
of recombinant proteins is favourable because the extract is free of a large variety of contaminant proteins
normally present in the cell. But a drawback of this procedure is handling large volumes of liquid in
terms of concentrating and desalting in order to prepare the extract for ion-exchange (IEX) chromatogra-
phy. In these cases ultrafiltration is applied to concentrate the extract and a buffer exchange performed to
obtain a sufficiently low ionic strength and an appropriate pH for subsequent purification steps. Nuvia™
cPrime™ is a hydrophobic cation exchange resin that contains a phenolic ring which mediates hydro-
phobic interactions and a carboxylic group that serves as cation-exchanger*®. This design is promising
for the initial capture steps®’. Comparable resins are readily available*.

In spite of the extensive studies concerning the structure and thermal properties of B. licheniformis
amylase and the numerous reports in the literature referring to the molecular mechanism of its irrevers-
ible thermoinactivation, little attention has been paid to its enzymological characterisation®. Detailed
knowledge about the subsite architecture of B. licheniformis amylase is scarce®®. Reports on the kinetics
and mode of action of this industrially important enzyme cannot be found in the literature, especially
when raw starch is used as a substrate. Enzyme preparations of high purity are required for mechanistic
studies and improving downstream processing (DSP) is very beneficial.
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Figure 1. Model structure of B. licheniformis 9945a amylase. Exposed tyrosine and tryptophan residues
are shown in yellow.

Batch Fed-batch
25 —
L 4500 o
:T -
2014 E
ey {4003 ~
o)
15 2> Fe)
@ Induced £4402
3 ® &)
310} o] O
o {200 & It
A >420 T
TSt g
4100 |
ol i
i d0 10
0 10 20 30 40 50 60 70

Time (h)

Figure 2. Fed-batch culture course of E. coli C43/pDA-amy., -O- DCW, -[J- enzyme activity, -A-
glucose. Each data point represents the mean of three independent assays (the standard errors were less
than 5% of the means). The arrow indicates the point of induction.

A peculiarity of raw starch digesting enzymes is their adsorption on raw starch granules via a car-
bohydrate binding domain or by surface binding sites'®. In a majority of cases, surface binding sites
consist of exposed tyrosine and tryptophan residues on the surface of the enzyme (Fig. 1). Hydrophobic
interaction chromatography is normally destructive towards the target protein and results in lower yields.
However, in the case of raw starch digesting amylase (RSDA), hydrophobic interactions are a property of
substrate binding and hence, high recovery is expected from a mixed mode resin. Herein, the complete
workflow of overproduction of RSDA in a laboratory fermenter and proposed DSP is described.

Results and Discussion

Production of recombinant RSDA in fed-batch cultures. A constant glucose supply, while pro-
viding enough oxygenation at an exponential stage of growth, enables reaching high cell densities. This
approach offers a tool for increasing the yield of recombinant enzyme production. A two-stage feed
strategy was applied to achieve high-cell-density in the cultivation of E. coli C43 (DE3) and production
of recombinant a-amylase. E.coli C43(DE3) cells readily express genes cloned into any T7 vector and is
a BL21(DE3) derivative effective in expressing toxic and membrane proteins. During the pre-induction
phase, the glucose feed rate was increased exponentially according to the exponential feed method!!, and
the cell growth was controlled at a specific growth rate of 0.20h~!. During a post-induction phase, a low
constant feed rate was applied because applying the same exponential feed strategy during the post-in-
duction phase might cause the accumulation of nutrients in the medium. This is usually a consequence
of changes in the host cell physiology and metabolism after induction. When the dry cell weight (DCW)
reached a value of 15g L7}, the post-induction phase began and the glucose feed rate was kept constant
at 15mL h™'. When the DCW reached a value of 25g L™}, the glucose feed rate was reduced to 5mL
h™!. The DCW of E. coli cells increased from 0.11 to 52.3g L' (Fig. 2). In order to lower the extent of
the metabolic burden, the optimal point for amylase induction was investigated in the previous work
and was shown to be suitable at an intermediate cell density. The induction temperature is an important
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parameter for recombinant protein production in E. coli**". In general, the growth of recombinant E.
coli cells at low temperatures increases the solubility of the intracellular recombinant proteins by pre-
venting the formation of inclusion bodies. Induction at 25°C attained the highest total amylase yield in
our previous study'. This suggests that low culture temperature facilitates conformational quality and
functionality of the protein and thereby improves the productivity of amylase.

Through this cultivation approach, the total amylase activity reached 500 U mL ™!, which was a 2-fold
higher than in fed-batch culturing of E. coli BL21 (DE3). The content of RSDA at the end was 1.2g L.

Purification of amylase on mixed mode resin. The reusability of ion-exchangers is often ham-
pered by the efficiency of their sanitization (cleaning in place)'>'S. Anion exchangers are more prone
to strongly binding pigments and other difficult to remove colouring substances!”!%. Cation exchangers
are easier to maintain in this regard and the investigated mixed mode resin is similar in this manner.
All pigments present in the fermentation broth come off the column in the flow through fraction and
during the washing step with the starting buffer. This is important because broth pigments stuck to
both ultrafiltration membranes in the traditional method of concentrating as well as Sepharose-based
IEX resins!®!.

Binding of the desired enzyme to the resin is not as easy to predict compared to traditional IEX
and several pilot experiments are necessary. Surface response methodology was used to optimize the
binding and eluting conditions of RSDA (Supplementary Fig. S1). In the chosen purification strategy,
flow through fractions tested for amylase activity showed a total of 239IU which corresponds to 2.6%
of loaded enzyme activity units and indicates a high dynamic binding capacity of Nuvia cPrime resin
of ~60mg mL™". The raw starch digesting ability of some amylases has been ascribed to the binding of
starch granules via hydrophobic residues on the surface of amylases'®. It is theorized that these hydro-
phobic patches are interacting with the phenolic ring of the functional group of the resin. Elution of
amylase with an increased pH and salt concentration showed fractions with a high purity on a SDS PAGE
gel (Fig. 3). The eluted enzyme showed an activity of 88001U, which represents ~96% yield. Such a high
recovery of enzyme is usually only expected from gel permeation or affinity chromatography, but not
from other types of chromatographic separations.

The method described is not meant to be replacement for tag technology purification of recombinant
proteins, although in some cases it has its advantages. There are many cases where the N or C terminus
of a protein is not exposed to solvent and thus the addition of tags is unfeasible. Affinity resins for tagged
proteins generally have a low binding capacity (with exception of IMAC resins such as Ni-Sepharose)
and are expensive. Mixed-mode resins have a high binding capacity and a comparable price to common
ion-exchange resins. We believe that this methodology should be looked at as an important alternative
to traditional purification schemes and not just as a replacement for well-known traditional methods.
For instance, an interesting use may be found in the purification of recombinant proteins without tags
often required for crystallography studies.

Conclusion

Mixed mode resins are mainly intended for scale-up use and this example may highlight the advantages
offered in its use for the purification of raw starch digesting amylases, compared to the classical approach
of IEX chromatography followed by polishing step with gel permeation separation. The very high yields
and simultaneous concentration and purification may be exploited in the opposite direction as well - the
scaling down of the often required purification for testing different mutant variants of enzymes.

Methods

Chemicals. All reagents and solvents were purchased from Merck (Darmstadt, Germany) and Sigma-
Aldrich (St. Louis, MO, USA) unless otherwise stated. Nuvia cPrime™ resin was purchased from Bio
Rad (Hercules, CA, USA).

Bacterial strains, plasmids and media. The E. coli C43 (DE3) strain harbouring pDA-amy plas-
mid" was used in this work. Frozen stock aliquots containing glycerol prepared from exponential phase
cultures grown in Luria-Bertani media (LB) were stored at —80°C. LB medium, with a composition of
10g L™! tryptone, 5g L™ yeast extract and 10g L~! NaCl, (containing 100 pg mL ! ampicillin) was used
for the preinoculum preparation. The compositions of the defined mineral medium, utilising glucose as
the sole carbon source, which was used for inoculation and for the bioreactor experiments, as well as
the composition of the feed medium for high-cell-density fermentations and the trace elements solution
can be found elsewhere®.

Cultivation conditions and analytical procedures. Preinoculum cultures were grown overnight
in a 15mL LB media at 37°C in a rotary shaker at 250 rpm. To prepare inoculum, 5mL of preinocu-
lum cultures were transferred aseptically to a 100mL of defined medium which was incubated at 37°C
for 5h at 250 rpm. For the bioreactor experiments, 100 mL of inoculum culture was transferred to the
bioreactor containing 900 mL of the defined medium. All growth experiments were carried out using a
Biostat B bioreactor (Sartorius) equipped with a 2L fermentation vessel. The end of the batch phase was
identified by a reduction in the oxygen consumption rate and an increase in pH. A simple mathematical
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Figure 3. SDS PAGE analysis. Lane M: molecular markers; lane 1: cell free extract (fermentation broth);
lane 2: purified amylase.

model based on mass balances and substrate consumption kinetics was used in an open-loop mode
to control the specific growth rate at a constant value by an exponential feed medium addition'!. The
exponential feed strategy was continued in order to maintain an almost constant concentration inside
the bioreactor and the same specific growth rate. When the DCW reached certain values (15g L~! and
25g L), 0.2mM IPTG was added as pulse. The glucose feed rate was kept constant at 15mL h™! after
the first pulse, whereas the glucose feed rate was adjusted to 5mL h™! after the second pulse. The pH
was maintained at 7.00 & 0.05 by adding 15% NH,OH solution to the reactor. The temperature was kept
at 37°C and reduced to 25°C after the induction. The pO, value was maintained at 50% of air saturation
by adapting the stirrer speed between 450 and 900 rpm and supplying air (enriched with pure oxygen
when necessary) at a space velocity of 2 vvm. The fermentation broth was centrifuged at 10,000 rpm for
20min at 4°C using a SL 40R centrifuge (Thermo Scientific) and the cell-free supernatants were used as
a crude enzyme preparation.

Bacterial growth was followed by optical density measurements at 600nm (OD600). The dry cell
weight (DCW) was measured by centrifugation of aliquots of the broth. The pellets were washed twice
with deionised water and dried at 110°C until constant weight.

To quantify the glucose and the recombinant amylase activity during cultures, broth samples were
withdrawn, subsequently centrifuged and the supernatant was used. Glucose was analyzed by DNS
reagent?.,

a-Amylase activity assay and determination of protein concentration. The a-Amylase activ-
ity was determined by measuring the formation of reducing sugars released during starch hydrolysis
in 50mM phosphate buffer pH 6.5 and at 75°C, as described previously?>. The amount of liberated
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reducing sugar was determined by the dinitrosalicylic (DNS) acid method?'. One unit of amylase activity
was defined as the amount of enzyme that released 1pmol of reducing end groups per minute at 75°C.
D-Glucose was used to construct a standard curve.

The protein concentration was determined by the Bradford method* using bovine serum albumin as
the protein standard. The abundance of RSDA amongst the rest of extracellular proteins was estimated
by analysis of SDS-PAGE gels using Image] software (www.rsbweb.nih.gov/ij).

Purification. The pH of the crude enzyme preparation was adjusted to pH 5.3 and conductivity
measurement showed a value of x ~18.3mS cm™', which corresponds well to conductivity of 50 mM
Na-acetate buffer pH 5.3 with 150 mM NaCl. This buffer was used to equilibrate 1 mL column of Nuvia
cPrime. 20mL of extract containing 9200 IU of amylase (66 mg) was loaded on the column. Flow through
fractions were collected and tested for activity. The column was washed with 20ml of starting buffer.
Amylase was eluted with 30mM trisHCI ph 8.0 with 0.5M NaCl.

Homology modelling. A homology model was constructed using the SWISS MODEL tool available
at the ExPASy server (http://swissmodel.expasy.org/)*%.
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