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Strong C-H/O interactions between polycyclic aromatic hydrocarbons and 
water: influence of aromatic system size 

Dušan Ž. Veljković *[a] 

Abstract: Energies of C-H/O interactions between water molecule and polycyclic aromatic 

hydrocarbons with a different number of aromatic rings were calculated using ab initio 

calculations at MP2/cc-PVTZ level. Results show that an additional aromatic ring in structure 

of polycyclic aromatic hydrocarbons significantly strengthens C-H/O interactions. Calculated 

interaction energies in optimized structures of the most stable tetracene/water complex is     

-2.27 kcal/mol, anthracene/water is -2.13 kcal/mol and naphthalene/water is -1.97 

kcal/mol. These interactions are stronger than C-H/O contacts in benzene/water complex    

(-1.44 kcal/mol) while C-H/O contacts in tetracene/water complex are even stronger than C-

H/O contacts in pyridine/water complexes (-2.21 kcal/mol). Electrostatic potential maps for 

different polycyclic aromatic hydrocarbons were calculated and used to explain trends in the 

energies of interactions. 

Keywords: polycyclic aromatic hydrocarbons; C-H/O interactions; hydrogen bond; ab initio 

calculations  

Introduction 

 

Hydrogen bonds are doubtless the most notable and best understood noncovalent 

interactions in nature [1]. Early models of hydrogen bonding did not recognize the carbon 

atom as a standard hydrogen bond donor. This was mostly due to relatively low 

electronegativity of carbon in comparison with the common hydrogen donor atoms like 

oxygen and nitrogen. However, this concept significantly evolved over recent decades. 

Many studies have documented that carbon atoms can act as hydrogen donors in weak 

hydrogen bonds know as C-H/O interactions [1, 2]. In addition, it was shown that if the 

hydrogen atom is attached to a polarized carbon atom, it can form hydrogen bonds as 

strong as those formed by regular hydrogen-donating atoms [3, 4]. Today it is generally 

accepted that C–H/O interactions represent true hydrogen bonds [5-7] and that they play 

significant role in the stability of nucleic acid and protein structures, enzymatic activity and 

crystal packing [8-11]. C–H/O interactions are essential for stabilization of protein structures 

since it was shown that they make up to 25% of all hydrogen bonds in the structure of 

proteins [12, 13]. 

Aromatic molecules represent a special group of C-H donors. It is well-known that 

aromatic molecules can be involved in various types of noncovalent contacts [14]. Aromatic 

molecules can form stacking interactions with another aromatic molecule, even at very large 
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horizontal displacements [15]. If interacting with water, aromatic molecules can be involved 

in three types of interactions: water-aromatic parallel interactions, OH/π and C-H/O 

interactions [16]. 

Even though results of previous studies indicated that geometry of C–H/O contacts 

of non-aromatic C-H groups are typically linear, our studies of C–H/O contacts involving 

aromatic C–H groups showed that these contacts do not have the tendency for the linear 

arrangement [17-21]. The statistical survey of the crystallographic data retrieved from the 

Cambridge Structural Database (CSD) revealed that different aromatic molecules able to 

donate hydrogen atom from C–H fragments (benzene, pyridine, nucleic bases and aromatic 

amino acids) do not show tendency to form linear contacts.  It was also revealed that the 

non-linearity of these contacts is consequence of additional interactions with the 

substituents on carbon atoms neighbouring to the interacting C–H fragment. These results 

were verified by ab initio calculations which indicated that in C-H/O interactions linear 

arrangement is not energetically favoured if C-H donor is part of aromatic system. Results of 

ab initio calculations showed energy of bifurcated C-H/O interaction in benzene/water 

complex is -1.38 kcal/mol, whilst the energy of linear C–H/O hydrogen bond between 

benzene and water is -1.28 kcal/mol [17]. Calculations showed similar results for 

heterocyclic aromatic molecules: the interaction energies for the bifurcated C–H/O contacts 

in pyridine/water and nucleic bases/water complexes are stronger in comparison to the 

linear interactions [18, 20]. Also, calculated interaction energies in water/benzene/water 

complexes revealed that when two water molecules form C–H/O contacts with benzene, 

these interactions weaken each other [19]. 

Here is presented a systematic study of energies and geometries of C-H/O 

interactions involving polycyclic aromatic hydrocarbons (PAHs) as hydrogen donors. The 

results are based on the quantum chemical calculations on model systems containing water 

and polycyclic aromatic hydrocarbon (PAH) molecules with a different number of condensed 

aromatic rings. Although interactions between the water molecule and aromatic rings of 

PAHs or graphene structures were being subject of numerous computational studies [22-

25], there is no computational study of C-H/O interactions involving PAH molecules as C-H 

donors. To the best of our knowledge, this is the first study of C-H/O contacts of polycyclic 

aromatic hydrocarbons pointing out the importance of size of aromatic system for the 

energy of C-H/O interactions. 

Computational details 

Ab initio study was conducted on three model systems: naphthalene/water, 

anthracene/water and tetracene/water. For every C-H fragment of aromatic C-H donors, 

two different geometrical arrangements of C-H/O interactions were considered: linear and 

bifurcated. In the bifurcated geometries, the oxygen atoms were in between two 

neighbouring hydrogen atoms attached to the aromatic ring. The geometric parameters 

used to define C-H/O contacts are given in Fig. S1. The distance between interacting C-H 
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fragment of PAH and oxygen atom is marked with d. Angle α is the angle between atoms C, 

H and O. In all model systems water molecule was in perpendicular orientation to the 

aromatic ring (Fig.S1), since our previous results on C-H/O interactions in benzene/water 

system showed that in this orientation interactions are more stable [17].  

The geometries of all molecules used in this study (naphthalene, anthracene, 

tetracene and water) were optimized. The optimized geometries were used for the single-

point energy calculations of C-H/O interactions. To obtain the geometries with minimal 

energies, distances between PAHs and water were systematically varied from 2 to 3 Å. In all 

calculations cc-pVTZ basis set and the Møller–Plesset second-order perturbation method 

(MP2) were applied [26]. It has been shown that results obtained using this level of theory 

are in excellent agreement with the interaction energies calculated at CCSD(T)/CBS level 

which is considered to be “golden standard” in quantum chemistry (in case of benzene-

water C-H/O interactions difference between interaction energies obtained using these two 

level of theories was approximately 2%). [17] The counterpoise approach was used to 

correct interaction energies for the basis set superposition error (BSSE). [27] 

Geometry optimizations, single point energy calculations and wavefunction file 

calculations were done using Gaussian 09 program package [28]. Obtained wavefunction 

files were used to calculate and visualize electrostatic potential maps with the 

Wavefunction Analysis Program (WFA-SAS) [29]. HOMA indexes were calculated from 

wavefunction files using Multiwfn software [30].  

 

Results and discussion 

To reveal the influence of size of aromatic system on the strength of C-H/O 

interactions we estimated the interaction energies in linear and bifurcated C-H/O 

interactions by performing  quantum chemical calculations on the following model systems: 

naphthalene/water, anthracene/water and tetracene/water. The calculated interaction 

energies at MP2/cc-pVTZ level are given in Table 1. Results for energies and geometries of 

C-H/O interactions between benzene and water molecules were taken from our previous 

work [17] and compared with energies of C-H/O interactions between aromatic molecules 

and water calculated in this work.  

Results showed that in all cases bifurcated C-H/O interactions are stronger than 

linear. This agrees with our previous results for benzene/water, pyridine/water and nucleic 

bases/water systems [17-20]. It should be pointed out that bifurcated interactions involve 

two hydrogen atoms instead of one (if interaction energies of bifurcated interactions are 

divided by two, linear interaction became stronger than bifurcated interactions). Hovewer, 

bifurcated C-H/O interactions involving PAHs as C-H donors are recognized in crystal 

structures (Fig. S3). 
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Results also showed that an additional aromatic ring in polycyclic aromatic 

hydrocarbon molecules strengthens both bifurcated and linear C-H/O contacts between 

polycyclic aromatic molecules and water.  The strongest bifurcated C-H/O interaction 

involves the largest aromatic system, tetracene, and water molecule (C5–H/C6–H 

interaction), -2.22 kcal/mol. It is followed by anthracene/water (C1–H, C9–H) interaction (-

2.10 kcal/mol), then naphthalene/water (C1–H, C8–H) interaction (-1.92 kcal/mol), while the 

weakest bifurcated C-H/O interaction is interaction of the smallest aromatic molecule, 

benzene (-1.38 kcal/mol) (Table 1).  

Table 1. Calculated interaction energies and distances of C-H/O interactions in benzene/water, 

naphthalene/water, anthracene/water and tetracene/water complexes  (Fig. 2). 

Model system Geometry C-H…O Distance (Å) ∆E (kcal/mol) 

Benzene-water[a] 
 

Linear C1H...O 2.50 -1.28 

Bifurcated (C1–H...O, C2–H...O) 2.80 -1.38 

Naphthalene-water 
 

Linear C1–H...O 2.50 -1.60 

Linear C2–H...O 2.50 -1.38 

Bifurcated (C1–H...O, C2–H...O) 2.50 -1.50 

Bifurcated (C2–H...O, C3–H...O) 2.60 -1.41 

Bifurcated (C1–H...O, C8–H...O) 2.60 -1.92 

Anthracene-water Linear C1–H...O 2.50 -1.70 

Linear C2–H...O 2.50 -1.42 

Linear C9–H...O 3.00 -1.81 

Bifurcated (C1–H...O, C2–H...O) 2.80 -1.56 

Bifurcated (C2–H...O, C3–H...O) 2.80 -1.59 

Bifurcated (C1–H...O, C9–H...O) 2.60 -2.10 

Tetracene-water Linear C1–H...O 2.50 -1.71 

Linear C2–H...O 2.50 -1.46 

Linear C5–H...O 2.50 -1.99 

Bifurcated (C1–H...O, C2–H...O) 2.80 -1.57 

Bifurcated (C2–H...O, C3–H...O) 2.80 -1.64 

Bifurcated (C4–H...O, C5–H...O) 2.60 -2.12 

Bifurcated (C5–H...O, C6–H...O) 2.60 -2.22 
[a] Data taken from ref. 17. 

Trends are similar in case of linear C-H/O interactions: the strongest linear C-H/O 

interaction is C5–H/O interaction between tetracene and water molecule (-1.99 kcal/mol), 

then C9–H interaction between anthracene and water molecule (-1.81 kcal/mol), then C1–

H/O interaction between naphthalene and water molecule (-1.60 kcal/mol), while the 

weakest linear interaction is C-H/O interaction between benzene and water molecule (-1.28 

kcal/mol). 

It is also interesting that hydrogen atoms from inner condensed aromatic rings of 

anthracene (C9-H) and tetracene (C5–H, C6–H) form significantly stronger linear interactions 

than hydrogen atoms from outer aromatic rings. Bifurcated interactions of hydrogen atoms 

attached to inner rings are also stronger than bifurcated interactions involving hydrogen 

atoms attached to outer condensed rings. It is most obvious in the case of tetracene, where 
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the strongest bifurcated interaction involves two hydrogen atoms attached to inner rings 

(C5–H, C6–H), -2.22 kcal/mol. Slightly weaker are bifurcated interactions involving one 

hydrogen atom from inner and one from outer ring (C4–H, C5–H), -2.12 kcal/mol, while the 

weakest are bifurcated interactions involving two hydrogen atoms attached to outer ring 

(C4–H, C5–H), -1.57 kcal/mol. 

Analysis of results showed that influence of number of aromatic rings in polycyclic 

aromatic hydrocarbons on the strength of C-H/O interaction is so strong that linear C-H/O 

interactions of polycyclic aromatic hydrocarbons with larger number of aromatic rings in 

some cases are stronger than bifurcated C-H/O interactions of polycyclic aromatic 

hydrocarbons with smaller number of aromatic rings. For example, linear C5–H interaction 

in tetracene/water system (-1.99 kcal/mol) is stronger than bifurcated (C1–H, C2–H) and 

(C2–H, C3–H) interactions in anthracene/water systems (-1.59 kcal/mol and -1.56 kcal/mol, 

respectivelly). It is interesting that bifurcated (C5–H, C6–H) contacts in tetracene/water 

system (-2.22 kcal/mol) is slightly stronger than bifurcated C-H/O contact between meta and 

para C-H groups of pyridine in pyridine/water C-H/O interactions (-2.21 kcal/mol) [18]. To 

understand the results on energies of C-H/O hydrogen bonds, electrostatic potential maps 

for all studied aromatic molecules were calculated (Fig. 1).  

                                 

        a)                                                      b) 

   

      c)                   d) 

Figure 1. Electrostatic potential maps of: a) benzene b) naphthalene c) anthracene and d) tetracene displayed 

on the 0.001 au surface (MP2/cc-PVTZ level). Color ranges (in kcal/mol):  red, > 6.40; yellow, 0.00 - 6.40; green,  

-8.91 - 0.00; blue, < -8.91. In all polycyclic aromatic hydrocarbon molecules atoms from C-H groups have 

positive electrostatic potentials. 

Positive parts of electrostatic potential map surface are colored in red and negative 

parts are colored in blue. Blue and black points on the electrostatic potential maps are 
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critical points. These represent the locations of minimal or maximal values of electrostatic 

potential. Results of calculated electrostatic potentials are in good agreement with the 

calculated energies of C-H/O interactions.  The positive areas of electrostatic potential are 

located on hydrogen atoms, with the most positive areas are around hydrogen atoms in the 

middle of the molecules (C1-H in naphthalene, C9-H in anthracene and C5-H and C6-H in 

tetracene).  

The strongest bifurcated C-H/O interaction is formed between oxygen from water 

molecule and C5–H and C6–H fragments of tetracene that has the most positive potential. 

On the other hand, electrostatic potential map shows that region around hydrogen atom of 

benzene is the least positive, which is in agreement with the interaction energies 

calculations showing that C-H/O contacts of benzene are the weakest of all studied aromatic 

molecules.       

Harmonic Oscillator Model of Aromaticity (HOMA) indexes were calculated for all aromatic 

rings in studied PAH structures (Table S1.). Results showed that HOMA values for outer rings of 

anthracene (ring I, 0.93) and tetracene (ring I, 0.69) are larger than HOMA values for inner rings of 

anthracene (ring II, 0.89) and tetracene (ring II, 0.67). Since larger values of HOMA indexes are 

related to lower polarizability, these results are in agreement with results of ab initio calculations 

which show that hydrogen atoms attached to inner rings form stronger C-H/O interactions than 

hydrogen atoms attached to outer rings.  

For the most stable PAH/water systems geometries were optimized at MP2/cc-PVTZ 

level and resulting geometries are shown in Fig. 2.  

 
Figure 2. Optimized geometries of most stable a) benzene/water b) naphthalene/water, c) anthracene/water 

and d) tetracene/water structures.  
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Interaction energies in the optimized geometries are somewhat stronger compared 

with data in Table 1; -1.97 kcal/mol for naphthalene/water, -2.13 kcal/mol for 

anthracene/water and -2.27 kcal/mol for tetracene/water complex. Stronger C-H/O 

interactions in these model systems are related to shorter hydrogen-oxygen distances. In 

optimized anthracene/water complex C-H1/O interaction (2.66 Å) is significantly longer than 

C-H9/O interactions (2.57 Å). A stronger tendency of H9 atom to attract oxygen atom agrees 

with electrostatic potential maps; electrostatic potential on H9 atom is 16.52 kcal/mol and 

on H1 atom is 15.96 kcal/mol. 

Conclusion 

Results presented in this study show that an additional aromatic ring in structure of 

polycyclic aromatic hydrocarbons significantly strengthens C-H/O interactions in which 

these molecules act as C-H donors. Both linear and bifurcated C-H/O interactions between 

PAHs and water are significantly stronger for PAH molecules with larger number of aromatic 

rings. Interaction energies in optimized structures of the most stable tetracene/water 

complex is -2.27 kcal/mol, anthracene/water is -2.13 kcal/mol and naphthalene/water is       

-1.97 kcal/mol. C-H/O interactions in tetracene/water system are stronger than C-H/O 

interactions in benzene/water (-1.44 kcal/mol) and even pyridine/water complexes (-2.21 

kcal/mol) [18]. 

Analysis of ab initio calculations results also reveal that in case of C-H/O interactions 

between PAHs and water molecules, bifurcated hydrogen bonds are energetically more 

stable than linear hydrogen bonds. This result agrees with previously calculated trends for 

benzene/water, pyridine/water, nucleic bases/water and aromatic amino acids/water 

systems [17-21].  

Results of electrostatic potential maps calculations for PAH molecules are consistent 

with the calculated C-H/O interaction energies. Analysis of electrostatic potential maps 

show that most positive electrostatic potential is in the regions of hydrogen atoms involved 

in the strongest C-H/O contacts.  

Results presented here may be important in future studies of C–H/O hydrogen bonds 

in crystal structures, mechanism of catalysis and in designing new materials with higher 

preference for hydrogen bonding. Knowledge that additional aromatic rings strengthen      

C–H/O contacts involving PAH molecules could be used in future studies to explain 

arrangements of atoms and crystal packing in crystal structures. 
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