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Concerning the particular nutritive value of honeydew honey compared to blossom honey, and 

small number of studies defining botanical origin of honeydew honey, comprehensive analysis of 

phenolic profile of 64 honeydew honey samples of specific botanical origin was performed. Two 

advanced techniques of liquid chromatography hyphenated with mass spectrometry were used for 

identification of a total of 52 compounds and quantification of 25 of them.  Pattern recognition analysis 

applied on data on phenolic compounds content confirmed that quercetin, naringenin, caffeoylquinic 

acid, hydroxyphenylacetic acid, apigenin and genistein, could be considered as potential markers of 

botanical origin of honeydew honey. Spectroscopic and electrochemical approaches were applied for 

the evaluation of the antioxidant capacity. Quercus sps. samples, Quercus frainetto and Quercus ilex, 

showed high biological activity and specific chemical composition. Additionally, cyclic voltammetry 

profiles were used for characterization and natural clustering of honeydew honey for the first time.  

 

Keywords: Honeydew honey; Phenolic profile; UHPLC-LTQ OrbiTrap MS; UHPLC–DAD–MS/MS; 

Pattern recognition methods; Antioxidant activity 

1. Introduction 

Honeydew honey mainly derives from secretions of living parts of plants or excretions of plant-

sucking insects on plants (Directive 2014/63/EU of the European Parliament and of the Council 

amending Council Directive 2001/110/EC relating to honey). It is rather known known for conifers, i.e. 

fir, pine and spruce and for deciduous trees, such as oak, chestnut, birch, willow and linden (Primorac 

et al., 2009). Honeydew honey is generally dark, strongly flavoured, less acidic and less sweet when 

compared to blossom honey (Pita-Calvo & Vázquez, 2017).  

The number of consumers that appreciate flavour and nutritive properties of honeydew honey are 

increasing. Growing market for this honey type significantly contributes to the increase of its’ price. 

However, although having particularly different nutritional value, being attributed with higher 
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antibacterial and antioxidant properties, when compared to blossom honey (Pita-Calvo & Vázquez, 

2018), this specific type of honey is still less studied and less known to consumers. In order to avoid 

adulteration and frauds, with regards to their botanical and geographical authentication, standardized 

methods for the routine quality control of honeydew honeys with regard to their botanical and 

geographical authentication are required (Pita-Calvo & Vázquez, 2018). 

Honeydew honey authenticity, however, has some difficulties when considered the compliance of 

declaration of botanical and geographical origin. Melissopalynological analysis, based on the 

identification and quantification of the percentage of pollen by microscopic examination, has 

traditionally been accepted to ascertain honey blossom source (Aronne & Micco, 2010). On the other 

hand, honeydew secreted by sap-sucking insects will contain no pollen other than air-borne pollen 

grains that ended up trapped and which will not necessarily be from the plant that was the source of the 

secretion. However, honeydew honeys, like all honeys, contain significant portion of pollen, deriving 

from small amounts of inevitable nectars of nectariferous flowers as well as gathered pollen of non-

nectariferous plants. They may also provide significant contribution to the identification of 

geographical origin as well as to the confirmation of the period of production. However, due to some 

limitations of identification of honey sources by melissopalynological assessment, and some 

misleading conclusions that sometimes may be obtained by it, other methods have been suggested for 

more accurate identification of the honey botanical sources. Phenolic compounds, sugars, amino acids 

and proteins are among markers which are considered as useful to characterize various botanical types 

of honey (Pita-Calvo et al., 2017). 

Additionally, several physicochemical parameters have been suggested as complementary 

information for characterization of honey. Honey physicochemical composition and its’ flavour may 

vary with the botanical source, geographical origin, beekeeping practices as well as environmental and 

climatic variations. It has been given attention that physicochemical analysis could be very useful for 
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differentiation between honeydew honey and blossom honey (Manzanares, García, Galdón, Rodríguez, 

& Romero, 2011). 

Compounds that naturally occur in honey, such as phenolic compounds (flavonoids and phenolic 

acids), some enzymes (e.g. glucose oxidase, catalase), ascorbic acid, carotenoid-like substances, 

organic acids, proteins and amino acids, significantly contribute to its antioxidant capacity (Pita-Calvo 

et al., 2017) and honey quality. A great number of phenolic compounds in honey as well as their 

confirmed correlation with antioxidant activity indicate their importance in the assessment of 

authenticity (Pita-Calvo et al., 2017). Detection of phenolic compounds and estimation of total 

antioxidant capacity could be performed by spectroscopic and subsequent electrochemical methods 

(Lugonja, Stankovic, Spasic, Roglic, Manojlovic, & Vrvic, 2013). Nowadays, electrochemical methods 

found wide application in the field of analytical chemistry due to their rapidity and simplicity. 

Advantages of these methods are wider linear range, higher sensitivity and easier manipulation steps.  

The aim of this work is comprehensive assessment of phenolic composition and antioxidant 

activity of 64 honeydew honey samples of different botanical origin. According to our knowledge, 

previously there has been no previously published article that comprises focused information about 

such a high number of different, specific honeydew honey types. Characterization of phenolic acids, 

their derivatives and flavonoid aglycones and glycosides was performed by ultra-high-performance 

liquid chromatography coupled with hybrid mass spectrometer which combines the Linear Trap 

Quadrupole and OrbiTrap MS mass analyser (UHPLC-LTQ OrbiTrap MS technique). Quantification 

was performed by ultra-high-performance liquid chromatography with a diode array detector and a 

triple-quadrupole mass spectrometer (UHPLC-DAD-MS/MS). Two different approaches, spectroscopic 

and electrochemical, were combined and applied for the evaluation of the antioxidant capacity of 

honeydew honey samples for the first time. In addition, phenolic composition and antioxidant capacity 

were used in authentication of botanical origin of the analysed honey samples. Namely, by studying the 
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literature we realized that differentiation and classification of honeydew honey are difficult to perform 

by means of only one class of compounds, not combined with several other groups of parameters. 

Taking into account thus far observed significance of phenolic compounds for differentiation of honeys 

in relation to their origin, we expect that it should be possible that only phenolic profile and antioxidant 

capacity could be used for authenticity assessment of honeydew honey. The data from this study could 

contribute to the project of the International Honey Commission that is working on a data bank for 

quality criteria of the most important European unifloral honeys (Bogdanov & Martin, 2002). 

 

2. Materials and Methods 

2.1. Chemicals and materials 

Acetonitrile and acetic acid (both MS grade), methanol (HPLC grade), sodium carbonate, 

potassium chloride, hydrochloric acid and Folin–Ciocalteu reagent were purchased from Merck 

(Darmstadt, Germany). The SPE cartridges used for extraction and concentration of samples were 

Strata C18–E (500 mg/3 mL) obtained from Phenomenex (Torrance, CA). 2,2-Diphenyl-1-

picrylhydrazyl (DPPH) and phenolic compounds standards (protocatechuic acid - PrA, aesculin, 5-O-

caffeoylquinic acid – CQA, p-hydroxybenzoic acid - HBA, gentisic acid, p-hydroxyphenylacetic acid - 

HPA, vanillic acid - VA, aesculetin, caffeic acid - CA, rutin - Rut, p-coumaric acid - CouA, quercetin 

3-O-glucoside, sinapic acid - SA, naringin - Nar, ferulic acid - FA, quercetin 3-O-rhamnoside – Que-3 

rha, coniferyl aldehyde, quercetin - Que, eriodictyol - Erio, luteolin - Lut, naringenin - Narn, apigenin - 

Api, genistein - Gen, kaempferol - Kfrl, pinobanksin , isorhamnetin, chrysoeriol, genkwanin - Genkw, 

chrysin - Chry, pinocembrin - Pin, kaempferide - Kfrd, galangin - Gal, and acacetin - Aca) were 

supplied by Sigma–Aldrich (Steinheim, Germany). 

Ultrapure water (ThermoFisher TKA MicroPure water purification system, 0.055 μS/cm) was 

used to prepare standard solutions and blanks. Syringe filters (13 mm, PTFE membrane 0.45 μm) were 
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purchased from Supelco (Bellefonte, PA). Filter paper (Whatman No. 1) was supplied by Merck 

(Darmstadt, Germany). 

2.2. Honeydew honey samples  

A total of 64 honeydew honey samples comprising Silver fir (Abies alba Mill.) - 22, Evergreen 

oak (Quercus ilix L.) - 15, Hungarian oak (Quercus frainetto Ten.) - 4, Montpellier maple (Acer 

monspessulanum L.) - 6, conifers – 17 samples, were collected from different regions of Croatia. Small 

number of samples of Hungarian oak and Montpellier maple honeydew honeys is a consequence of the 

fact that the rather small areas are covered by these specific plants. Furthermore, the occurrence of 

honeydew honeys deriving from their respective honeydews are relative rare and does not happen every 

year. Furthermore, it is very hard to obtain honeydew honey with the significant prevalence of these 

plants. 

Honey sampling was carried out straight at the filling facilities of the primary beekeepers. Once 

collected, samples were filled into glass jars and sealed with metal lids. Honey samples had been kept 

in dark at 4–8 °C until delivered in laboratory. In order to comprehend the origin of the honeys, 

samples were subjected to comprehensive melissopalynological and sensory assessment. Immediately 

before the analysis, the samples were homogenized by mechanical mixing in the original packaging. 

2.3. Determination of physicochemical properties 

Physicochemical parameters were analysed by means of the Harmonised Methods of the 

International Honey Commission (IHC) (Bogdanov, 2009). 

Moisture was determined by an Abbe-type refractometer (Digital Refractometer, Atago Co., Ltd., 

Tokyo, Japan). All measurements were performed at 20 °C and the refractive index of the honey 

sample was correlated using Chataway Charts. Electrical conductivity was determined with a 

conductivity meter (Jenway Conductivity Meter 4310; Stone, UK) using a 20% (w/v; dry matter basis) 

honey solution in deionised water. The pH value was measured in 10% aqueous solution by a pH meter 
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(WTW Inolab). Free acidity was determined using the titrimetric method: acid components were 

neutralised with a standard solution of sodium hydroxide (C = 0.05 mol/dm
3
)  in aqueous honey 

solution (10 g in 75 mL distilled water). Lactone acidity was obtained by adding excess of standard 

solution of sodium hydroxide (C = 0.05 mol/dm
3
) to a solution of honey and titrating excess of sodium 

hydroxide with a standard solution of hydrochloric acid (C = 0.05 mol/dm
3
). Specific rotation was 

evaluated using an Atago Polax-2L polarimeter. 

2.4. Extraction of phenolic compounds from honeydew honey samples 

2.4.1. Preparation of extracts for LC-MS analysis 

The method used for extraction and isolation of phenolic compounds from the honeydew honeys 

was previously described by Gašić et al., 2015. Prior the UHPLC-LTQ OrbiTrap MS and UHPLC–

DAD-MS/MS analysis the extracts were filtered through a 0.45 μm PTFE membrane filter. 

2.4.2. Sample preparation for determination of total phenolic content and radical-scavenging activity 

Samples were prepared according to the slightly modified method proposed by Meda et al., 2005. 

Each honey sample (2.5 g) was mixed with 10 mL ultrapure water, homogenized in ultrasonic bath for 

15 min at room temperature, transferred to 25 mL volumetric flask and filled with ultrapure water. The 

solution was then filtered through 0.45 μm PTFE membrane filter and analysed for determination of 

total phenolic content and radical-scavenging activity. 

2.5. UHPLC-LTQ OrbiTrap MS qualitative analysis of phenolic compounds 

Chromatographic separations of compounds of interest were performed on Syncronis C18 

column (100 × 2.1 mm, 1.7 µm particle size) using an UHPLC system consisting of a quaternary 

Accela 600 pump and Accela autosampler (ThermoFisher Scientific, Bremen, Germany). The mobile 

phase consisted of (A) water containing 0.1% acetic acid and (B) 100% acetonitrile. The gradient 

program at flow rate of 0.300 mL/min was as follows: 0.0–1.0 min 5% B, 1.0–16.0 min from 5% to 
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95% (B), 16.0–16.1 min from 95% to 5% (B), then 5% (B) for 4 min. The injection volume for all 

samples was 5 μL. 

The UHPLC system was coupled to a linear ion trap-OrbiTrap hybrid mass spectrometer (LTQ 

OrbiTrap MS) equipped with heated electrospray ionization probe (HESI-II, ThermoFisher Scientific, 

Bremen, Germany). The mass spectrometer was operated in negative ion mode. Settings of dynamic 

exclusion and other ion source parameters were as previously described by Gašić et al., 2015. The data-

dependent MS
2
 events were always performed on the most intense ions detected in the full scan MS. 

The ions of interest were isolated in the ion trap and activated with 35% collision energy levels (CEL). 

Phenolic compounds were identified according to their spectral characteristics: mass spectra, 

accurate mass, characteristic fragmentation and characteristic retention time. Xcalibur software 2.1 

(Thermo Fisher, Bremen, Germany) was used for instrument control, data acquisition and data analysis 

of accurate mass spectrometry data. ChemDraw 12.0, molecule editor program, was used for drawing 

structures and calculating the exact monoisotopic masses of compounds of interest. Full scan analysis 

was employed to detect the monoisotopic mass of unknown compounds, while the fragmentation 

pathway was obtained by MS
4
. 

2.6. UHPLC–DAD-MS/MS quantitative analysis of phenolic compounds 

 A 1000 mg/L stock solution of a mixture of phenolic standards was prepared in methanol. 

Dilution of the stock solution with mobile phase yielded working solutions at concentrations of 0.025, 

0.050, 0.100, 0.250, 0.500, 0.750 and 1.000 mg/L. Calibration curves were obtained by plotting the 

peak areas of the standards against their concentration. Calibration curves revealed good linearity, with 

R
2
 values exceeding 0.99 (peak areas vs concentration). 

 The separation and quantification of the phenolic compounds in the studied honeydew honey 

samples were performed using a Dionex Ultimate 3000 UHPLC system equipped with a diode array 

detector that was connected to TSQ Quantum Access Max triple-quadrupole mass spectrometer 
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(ThermoFisher Scientific, Basel, Switzerland). The specification of the analytical column, mobile 

phases, gradient elution program, as well as other settings UHPLC system were the same as in the 

previous section about qualitative analysis of phenolic compounds. 

 The parameters of a TSQ Quantum Access Max triple-quadrupole mass spectrometer equipped 

with heated electrospray ionization (HESI-II) were as previously described by Gašić et al., 2015. The 

mass spectrometry data were acquired in negative ion mode, in the m/z range from 100 to 1000. The 

selected reaction monitoring (SRM) mode of the instrument was used for the quantification of the 

targeted compounds in the tested samples (Gašić et al., 2015). 

 The phenolic compounds were identified by direct comparison with commercial standards. The 

total amounts of each compound were evaluated by calculation of the peak areas and were expressed as 

mg/kg. 

Limits of quantification (LOQ) were calculated using standard deviations of the responses (SD) 

and the slopes of the calibration curves (S) according to the formulas: LOQ = 10 (SD/S). The values of 

standard deviations and slopes were obtained from the calibration curves created in the MS Excel. 

2.7. Determination of the total phenolic content (TPC) 

The TPC was spectrophotometrically determined with the Folin-Ciocalteu method reported by 

Singleton et al., 1965. Briefly, 0.3 mL of the sample extracts and 6 mL of deionized water were mixed 

with 0.5 mL of Folin-Ciocalteu reagent and solution was incubated 6 min at room temperature. A total 

of 3 mL of 20% sodium carbonate was added. After 30 min at 40 
o
C, absorbance was measured at 765 

nm. Calibration curve was built with gallic acid in the range of concentration 20-100 µg/mL. The 

results were expressed as mg gallic acid equivalents (GAE) per gram of honey. 

2.8. Determination of radical-scavenging activity (RSA) 

The RSA of the extracts of honey samples was evaluated by a modified method of Wang et al., 

2011. Briefly, 0.1 mL of the sample extract was mixed with 3 mL of methanol solution of DPPH (71 
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mM). The mixture was left in the dark until stable absorption values were obtained. The reduction of 

the DPPH radical was measured by monitoring continuously the decrease of absorption at 517 nm. The 

radical-scavenging activity (RSA) was calculated as the percentage of DPPH discoloration. The assays 

were carried out in duplicate and the results were expressed as mean values. 

2.9. Cyclic voltammetry 

Cyclic voltammetry measurements were performed using an electrochemical system CH 

Instruments, Model CHI 760b with corresponding software. Antioxidant activity of honeydew honey 

was determined by a procedure developed by Lugonja, Stanković, Spasić, Roglić, Manojlović, & 

Vrvić, 2013 in infant formula with breast milk and lately applied for propolis samples (Ristivojević, 

Trifković, Stanković, Radoičić, Manojlović, & Milojković-Opsenica, 2017). 

3.0. Statistical analysis 

Descriptive statistics and Kruskal-Wallis one-way analysis of variance by ranks test have been 

performed by means of a demo version of NCSS statistical software (Hintze, 2001). 

Principal component analysis (PCA) has been performed by means of PLS ToolBox, v.6.2.1, for 

MATLAB 7.12.0 (R2011a). All data were pre-treated (mean-centred and scaled to the unit standard 

deviation) before any statistical operations in order to prevent highly abundant components to dominate 

in the final result over the components present in much smaller quantities. The number of components 

was chosen according to Kaiser Criterion and only factors with eigenvalues greater than 1 were 

retained. 

 

3. Results and discussion 

Given the significant number of three botanical types of honeydew honey: silver fir (Abies alba 

Mill.), evergreen oak (Quercus ilex L.), and conifers, characterization based on phenolic compounds 

profiles and antioxidant capacity, was performed. Although not having a fully representative set of 
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samples of Hungarian oak (Quercus frainetto L.) and Montpellier maple (Acer monspessulanum L.) 

due to the small areas covered by these botanical species, as well as inconsistent production yielding 

only occasionally, these rather rare honeydew honeys were also characterized. Nonetheless, it came to 

our attention that more exhaustive further studies should be carried out in order to fully comprehend 

these peculiar honeys. 

3.1. Physicochemical data 

Excluding the classical approach of diagnosis of botanical origin of samples, as time-consuming 

method that additionally requires personnel specialized in carrying out sensory analysis (Bogdanov, 

2009) and taking into consideration melissopalynological challenges of identification of honeydew 

honey botanical origin, with regards to their botanical source, the final confirmation of origin of 

analysed samples was performed by means of physicochemical parameters. Table S1 (Supplementary 

material) summarizes parameters of descriptive statistics (mean, median, standard deviation and range) 

obtained from physicochemical analysis (moisture (ω), free acidity (FA), lactone acidity (LA), total 

acidity (TA), electrical conductivity (EC), pH value and specific rotation (SR)) of the honeydew honey 

samples of five different botanical origins.  

Electrical conductivity, specific rotation, ash content and pH value were in common use as the 

main parameters widely used to distinguish blossom from honeydew honeys (Pita-Calvo et al., 2017). 

According to European legislation (EU Directive 2014/63) honeydew honey must have EC values ≥ 0.8 

mS/cm. The mean value of EC for analysed samples varied between 0.91 and 1.29 mS/cm, confirming 

its originality as honeydew honeys, with highest values observed for Evergreen oak honeydew honey 

(Table S1). Honeydew honeys usually contain somewhat lower fructose content and contain melezitose 

or erlose which, together with glucose, give a positive net specific rotation (Pita-Calvo et al., 2017). All 

analysed honeydew samples were dextrorotatory (Table S1). Honeydew honeys are usually showing a 

higher mean pH value and acidity when compared to blossom honey (Pita-Calvo et al., 2017). Mean 
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pH value of analysed samples ranged between 4.1 and 4.7 that were higher compared to some blossom 

honeys, e.g. acacia, sunflower (Lazarević, Andrić, Trifković, Tešić, & Milojković-Opsenica, 2012; 

Vela, de Lorenzo, & Perez, 2007). Additionally, the free acidity of samples was below 50 mili-

equivalents/kg (EU Directive 2014/63) with exception of Hungarian oak showing the mean value of 

78.6 mili-equivalents/kg (Table S1), also showing high value of lactone and total acidity (Table S1). 

The moisture content in all samples indicated a proper degree of maturity, in compliance with the 

international requirements with levels of humidity lower than 20% (EU Directive 2014/63) (Table S1). 

Physicochemical parameters confirmed that samples were authentic with respect to honey 

production and originated from secretion produced by certain trees and other plants or from excretions 

of plant-sucking insects. 

3.2. UHPLC-Orbitrap MS profiles  

Phenolic compounds profiles of honeydew honey obtained by UHPLC-Orbitrap MS analysis 

using the non-targeted metabolomics approach, revealed the presence of a significant number of 

phenolic compounds (Table 1). LC-MS analysis resulted in the identification of 52 compounds 

belonging to three structurally distinct groups: phenolic acids and their derivatives (19 compounds), 

flavonoids aglycones (23 compounds) and flavonoid glycosides (10 compounds). Thirty three of them 

were confirmed using available analytical standards, while the others were identified by exact mass 

search of their [M−H]
−
 deprotonated molecule and their MS

4
 fragmentation patterns compared with the 

previously reported chromatographic and MS data. Selected base peak chromatograms of phenolic 

compounds identified in some of honeydew honey samples were shown in Figure 1. During the 

identification of flavonoid glycosides, some already published rules of mass fragmentation, such as the 

determination of the nature of interglycosidic linkage (Ferreres, Llorach, & Gil-Izquierdo, 2004) and 

the characterization of glycosylation position (Cuyckens & Claeys, 2005) were used. Table 1 shows 

peak numbers, assigned compound names, molecular formulas, calculated and exact masses ([M−H]
−
, 
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m/z), mass accuracy errors, the retention times (tR, min) and major MS
2
, MS

3
, and MS

4
 fragment ions 

used for identification of phenolic compounds in the absence of standard. Phenolic acids and their 

derivatives were identified in all of the examined honeydew honey samples (Table S2, Supplementary 

material). In addition to simple phenolic acids (derivatives of hydroxybenzoic and hydroxycinnamic 

acids), several glycosides have been identified. Thus, for example, two derivatives of caffeic acid 

hexoside (341 m/z, compounds 4 and 7) were identified at 4.74 and 5.10 min, respectively (Table 1). 

Both of them produced an MS
2
 base peak fragment at 179 m/z, corresponding to the mass generated by 

loss of hexose unit (162 Da) and secondary MS
2
 peaks at 161 and 135 m/z, corresponding to the 

[caffeic acid−H−H2O]
−
 and [caffeic acid−H−CO2]

−
, respectively. As expected, in this case, the MS

3
 

base peak was at 135 m/z. Next to found phenolic acid glycosides, several other compounds were 

identified and confirmed using standards: aesculin and its glycoside (aesculin 6-O-glucoside), coniferyl 

aldehyde and 5-O-caffeoylquinic acid. Benzyl caffeate (269 m/z, compound 46), which is known to 

originate from propolis (Yamauchi, Kato, Oida, Kanaeda, & Ueno, 1992) was identified in five 

samples at 11.30 min. It produced MS
2
 base peaks at 178 m/z (generated by loosing of benzyl group) 

and 134 m/z (resulting in further loss of CO2 molecule). 

 Most of the identified flavonoid aglycones are originated from propolis (Bankova et al., 2016). 

During the identification of flavonoid aglycones, MS data obtained from an available literature 

describing specific retro-Diels-Alder (RDA) fragmentation, were used (Yang, Ye, Qiao, Wang, Bo, & 

Guo, 2012; Fabre, Rustan, de Hoffmann, & Quetin-Leclercq, 2001). A similar flavonoid profile of 

some honeydew honey samples has already been described in literature (Halouzka, Tarkowski, & 

Zeljković, 2016; Majtan et al., 2013). Compound 36 at 9.66 min and 315 m/z was identified in all 

samples. By examining the empirical formula of this compound, it was concluded that it may be an O-

methylated flavonol. It produced MS
2
 base peak at 300 m/z, most probably corresponding to 

[M−H−CH3]
−
 fragment and secondary MS

2
 peak at 181 m/z. In the MS

3
 spectra of this compound we 
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can notice the absence of fragment at 151 m/z, which indicates that the flavonoid core was O-methyl 

substituted on the B ring. Also, fragment 165 m/z is missing, which can be formed by O-methyl 

substitution of the A ring of flavonoids (Kečkeš, Gašić, Ćirković Veličković, Milojković-Opsenica, 

Natić, & Tešić, 2013). The most interesting fragment in the MS
3
 spectra is 166 m/z, indicating that A 

ring of flavonoids is most likely substituted with two hydroxyls and one methoxy group (Figure S1, 

fragmentation is shown on 8-methoxy kaempferol, as an example). We can assume that the secondary 

MS
2
 fragment at 181 m/z was formed by the RDA fragmentation of flavonoids and that's actually 

[
1,3

A]
−
 fragment, while 166 m/z is probably [

1,3
A−CH3]

−
 fragment. Based on all these findings, this 

compound was marked as methoxy kaempferol. 

For the purpose of identifying flavonoid glycosides (the structures of aglycone and glycosidic 

parts, as well as interglycosidic linkage between two sugars) some mass fragmentation data, already 

described in the literature, has been used (Kachlicki, Piasecka, Stobiecki, & Marczak, 2016). Numerous 

derivatives of flavonoid glycosides were identified in honeydew honey extracts; rhamnosides (loss of 

146 Da), hexosides (loss of 162 Da), pentosylhexosides (loss of 294 Da), rhamnosylhexoside (loss of 

308 Da) and dihexosides (loss of 324 Da). For example, in MS
2
 spectra of compound 15 at 5.83 min 

and 625 m/z, it can be observed base peaks fragment at 301 and 300 m/z (corresponding to 

deprotonated quercetin) and additional three fragment ions resulting from loss of 180, 162, and 120 Da. 

This specific fragmentation shows presence of 1→2 interglycosidic linkage between two sugars at 3-O-

position of quercetin. In MS
3
 spectrum of this compound, base peak at 271 m/z was noticed (generated 

by loss of 29 Da, HCO), while MS
4
 base peak was at 243 m/z, resulting from loss of CO molecule (28 

Da). Further fragmentation of 300 m/z confirmed presence of quercetin as aglycone, due to the 

observed RDA fragments at 179 and 151 m/z. Based on MS fragmentation this compound was 

identified as quercetin 3-O-(2"-hexosyl)hexoside (Figure S2). 
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Presence of particular phenolic compounds in the tested honeydew honey samples is reported in 

Table S2. Certain phenolic compound was considered present in honeydew honey of particular 

botanical origin if it was found in more than 80% samples of one specific species. Forty one 

compounds were identified in all samples. It is important to notice that in the samples of Evergreen 

oak, all 52 compounds were found. However, some of the compounds were found only in one or two 

botanical origins. Quercetin 3-O-(2"-hexosyl)hexoside (compound 15) was identified only in samples 

of Evergreen oak and Montpellier maple. Similarly, luteolin 7-O-rhamnoside (compound 27), 

kaempferol 7-O-rhamnoside (compound 29), tectochrysin (compound 32), and dimethyl quercetin 

(compound 41) were identified only in the samples of Evergreen oak, while pinobanksin 3-O-

propionate (compound 52) was found in samples of Hungarian and Evergreen oak, Quercus sps. 

3.3. Quantification of specific compounds 

UHPLC-DAD-MS/MS analysis was used for quantification of 25 targeted compounds selected 

based on their abundance in the analysed honeydew honey samples (Table 2). Qualitative analysis 

indicate the presence of phenolic compounds listed in Table 1, however certain compounds identified 

according to their spectral characteristics were not quantified due to the low content (below the limit of 

quantification). Although the investigated samples contained mainly the same phenolic compounds, the 

amount of individual compounds could indicate the differences among the botanical types of honey and 

possibly used as a marker of origin. 

Among the quantified compounds, phenolic acids such as HPA, HBA, CA, VA, CouA, FA and 

PrA, were present in the highest amount, followed by flavonoids Que, Chry and Pin. The content of 

HPA, Api and Gen were higher in silver fir and conifers compared to Quercus sps. and Montpellier 

maple. Similarly, CQA, CouA, and FA were more represented in silver fir, conifers and Hungarian oak 

in relation to Evergreen oak and Montpellier maple. Qurcetin and Narn were present in higher quantity 
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in Quercus spp. compared to other investigated botanical types, while PrA was present in two to seven 

times higher amount in Hungarian oak honeydew honey (Table 2). 

The results reported from other authors indicated large variability in phenolic content of 

honeydew honey (Karabagias, Vavoura, Nikolaou, Badeka, Kontakos, & Kontominas, 2014; Oroian & 

Sorina, 2017; Silici, Sarioglu, & Karaman, 2013). Additionally, in majority of articles the authors label 

samples only as honeydew honey, without defining the specific botanical origin of the same. However, 

in those with marked origins the species were not matched with those from our study. For that reason, it 

was hard to compare our results with those reported previously. Only Kuś, Jerković, Marijanović, & 

Tuberoso, 2017 reported the content of several phenolic compounds in five samples of silver fir 

honeydew honey with the results similar to those obtained in our study. It should be also emphasized 

that there is no report that comprises such a large number of quantified phenolic compounds. 

Moreover, this is a first report on phenolic profile of Evergreen and Hungarian oak and Montpellier 

maple honeydew honey. 

3.4. Antioxidant activity of honeydew samples 

Many spectroscopic methods have been developed for assessing the antioxidant activity of 

phenolic compounds. UV/Vis spectroscopy is highly suitable for its investigation due to the presence of 

π conjugated aromatic rings substituted with OH-groups. These methods are focused either on the 

ability of phenolic compounds to inhibit free radical formation or scavenge free radicals. Phenolic 

compounds, however, often show inconsistent antioxidant capacity depending on the applied assay, due 

to the different reaction systems and the presence of multiple oxidants (Granato et al, 2018). All 

mentioned problems are overcome by electrochemical oxidation processes. Application of cyclic 

voltammetry (CV) in the analysis of the phenolic compounds is a result of electronic delocalization on 

the aromatic nucleus, which could be easily oxidized at inert electrodes (Sochor et al., 2013). The 

advantage of CV over the spectroscopic methods is that it does not require the labor-intensive 
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characterization of the antioxidant activity of each component against a specific radical oxygen species, 

which is the basis for methodologies measuring the total antioxidant capacity (Ristivojević, Trifković, 

Stanković, Radoičić, Manojlović, & Milojković-Opsenica, 2017). It is simple and rapid method and 

could be used directly in biological and crude samples. 

In that sense, different approaches, two in vitro spectroscopic screening methods (total phenolic 

content and antioxidant activity measurement) and electrochemical method were applied for the 

evaluation of the antioxidant capacity of honeydew honey samples.  The results of TPC, RSA and CV 

of the honeydew honey samples are presented in Table 2.  

The mean value of TPC ranged from 0.57 to 1.60 mg GAE/g of honey (Table 2). Hungarian oak 

honeys showed the highest mean value of TPC (1.60 mg GAE/g), high value was also marked for 

evergreen oak (1.19 mg GAE/g), while silver fir and conifers showed similar, but lower values (0.61 

and 0.57 mg GAE/g of honey, respectively). Report concerning common oak (Qurcus robur L.) 

indicate high phenolic content and high antioxidant capacity associated with it (Can, Yildiz, Sahin, 

Turumtay, Silici, & Kolayli, 2015). Namely, contrary to majority of other botanical types of honeydew 

honey that are produced from a secretion of plant sucking insects, oak honey may also be obtained by 

collecting of sugary substances that seep out of oak under stress conditions (Gonzales-Paramas et al., 

2007). Previously reported results indicate a high variability of TPC values for honeydew honeys, 

however they mostly contain higher amounts of phenolic compounds compared to blossom honeys 

(Pita-Calvo et al., 2017; Kachlicki, Piasecka, Stobiecki, & Marczak, 2016; Can et al., 2015; Alves, 

Ramos, Gonçalves, Bernardo, & Mendes, 2013). 

The radical-scavenging activity of 2,2-diphenyl-1-picrylhydrazyl was found to range from 12.20 

to 48.89% (Table 2). Some differences between the mean values of antioxidant activity for samples of 

specific botanical origin are noted, with a trend identic to those marked in TPC. RSA mean values for 

silver fir and conifers were the lowest and similar (13.14% and 12.20%, respectively), while the highest 
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value was found for the Hungarian oak honey (48.89%). Generally, species from Quercus family 

showed higher biological activity compared to other investigated botanical origins, similar to the 

previously reported results for other oak tree honey samples (Can et al., 2015; Gonzales-Paramas et al., 

2007). Quercus sps. samples were darker in colour compared to other botanical types of honeydew 

honey, which was also confirmed by other authors (Can et al., 2015; Gonzales-Paramas et al., 2007). 

Dark-coloured honeys have higher antioxidant activity (Pita-Calvo et al., 2017; Alves et al., 2013).  

The correlation between the TPC and RSA resulted in a linear model

   TPCRSA 002.0032.0049.0209.0  with statistical parameters: r = 0.8598, s = 0.18, t = 13.04 

(tcr(64) = 1.99), F = 170.12. A significant correlation between RSA and TPC pointed out the significant 

contribution of flavonoids and phenolic acids, among all active phytochemicals, in antioxidant potential 

of the honeydew honey. Similar conclusion was demonstrated by other authors (Pita-Calvo et al., 

2017).  

Cyclic voltammograms of the selected honeydew honeys are shown in Figure 2. The area under 

curves (charges of the anodic wave) found in all voltammograms were used for estimation of 

antioxidant capacity (Table 2). In the voltammograms of honeydew samples up to four oxidation peaks 

were observed in three different regions: around -0.1 – 0.1 V (1); around 0.3 – 0.6 V (2) and around 0.9 

V (3). Peaks at highest potential can be attributed to the high presence of HPA and CouA. Middle 

potential regions can be attributed to the presence of ferulic acid and sinapic acid and their synergetic 

effect in some of the samples. Low intensity peaks at lowest potential can be attributed to the presence 

of rutin, which provides oxidation behaviour at this potential (Simić, Manojlović, Šegan, & Todorović, 

2007). Additionally, CV indicated the existence of several oxidation processes which vary with the 

botanical origin of honeydew honey and consequently different antioxidant capacity of the samples. As 

for RSA test, the highest values were obtained for Hungarian oak, i.e. Quercus sps. samples, while the 

smallest were marked in the case of silver fir and conifers. Estimated results were also compared with 



  

19 
 

those obtained for the RSA values. The comparison of the electrochemical approach with RSA clearly 

indicated that CV values fit well with RSA test (Table 2). Cyclic voltammetry data showed a very good 

positive correlation with the antioxidant capacity (    CVRSA 06.004.22.15.1  , r = 0.9499, s = 

4.43, t = 33.75 (tcr(64) = 1.99), F = 1139.15) determined spectrophotometrically.  

Both, total phenolic content and antioxidant activity indicated the existing of different chemical 

profiles of honeydew honey samples according to their botanical origin and pointed out on possibility 

of authenticity assessment with respect to description, i.e. botanical origin. Additionally, it was 

confirmed that CV as highly attractive, convenient, and sensitive method could be used in the analysis 

of bioactive compounds as well as the determination of antioxidant capacity. It could be a method of 

choice for determination of biological activity of honeydew honey in order to exceed the problems 

connected with spectroscopic methods (Halouzka, Tarkowski, & Zeljković, 2016). 

3.5. Botanical origin of honeydew honey 

Descriptive statistics provided information regarding general phenolic composition and indicate 

some specific compounds and parameters that can differentiate the samples of various botanical 

origins. However, the mostly influential factors that would enable decisive characterization of the 

botanical origin of honeydew honey were not marked. In that sense, Kruskal-Wallis test and Principal 

Component Analysis (PCA) were applied to differentiate groups of samples according to their botanical 

origin. 

Kruskal-Wallis test was used to compare the medians and variances of 25 quantified phenolic 

compounds and three quality control parameters (TPC, RSA and CV) for five varieties of honey (Silver 

fir, Evergreen oak, Hungarian oak, Montpellier maple and conifers). Based on the results presented in 

Table S3 (Supplementary material), parameters: TPC, RSA and CV, and PrA, HPA, VA, CouA, Nar, 

FA, Lut, Que, Api, Gen and Kfrl, whose χ2 values exceed critical one. i.e. p values were below 0.05, 

can be selected as the most discriminating factors. According to multiple-comparison Z-value test, 
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honeydew honeys of different botanical origins which showed mutual significant difference were 

denoted in parentheses (Table S3). The results indicated that two physicochemical parameters (EC and 

SR) that are, among all others, the only parameters which discriminate honeydew honey from blossom 

honey, also the parameters which could be used for the assessment of botanical origin of honeydew 

honey. Additionally, acidity parameters indicated different proportion and profiles of organic acids and 

amino acids according to botanical origin of the analysed samples. Ten phenolic compounds and 

antioxidant capacity were also marked as factors that could be used for the classification and 

differentiation of five botanical origins of honeydew honey samples. Majority of parameters indicated 

differences between silver fir and conifers compared to Quercus sps. samples (Table S3). 

In order to get the insight into data structure and to confirm whether phenolic profile, together 

with antioxidant activity, on one side, and the intensities of current obtained from cyclic 

voltammograms, could differentiate the honeydew honeys according to their botanical origin, the data 

were subjected to pattern recognition analysis.  

PCA performed on data of 25 phenolic compounds and three quality control parameters, resulted 

in a five-component model which explains 68.45% of the total data variance. The principal components 

(PC’s) accounted for approximately similar data variances (from PC1 to PC5 – 24.17%, 16.61%, 

12.51%, 9.09%, 6.07%, respectively). Concerning the botanical origin of the investigated honeydew 

honey samples the most informative PC’s were PC2 and PC3. Score plot (Figure 3a) revealed natural 

clustering of Quercus sps., Evergreen oak and Hungarian oak, distinguished from each other and from 

Silver fir and conifers samples. Silver fir samples formed a compact natural cluster on the opposite part 

of score plot compared to Quercus species, but however overlapped with conifers samples which were 

widespread on big part of the plot indicating high variability in chemical profile. This was expected 

since conifers samples contained significant percent of silver fir exudates among other conifer 

botanical species (spruce, etc.). Samples of Montpellier maple were placed between groups of Quercus 
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species and conifers with silver fir and similar to conifers show heterogeneous phenolic composition. 

Grouping tendency of Quercus sps samples was imposed with total phenolic content and antioxidant 

activity and additionally with Que, Narn, Que-3-rha, Rut, Kfrl and Kfrd (Figure 3b). Differentiation of 

Hungarian oak was particularly imposed by high value of three quality control parameters indicating 

specific nutritive value of this rare honey type. Hungarian oak tree is distributed throughout southeast 

Europe and Asia Minor, while the western border is in Požega valley, Kutjevo, Croatia. This honeydew 

honey is specifically produced only there. Sweet sap with foam formed at the places where the green 

acorns were discarded, is gathered directly by the bees and processed into this dark honey. The specific 

production of the sap obviously results in unique phenolic content and antioxidant activity. The most 

influential parameters discriminating silver fir and conifers samples from other botanical species were 

Api, CQA, Gen and HPA. It must be emphasize that HPA could be considered as marker of silver fir 

honeydew honey due to its significantly higher content in silver fir compared to other botanical origins 

(also confirmed by Kruskal-Wallis Multiple Comparison Z-test). Its high content in conifers is due to 

the high percent of silver fir in this specific type of honeydew honey.  

All samples were grouped alongside the PC2 and in that sense the variables with the highest 

influence on this PC determined markers of certain botanical origin (Figure S3, Supplementary 

material). Phenolic compounds positively correlated with PC2 assessed Quercus sps, while those with 

the highest negative influence estimated Silver fir and conifers. Although accounting for the highest 

variability among the data, PC1 could not differentiate among investigated botanical origins due to the 

similar, positive influence of the majority of the variables on it (Figure S3). Additionally, two groups of 

parameters with the highest positive (VA, Aca, Genkw and HBA), i.e. negative (Chry, Pin and Gal) 

influence on PC3 determined conifers and maybe suggested the markers of some particular source of 

origin included in this specific type of honeydew honey (Figures 3b and S3).  
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Due to the fact that honey samples present complex natural mixtures that contain vast number of 

compounds, differentiation and classification are difficult to perform with distinct separation among 

groups, particularly observing only one class of compounds, such as phenolic compounds, not 

combining several groups of parameters. Conventional quality parameters mainly gave a substantially 

better classification results when apply alone, while all other analytical parameters should combine to 

evaluate better results (Manzanares, García, Galdón, Rodríguez, & Romero, 2011; Habib, Meqbali, 

Kamal, Souka, & Ibrahim, 2014). The obtained results are rare example of successful botanical 

discrimination of honeydew honey based only on phenolic content. Fingerprint analysis proved to be a 

good source of information for an assay of authenticity and quality of food (Gašić et al, 2015).  

Recently, cyclic voltammetry profiles together with multivariate chemometric technique were 

successfully used for characterization of propolis (Ristivojević et al, 2017). A PCA was applied on data 

of 64 honeydew honey samples and 1400 data point generated from oxidation current in order to 

evaluate different types of honeydew honey. First five PCs described 86.43% of variability (PC1 58.63 

and PC2 18.89%) among data. PC2 clearly distinguished the Hungarian honey samples from all others, 

while PC1 differentiate Evergreen oak samples from Silver fir and conifers which form overlapped 

natural clusters (Figure 4a). Samples of Montpellier maple were dissipated over broader area of score 

plot and could not be distinguished from other species.  

Oxidation potentials at 0.670 and 0.096 are the major factor which leads to the grouping tendency 

of Hungarian oak samples, since it shows a highest negative impact on PC1, while positive potential at 

0.385 differentiate all other samples. PC1 was negatively contributed by peak at 0.980 at represented 

the main potential for grouping of Evergreen oak and group of silver fir and conifers samples (Figure 

4b). 
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Therefore, PCA showed that data on phenolic compounds content and CV profile are able to 

provide enough information to allow the natural clustering and distinction of honeydew honeys 

originating from different botanical origins. 

 

4. Conclusion 

According to our best knowledge, so far there has been no published articles that comprises so 

detailed information about the phenolic composition and antioxidant capacity of honeydew honey of 

particular botanical origin (Hungarian and Evergreen oak, Montpellier maple, and Silver fir).  

The physicochemical characteristics of all honeydew honey samples analysed in this study can be 

considered to be within the parameters expected for honeydew honeys in general and constitute a 

quality product within national and international parameters. Additionally, these parameters indicated 

that samples were authentic with respect to honey production and were obtained from secretion 

produced by certain trees and other plants or from excretions of plant-sucking insects. UHPLC–LTQ 

OrbiTrap MS and UHPLC-DAD-MS/MS analysis provided information about a numerous phenolic 

compounds specific for a particular botanical origin of honeydew honeys. Also, among numerous 

antioxidant constituents, flavonoids and phenolic acids could be identified as components that are 

mainly responsible for the antioxidant activity in honeydew honey samples. The study reports that 

various species of oak (evergreen oak and Hungarian oak) showed high phenolic content and high 

antioxidant capacity associated with it. Results from this study could be used for more precise 

definition of quality parameters, as well as confirmation of authenticity in terms of botanical origin. 

The results confirm the possibility of authenticity assessment of honeydew honey based only on 

phenolic profile and antioxidant capacity, and additionally the advantages of application of cyclic 

voltammetry for determination of biological activity of honeydew honey over the spectroscopic 

methods. It must be emphasized that the conclusions revealed for Hungarian oak and Montpellier 
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maple are considered as preliminary due to relatively lesser number of samples and further studies 

should surely be applied. 
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Figure caption 

Figure 1. Base peak chromatograms of phenolic compounds identified in: A) Evergreen oak; B) 

Hungarian oak; and C) Montpellier maple honeydew honey samples.  

Figure 2. Cyclic voltammograms of honeydew honey samples with separated potential regions. 

Figure 3. Principal component analysis applied on data on phenolic compounds content, a) score plot, 

b) loading plot. 

Figure 4. Principal component analysis applied on data of cyclic voltammetry profile, a) score plot, b) 

loading plot. 
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Table 1. High resolution MS data and negative ion MS
2
, MS

3
, and MS

4
 fragmentation of phenolic compounds identified in honeydew honeys. 

No 
tR, 

min 
Compound name 

Molecular 

formula, 

[M–H]
–
 

Calculated 

mass, 

[M–H]
–
 

Exact 

mass,  

[M–H]
–
 

Δ 

mDa 

MS
2
 Fragments, (% Base 

Peak) 

MS
3
 Fragments, (% 

Base Peak) 

MS
4
 Fragments, (% Base 

Peak) 

1 4.20 
Dihydroxybenzoic acid 

hexoside
* C13H15O9

– 315.07216 315.07083 1.33 
153(100), 152(50), 

109(15), 108(10) 
109(100) 84(100), 81(60) 

2 4.44 Protocatechuic acid
a,*

 C7H5O4
– 153.01933 153.01848 0.85 109(100) 81(100), 68(25), 65(15) − 

3 4.51 
Hydroxybenzoic acid 

hexoside I
* C13H15O8

– 299.07724 299.07584 1.40 137(100) 93(10) − 

4 4.74 Caffeic acid hexoside I
*
 C15H17O9

– 341.08781 341.08521 2.60 179(100), 161(35), 135(10) 135(100) 
135(10), 117(15), 107(100), 

91(35) 

5 4.91 
Aesculetin 6-O-glucoside 

(Aesculin)
a,*

 
C15H15O9

– 339.07216 339.07034 1.82 177(100) 
177(5), 149(10), 

133(100), 105(10), 89(5) 
89(100) 

6 4.92 
Hydroxybenzoic acid 

hexoside II
*
 

C13H15O8
– 299.07724 299.07626 0.98 137(100) 93(10) − 

7 5.10 Caffeic acid hexoside II
*
 C15H17O9

– 341.08781 341.08615 1.66 179(100), 161(35), 135(10) 135(100) 
135(10), 117(15), 107(100), 

91(35) 

8 5.26 5-O-Caffeoylquinic acid
a,*

 C16H17O9
– 353.08781 353.08566 2.15 191(100), 179(5) 

173(75), 127(100), 

111(40), 93(60), 85(90) 
109(30), 99(60), 85(100) 

9 5.41 p-Hydroxybenzoic acid
a,*

 C7H5O3
– 137.02442 137.02359 0.83 109(10), 93(100) 93(100) − 

10 5.48 Gentisic acid
a,*

 C7H5O4
– 153.01933 153.01837 0.96 109(100), 107(10) 95(10), 81(100), 68(75) − 

11 5.62 
p-Hydroxyphenylacetic 

acid
a,*

 
C8H7O3

– 151.04007 151.03914 0.93 136(100), 95(5) 108(25), 92(100) 108(100) 

12 5.63 Vanillic acid
a,*

 C8H7O4
– 167.03498 167.03398 1.00 

153(10), 152(80), 124(10), 

123(100), 108(20) 
108(100) 123(30), 80(35), 78(100) 

13 5.77 Aesculetin
a,*

 C9H5O4
− 177.01933 177.01877 0.56 

147(10), 135(100), 

133(60), 131(30), 105(10) 

151(10), 107(10), 94(10), 

91(100), 71(10) 
− 

14 5.80 Caffeic acid
a,*

 C9H7O4
− 179.03498 179.03389 1.09 

135(100), 117(10), 91(20), 

59(15) 
107(100), 59(50) − 

15 5.83 
Quercetin 3-O-(2"-

hexosyl)hexoside 
C27H29O17

– 625.14102 625.13940 1.62 
505(20), 463(20), 445(30), 

301(90), 300(100) 

271(100), 255(50), 

179(5), 151(5) 

271(10), 253(10), 243(100), 

227(50), 215(20) 

16 6.13 
Methoxy kaempferol 3-O-

(2"-hexosyl)hexoside
*
 

C28H31O17
– 639.15667 639.15479 1.88 

624(20), 459(90), 444(30),  

315(100), 300(60) 
300(100) 271(100), 255(55), 166(15) 

17 6.39 
Kaempferol 7-O-(6"-

hexosyl)hexoside
*
 

C27H29O16
– 609.14611 609.14380 2.31 285(100) 

257(100), 241(50), 

229(40), 213(30), 

151(70) 

255(10), 239(30), 229(100), 

163(40) 

18 6.44 

Quercetin 3-O-(6"-

rhamnosyl)glucoside 

(Rutin)
a,*

 

C27H29O16
– 609.14611 609.14343 2.68 

343(5), 301(100), 300(30), 

271(10), 255(5) 

273(25), 257(20), 

179(100), 151(75) 
151(100) 

19 6.45 
Kaempferol 3-O-(2"-

rhamnosyl)hexoside 
C27H29O15

– 593.15119 593.14948 1.71 
429(50), 327(20), 285(80), 

284(100), 255(10) 
255(100), 227(10) 227(100), 211(60) 
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20 6.68 p-Coumaric acid
a,*

 C9H7O3
– 163.04007 163.03917 0.90 119(100) 

119(60), 101(20), 93(25), 

91(100), 72(10) 
− 

21 6.71 Quercetin 3-O-glucoside
a,*

 C21H19O12
– 463.08820 463.08627 1.93 301(100), 300(30) 

273(25), 257(20), 

179(100), 151(75) 
151(100) 

22 7.02 Sinapic acid
a,*

 C11H11O5
− 223.06120 223.05992 1.28 208(100), 179(30), 164(20) 

193(10), 164(100), 

149(15), 135(5) 
149(100), 135(35) 

23 7.03 

Naringenin 7-O-(2"-

rhamosyl)glucoside 

(Naringin)
a,*

 

C27H31O14
– 579.17190 579.17230 0.64 

459(100), 357(5), 313(25), 

271(45), 235(10) 

441(30), 357(100), 

339(30), 271(55), 

235(85) 

339(100), 169(20), 151(50), 

125(20) 

24 7.04 Ferulic acid
a,*

 C10H9O4
– 193.05063 193.04973 0.90 178(70), 149(100), 134(50) 134(100) 106(100) 

25 7.17 
Quercetin 3-O-

rhamnoside
a, *

 
C21H19O11

– 447.09329 447.09357 0.63 301(100), 300(35), 284(20) 
273(25), 257(20), 

179(100), 151(75) 
151(100) 

26 7.90 Coniferyl aldehyde
a,*

 C10H9O3
− 177.05572 177.05460 1.12 163(10), 162(100) 

134(100), 133(40), 

120(20), 106(30) 
106(100), 65(80) 

27 7.98 Luteolin 7-O-rhamnoside C21H19O10
– 431.09837 431.09744 0.93 286(10), 285(100) 

257(30), 241(100), 

217(75), 199(85), 

175(95) 

241(5), 226(15), 213(30), 

198(100), 185(20) 

28 8.24 Quercetin
a
 C15H9O7

− 301.03538 301.03384 1.54 
271(50), 255(20), 

179(100), 151(80), 107(5) 
151(100) 107(100), 83(10) 

29 8.40 
Kaempferol 7-O-

rhamnoside
 C21H19O10

– 431.09837 431.09671 1.66 
286(10), 285(100), 

284(20), 257(5), 151(5) 

257(40), 241(30), 

213(10), 151(100), 

107(10) 

107(100), 83(10), 65(5) 

30 8.59 Eriodictyol
a, *

 C15H11O6
– 287.05611 287.05582 1.01 

269(10), 253(20), 241(20), 

199(10), 151(100) 
107(100), 83(10), 65(10) − 

31 8.69 Luteolin
a,*

 C15H9O6
− 285.04046 285.03909 1.37 

257(40), 241(100), 

217(50), 199(70), 175(70) 

255(50), 227(100), 

211(75), 197(35), 

183(85) 

− 

32 9.33 Tectochrysin C16H11O4
− 267.06628 267.06500 1.28 252(100), 224(20) 224(100), 180(5) 195(5), 180(100) 

33 9.44 Naringenin
a, *

 C15H11O5
− 271.06120 271.05994 1.26 177(10), 151(100) 107(100) 65(100) 

34 9.52 Apigenin
a,*

 C15H9O5
− 269.04554 269.04462 0.92 225(5), 177(15), 151(100) 65(100) − 

35 9.53 Genistein
a, *

 C15H9O5
− 269.04554 269.04590 1.34 

225(100), 201(30), 

183(20), 181(10), 151(40) 

197(50), 183(50), 

181(100), 169(20), 

157(10) 

− 

36 9.66 Methoxy kaempferol
*
 C16H11O7

– 315.05103 315.04959 1.44 301(20), 300(100), 181(5) 

272(100), 256(60), 

216(20), 202(10), 

166(35) 

244(100), 216(30), 166(50), 

137(40), 110(10) 

37 9.70 Kaempferol
a,*

 C15H9O6
− 285.04046 285.03885 1.61 255(100), 227(10) 

211(100), 195(5), 

167(15) 
211(40), 137(100) 

38 9.74 Pinobanksin
a,*

 C15H11O5
− 271.06120 271.05883 2.37 

253(100), 243(10), 

225(25), 215(15), 197(20) 

225(90), 205(50), 

197(100), 185(15), 

181(20) 

179(65), 169(100), 151(85) 

39 9.87 Isorhamnetin
a,*

 C16H11O7
– 315.05103 315.04910 1.93 301(20), 300(100) 283(30), 271(100), 243(100), 227(70), 216(10), 
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255(50), 227(52), 

151(90) 

199(20) 

40 9.94 Chrysoeriol
a,*

 C16H11O6
– 299.05611 299.05493 1.18 285(10), 284(100) 255(100), 227(100) 

255(10), 237(100), 211(90), 

187(10) 

41 10.19 Dimethyl quercetin C17H13O7
– 329.06668 329.06500 1.68 315(10), 314(100), 299(5) 

299(75), 285(100), 

271(80), 257(15), 

243(25) 

270(100) 

42 10.65 Rhamnetin
*
 C16H11O7

– 315.05103 315.04916 1.87 
300(40), 207(10), 193(40), 

165(100), 121(10) 

150(50), 121(100), 

97(60), 91(15), 65(20) 
91(100) 

43 10.67 Rhamnocitrin C16H11O6
– 299.05611 299.05447 1.64 284(100) 256(100) 

239(100), 227(60), 212(70), 

200(80), 188(90) 

44 10.75 Genkwanin
a,*

 C16H11O5
– 283.06119 283.05994 1.25 268(100), 239(80), 211(20) 239(100), 211(20) 239(10), 211(100), 196(70) 

45 11.02 Tricin C17H13O7
– 329.06668 329.06488 1.80 315(10), 314(100) 

299(100), 285(5), 

271(10) 
271(100), 255(5), 243(5) 

46 11.30 Benzyl caffeate C16H13O4
– 269.08193 269.08063 1.30 

225(10), 179(10), 178(70), 

161(10), 134(100) 

121(90), 111(40), 

106(100) 
− 

47 11.61 Chrysin
a,*

 C15H9O4
− 253.05063 253.04953 1.10 

253(30), 209(100), 

181(20), 165(15), 151(15) 

181(100), 165(30), 

153(20), 141(10) 

171(10), 153(100), 152(10), 

139(50) 

48 11.70 Pinocembrin
a,*

 C15H11O4
− 255.06628 255.06508 1.20 

213(100), 187(15), 

151(30), 145(10), 107(5) 

185(100), 169(20), 

145(20) 

185(10), 157(15), 143(100), 

141(50), 117(15) 

49 11.82 Kaempferide
a,*

 C16H11O6
– 299.05611 299.05484 1.27 

284(100), 271(20), 255(5), 

240(5), 165(20) 

255(25), 240(25), 

227(20), 164(40), 

151(100) 

107(100), 83(10), 65(20) 

50 11.84 Galangin
a,*

 C15H9O5
− 269.04554 269.04425 1.29 

241(40), 227(80), 

213(100), 197(90), 169(50) 

211(10), 198(20), 

185(40), 169(100), 

143(25) 

− 

51 12.20 Acacetin
a,*

 C16H11O5
– 283.06119 283.05994 1.25 268(100) 239(100), 211(20) 239(10), 211(100), 196(70) 

52 12.72 
Pinobanksin 3-O-

propionate 
C18H15O6

– 327.08741 327.08551 1.90 271(5), 253(100) 

225(10), 209(100), 

181(20), 165(15), 

151(10) 

181(100), 180(80), 165(60), 

153(30), 141(10) 

a Confirmed using standards, the other compounds were identified according high resolution mass spectrometry (HRMS) and MSn; No - peak numbers (corresponding to 

Figure 1 and Table S2), tR – retention time; Δ mDa – mean mass accuracy errors. 

* Compounds identified in all samples

Table 2. Parameters of descriptive statistics for the content of the individual phenolic compounds (mg/kg), total phenolic content (mg GAE/g), radical 

scavenging activity (%) and cyclic voltammetry activity (%) in the honeydew honey  

 

Botanical origin 
Param

eter 

Phenolic compounds
a,b 

PrA CQA HBA HPA CA VA Rut CouA Nar FA SA 
Que-

3-rha 
Erio Lut 
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Abies alba Mill. 

(n = 22) 

Mean 0.175 0.021 0.348 3.514 0.211 0.181 0.002 0.760 0.021 0.455 0.010 0.002 0.016 0.016 

Median 0.185 0.015 0.314 3.933 0.223 0.183 0.007 0.710 0.024 0.325 0.009 0.001 0.018 0.011 

St dev 0.100 0.020 0.200 3.000 0.100 0.070 0.005 0.500 0.020 0.400 0.010 0.005 0.006 0.030 

Min 0.004 0.004 0.003 0.003 0.005 0.003 0.002 0.004 0.004 0.004 0.006 0.002 0.004 0.002 

Max 0.373 0.077 0.682 6.869 0.390 0.293 0.015 2.111 0.047 1.337 0.034 0.014 0.022 0.111 

Conifers 

(n = 17) 

Mean 0.117 0.032 0.410 2.429 0.247 0.277 0.002 0.902 0.033 0.601 0.011 0.005 0.020 0.037 

Median 0.130 0.019 0.381 2.180 0.229 0.222 0.007 0.852 0.028 0.625 0.011 0.003 0.018 0.025 

St dev 0.080 0.030 0.200 3.000 0.100 0.200 0.004 0.500 0.020 0.300 0.020 0.006 0.020 0.040 

Min 0.004 0.008 0.251 0.154 0.110 0.125 0.002 0.284 0.017 0.122 0.006 0.002 0.004 0.002 

Max 0.251 0.082 0.643 7.292 0.428 0.739 0.015 2.076 0.071 1.169 0.037 0.021 0.058 0.134 

Quercus ilex L. 

(n = 15) 

Mean 0.051 0.013 0.448 0.131 0.210 0.171 0.006 0.581 0.018 0.328 0.015 0.006 0.021 0.024 

Median 0.066 0.011 0.422 0.125 0.191 0.167 0.006 0.470 0.017 0.256 0.016 0.004 0.017 0.013 

St dev 0.050 0.020 0.100 0.050 0.100 0.060 0.006 0.500 0.020 0.400 0.020 0.006 0.009 0.040 

Min 0.004 0.004 0.317 0.054 0.148 0.097 0.003 0.284 0.004 0.123 0.006 0.006 0.016 0.002 

Max 0.119 0.045 0.584 0.222 0.550 0.286 0.016 2.341 0.057 1.591 0.036 0.014 0.042 0.160 

Quercus frainetto 

Ten. 

(n = 4) 

Mean 0.299 0.026 0.412 0.254 0.273 0.250 0.007 0.900 0.041 0.590 0.006 0.008 0.019 0.006 

Median 0.354 0.018 0.405 0.260 0.280 0.253 0.009 0.848 0.039 0.557 0.006 0.009 0.019 0.007 

St dev 0.300 0.030 0.080 0.100 0.200 0.030 0.005 0.300 0.020 0.400 0.000 0.007 0.003 0.005 

Min 0.004 0.006 0.323 0.131 0.116 0.212 0.004 0.647 0.028 0.252 0.006 0.006 0.016 0.002 

Max 0.488 0.062 0.515 0.366 0.420 0.281 0.010 1.255 0.059 0.991 0.006 0.014 0.022 0.010 

Acer 

monspessulanum L. 

(n = 6) 

Mean 0.041 0.013 0.361 0.529 0.165 0.227 0.004 0.582 0.026 0.335 0.008 0.005 0.013 0.050 

Median 0.024 0.013 0.294 0.230 0.158 0.159 0.004 0.585 0.018 0.327 0.005 0.006 0.018 0.030 

St dev 0.050 0.009 0.300 0.700 0.040 0.300 0.005 0.200 0.030 0.200 0.020 0.006 0.011 0.060 

Min 0.004 0.004 0.162 0.065 0.128 0.094 0.002 0.308 0.004 0.175 0.006 0.006 0.004 0.005 

Max 0.119 0.022 0.802 1.700 0.208 0.672 0.010 0.908 0.079 0.475 0.025 0.014 0.024 0.138 

 

Table 2. Continuation 

Botanical origin 
Param

eter 

Phenolic compounds
a,b 

TPC RSA CV
c
 

Que Narn Api Gen Kfrl Chry Pin Aca Genkw Gal Kfrd 

Abies alba Mill. 

(n = 22) 

Mean 0.412 0.028 0.068 0.029 0.058 0.241 0.321 0.011 0.014 0.086 0.008 0.61 13.14 25.42 

Median 0.358 0.025 0.050 0.016 0.061 0.231 0.320 0.010 0.013 0.075 0.001 0.58 10.88 20.59 

St dev 0.400 0.030 0.060 0.040 0.040 0.200 0.300 0.006 0.007 0.080 0.006 0.17 4.62 9.07 

Min 0.008 0.002 0.003 0.003 0.020 0.002 0.002 0.006 0.004 0.003 0.002 0.43 8.63 17.06 

Max 1.414 0.065 0.175 0.139 0.119 0.439 0.956 0.025 0.029 0.312 0.016 1.14 23.32 50.29 

Conifers Mean 0.575 0.039 0.111 0.036 0.098 0.231 0.300 0.011 0.015 0.096 0.008 0.57 12.20 22.45 
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(n = 17) Median 0.426 0.031 0.077 0.022 0.073 0.208 0.185 0.010 0.012 0.061 0.009 0.57 11.15 20.29 

St dev 0.500 0.030 0.090 0.040 0.070 0.200 0.300 0.010 0.020 0.100 0.004 0.14 4.23 10.01 

Min 0.009 0.011 0.026 0.003 0.027 0.041 0.035 0.006 0.004 0.012 0.002 0.29 8.64 9.71 

Max 1.779 0.085 0.338 0.106 0.250 0.630 1.104 0.045 0.058 0.357 0.016 0.79 25.72 50.59 

Quercus ilex L. 

(n = 15) 

Mean 1.103 0.069 0.032 0.008 0.155 0.272 0.298 0.007 0.011 0.100 0.011 1.19 26.58 52.82 

Median 0.960 0.035 0.200 0.003 0.134 0.240 0.226 0.009 0.012 0.069 0.010 1.28 26.51 53.68 

St dev 0.700 0.090 0.040 0.020 0.200 0.200 0.300 0.008 0.008 0.100 0.005 0.25 5.20 10.34 

Min 0.410 0.010 0.009 0.003 0.060 0.058 0.066 0.006 0.004 0.020 0.002 0.79 17.92 35.00 

Max 3.194 0.282 0.127 0.043 0.595 0.667 1.161 0.020 0.023 0.414 0.019 1.57 35.32 67.94 

Quercus frainetto 

Ten. 

(n = 4) 

Mean 1.093 0.078 0.039 0.003 0.103 0.198 0.267 0.014 0.016 0.107 0.011 1.60 48.89 94.12 

Median 1.219 0.090 0.036 0.003 0.106 0.175 0.270 0.016 0.019 0.121 0.014 1.60 48.89 94.12 

St dev 0.600 0.050 0.025 0.000 0.045 0.200 0.200 0.006 0.007 0.062 0.009 0.20 3.83 8.32 

Min 0.280 0.016 0.012 0.003 0.046 0.089 0.076 0.005 0.006 0.020 0.002 1.46 46.18 88.24 

Max 1.656 0.116 0.070 0.003 0.155 0.353 0.452 0.019 0.021 0.166 0.017 1.74 51.59 100.00 

Acer 

monspessulanum L. 

(n = 6) 

Mean 0.576 0.027 0.051 0.004 0.091 0.237 0.258 0.015 0.017 0.085 0.008 0.91 23.43 50.47 

Median 0.667 0.020 0.041 0.003 0.085 0.234 0.240 0.013 0.016 0.074 0.009 1.04 22.98 44.12 

St dev 0.308 0.030 0.030 0.003 0.060 0.100 0.200 0.008 0.008 0.057 0.005 0.29 4.65 18.27 

Min 0.092 0.005 0.030 0.003 0.020 0.106 0.101 0.006 0.007 0.033 0.002 0.44 18.88 35.88 

Max 0.908 0.070 0.098 0.010 0.181 0.405 0.554 0.026 0.031 0.183 0.014 1.15 30.96 82.35 

a Phenolic compounds: PrA – Protocatechuic acid; CQA – 5-O-Caffeoylquinic acid; HBA – p-Hydroxybenzoic acid; HPA – p-Hydroxyphenylacetic acid; CA – Caffeic 

acid; VA – Vanillic acid; Rut – Rutin; CouA – p-Coumaric acid; Nar – Naringin; FA – Ferulic acid; SA – Sinapic acid; Que–3 rha – Quercetin 3-O-rhamnoside; Erio – 

Eriodictyol; Lut – Luteolin; Que – Quercetin; Narn – Naringenin; Api – Apigenin; Gen – Genistein; Kfrl – Kaempferol; Chry – Chrysin; Pin – Pinocembrin; Aca – 

Acacetin; Genkw – Genkwanin; Gal – Galangin; Kfrd – Kaempferide.  

b LOQ values were: 0.002 mg/kg for the Rut, Que-3-rha, Lut, Narn, Chry, Pin, and Kfrd; 0.003 mg/kg for HBA, HPA, VA, CouA, FA, Erio, Api, Gen, Genkw, and Gal; 

0.004 mg/kg for PrA, CQA, CA, and Nar; 0.005 mg/kg for SA, Que, Kfrl, and Aca. 

c Sample with highest value was labelled as 100%. 



  

35 
 

 

Figure 1. 
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Figure 2. 

 

 

Figure 3.  
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Figure 4. 
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Highlights: 

 Authenticity assessment of 64 honeydew honey samples of specific botanical origin. 

 UHPLC–LTQ OrbiTrap MS and UHPLC-DAD MS/MS analysis of phenolic compounds. 

 Identification of a total of 52 phenolic compounds and quantification of 25 of them. 

 Evaluation of the antioxidant capacity by spectroscopic and electrochemical methods. 

 Cyclic voltammetry for determination of biological activity of honeydew honey.  

 


