

Konstantinović, J. M.; Selaković, M.; Srbljanovic, J.; Djurkovic-Djakovic, O.; Bogojević, K.; Sciotti, R.; Šolaja, B. A. Antimalarials with Benzothiophene Moieties as Aminoquinoline Partners. *Molecules* **2017**, 22 (3). https://doi.org/10.3390/molecules22030343

Supplementary Material - I

Antimalarials with benzothiophene moieties as aminoquinoline partners

Jelena Konstantinović¹, Milica Videnović², Jelena Srbljanović³, Olgica Djurković-Djaković³, Katarina Bogojević¹, Richard Sciotti⁴ and Bogdan Šolaja^{1,*}

- ¹ Faculty of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia; jelena_konstantinovic@chem.bg.ac.rs (J.K.), bogojevickatarina@gmail.com (K.B.), bsolaja@chem.bg.ac.rs (B.Š.)
- ² Innovation center of the Faculty of Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia; milica_videnovic @chem.bg.ac.rs (M.V.)
- ³ Institute for Medical Research, University of Belgrade, Dr. Subotica 4, 11129 Belgrade, Serbia; jelena.srbljanovic@imi.bg.ac.rs (J.S.); olgicadj@imi.bg.ac.rs (O.DjDj.)
- ⁴ Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States; richard.j.sciotti.civ@mail.mil (R.S.)
- * Correspondence: bsolaja@chem.bg.ac.rs; Tel.: +381-11-263-86-06

Table of contents

Chemistry	S3
In vitro antiplasmodial activity	S33

Chemistry

Compounds were analyzed for purity (HPLC) using a Agilent 1200 HPLC system equipped with Quat Pump (G1311B), Injector (G1329B) 1260 ALS, TCC 1260 (G1316A) and Detector 1260 DAD VL+ (G1315C). HPLC analysis for each compound was performed in two diverse systems. All compounds were ≥95% pure.

Method A: Zorbax Eclipse Plus C18 4.6 × 150 mm, 1.8μ, S.N. USWKY01594 was used as the stationary phase. Eluent was made of the following solvents: 0.2% formic acid in water (A) and methanol (B). The analysis were performed at the UV max of the compounds (at 330 nm for compounds 8, 9, 12, 13, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 41, 44 and 52) to maximize selectivity. Compounds were dissolved in methanol, final concentrations were ~1 mg/mL. Flow rate was 0.5 mL/min.

Compounds 8, 9, 13, 25, and 26 were eluted using gradient protocol: 0-1 min 95%A, 1-6 min 95%A \rightarrow 5%A, 6-11 min 5%A, 11-14 min 5%A \rightarrow 95%A.

Compounds **12**, **27**, **28**, **29**, **30**, **31** and **32** were eluted using gradient protocol: 0-1 min 95%A, 1-6 min $95\%A \rightarrow 5\%A$, 6-11 min 5%A, 11-14 min $5\%A \rightarrow 95\%A$, 14-15 min 95%A.

Compound 23 was eluted using gradient protocol: 0-1 min 95%A, 1-6 min 95%A \rightarrow 5%A, 6-11 min 5%A, 11-14 min 5%A \rightarrow 95 %A, 14-18 min 95%A.

Compound **24** was eluted using gradient protocol: 0-1 min 95%A, 1-6 min 95%A \rightarrow 5%A, 6-11 min 5%A, 11-14 min 5%A \rightarrow 95%A, 14-16 min 95%A.

Compound **41** was eluted using gradient protocol: 0-1 min 95%A, 1-2 min 95%A \rightarrow 5%A, 2-10 min 5%A, 10-11 min 5%A \rightarrow 95%A, 11-13 min 95%A.

Compound 44 was eluted using gradient protocol: 0-1.5 min 95%A, 1.5-5 min 95%A \rightarrow 5%A, 5-16 min 5%A \rightarrow 95%A, 18-19 min 95% A.

Compound **52** was eluted using gradient protocol: 0-2 min 95%A, 2-6 min 95%A \rightarrow 5%A, 6-17 min 5%A, 17-19 min 5%A \rightarrow 95%A, 19-21 min 95% A.

Method B: Zorbax Eclipse Plus C18 4.6 x 150 mm, 1.8μ, S.N. USWKY01594 was used as the stationary phase. Eluent was made of the following solvents: 0.2% formic acid in water (A) and acetonitrile (B). The analysis were performed at the UV max of the compounds (at 330 nm for compounds **8**, **9**, **12**, **13**, **24**, **26**, **27**, **31**, **32**, **41**, **44**, **52** and at 254 nm for compounds **23**, **25**, **28**, **29** and **30**) to maximize selectivity. Compounds were dissolved in methanol, final concentrations were ~1 mg/mL. Flow rate was 0.5 mL/min. Compounds **8**, **9**, **13**, **23**, **24**, **25** and **26** were eluted using gradient protocol: 0-1 min 95%A, 1-6 min $95\%A \rightarrow 5\%A$, 6-11 min 5%A, 11-14 min $5\%A \rightarrow 95\%A$.

Compounds **12, 27, 28, 29, 30, 31** and **32** were eluted using gradient protocol: 0-1 min 95%A, 1-6 min $95\%A \rightarrow 5\%A$, 6-11 min 5%A, 11-14 min $5\%A \rightarrow 95\%A$, 14-15 min 95%A.

Compound **41** was eluted using gradient protocol: 0-1 min 95%A, 1-1.5 min 95%A \rightarrow 5%A, 1.5-9 min 5%A, 9-10 min 5%A \rightarrow 95%A, 10-12 min 95%A.

Compound 44 was eluted using gradient protocol: 0-1.5 min 95%A, 1.5-5 min 95%A \rightarrow 5%A, 5-16 min 5%A \rightarrow 95%A, 18-19 min 95% A.

Compound **52** was eluted using gradient protocol: 0-1.5 min 95%A, 1.5-5 min 95%A \rightarrow 5%A, 5-14 min 5%A, 14-15 min 5%A \rightarrow 95%A, 15-16 min 95% A.

Method C: Zorbax Eclipse Plus C18 2.1 x 100 mm, 1.8μ, S.N. USUXU04444 was used as the stationary phase. Eluent was made of the following solvents: 0.2% formic acid in water (A) and methanol (B). The analysis were performed at the UV max of the compounds (at 330 nm for compounds **38, 39, 40** and **43** to maximize selectivity. Compounds were dissolved in methanol, final concentrations were ~1 mg/mL. Flow rate was 0.2 mL/min.

Compounds **38, 39** and **40** were eluted using gradient protocol: 0-1 min 95%A, 1-1.5 min 95%A \rightarrow 5%A, 1.5-8 min 5%A, 8-10 min 5%A \rightarrow 95%A, 10-12 min 95%A.

Compound 43 was eluted using gradient protocol: 0-1 min 95%A, 1-1.5 min 95%A \rightarrow 5%A, 1.5-9 min 5%A, 9-10 min 5%A \rightarrow 95%A, 10-12 min 95%A.

Method D: Zorbax Eclipse Plus C18 2.1 x 100 mm, 1.8μ, S.N. USUXU04444 was used as the stationary phase. Eluent was made of the following solvents: 0.2% formic acid in water (A) and acetonitrile (B). The analysis were performed at the UV max of the compounds (at 330 nm for compounds **27, 38, 39, 40** and **42**) to maximize selectivity. Compounds were dissolved in methanol, final concentrations were ~1 mg/mL. Flow rate was 0.2 mL/min.

Compounds **38**, **39** and **40** were eluted using gradient protocol: 0-1 min 95%A, 1-1.5 min 95%A \rightarrow 5%A, 1.5-8 min 5%A, 8-10 min 5%A \rightarrow 95%A, 10-12 min 95%A.

Compound 42 was eluted using gradient protocol: 0-1 min 95%A, 1-8 min 95%A \rightarrow 5%A, 8-10 min 5%A, 10-12 min 5%A \rightarrow 95%A, 12-14 95%A.

Compound **43** was eluted using gradient protocol: 0-1 min 95%A, 1-1.5 min 95%A \rightarrow 5%A, 1.5-8 min 5%A, 8-10 min 5%A \rightarrow 95%A.

Method E: Zorbax Eclipse Plus C18 2.1 x 100 mm, 1.8μ, S.N. USUXU04444 was used as the stationary phase. Eluent was made of the following solvents: water (A) and acetonitrile (B). The analysis were performed at the UV max of the compound (at 330 nm for compound **37**)to maximize selectivity. The compound was dissolved in methanol, final concentration was ~1 mg/mL. Flow rate was 0.2 mL/min.

Compound 37 was eluted using gradient protocol: 0-1 min 95%A, 1-1.5 min 95%A \rightarrow 5%A, 1.5-9 min 5%A, 9-10 min 5%A \rightarrow 95%A, 10-12 min 95%A.

Method F: Zorbax Eclipse Plus C18 2.1 x 100 mm, 1.8μ , S.N. USUXU04444 was used as the stationary phase. Eluent was made of the following solvents: water (A) and methanol (B). The analysis were performed at the UV max of the compounds (at 330 nm for compound 37) to maximize selectivity. The compound was dissolved in methanol, final concentration was ~1 mg/mL. Flow rate was 0.2 mL/min.

Compound 37 was eluted using gradient protocol: 0-1 min 95%A, 1-1.5 min 95%A \rightarrow 5%A, 1.5-9 min 5%A, 9-10 min 5%A \rightarrow 95%A, 10-12 min 95%A.

Method G: Zorbax Eclipse Plus C18 4.6 x 150 mm, 1.8 μ , S.N. USWKY01594 was used as the stationary phase. Eluent was made of the following solvents: water (A) and acetonitrile (B). The analysis were performed at the UV max of the compounds (at 330 nm for compound **42**) to maximize selectivity. The compound was dissolved in methanol, final concentration was ~1 mg/mL. Flow rate was 0.5 mL/min.

Compound **42** was eluted using gradient protocol: 0-1.5 min 95%A, 1.5-5 min 95%A \rightarrow 5%A, 5-13 min 5%A, 13-14 min 5%A \rightarrow 95%A, 14-15 min 95% A.

Method H: Poroshell 120 EC-C18, 4.6 x 50mm, 2.7 μ , S.N. USCFU07797 was used as the stationary phase. Eluent was made of the following solvents: 0.2% formic acid in water (A) and acetonitrile (B). Analyses were performed at the UV max of the compounds (330 nm for compound **46**) to maximize selectivity. The compound was dissolved in methanol, final concentration was ~1 mg/mL. Flow rate was 0.5 mL/min.

Compound **46** was eluted using gradient protocol: 0-1 min 95%A, 1-3 min 95%A \rightarrow 5%A, 3-8 min 5%A, 8-10 min 5%A \rightarrow 95%A, 10-11 min 95%A.

Method I: Poroshell 120 EC-C18, 4.6 x 50mm, 2.7 μ , S.N. USCFU07797 was used as the stationary phase. Eluent was made of the following solvents: 0.2% formic acid in water (A) and methanol (B). The analysis were performed at the UV max of the compounds (330 nm for compound **46**) to maximize selectivity. The compound was dissolved in methanol, final concentration was ~1 mg/mL. Flow rate was 0.5 ml/min. Compound **46** was eluted using gradient protocol: 0-1 min 95%A, 1-3 min 95%A \rightarrow 5%A, 3-8 min 5%A, 8-10 min 5%A \rightarrow 95%A, 10-11 min 95%A.

i) 1) aminoquinoline, AcOH glac, MeOH/CH₂Cl₂, r.t., 2 h 2) NaBH₄, r.t., 12 h

N-(1-benzothiophen-2-ylmethyl)-N'-(quinolin-4-yl)propane-1,3-diamine (8).

using column chromatography (dry-flash, SiO2, eluent EtOAc/hexane gradient $1/9 \rightarrow$ EtOAc, EtOAc/MeOH gradient $95/5 \rightarrow 1/1$, flash, Biotage SP1, NH column, eluent EtOAc/hexane gradient $8/2 \rightarrow$ EtOAc, EtOAc/MeOH gradient $95/5 \rightarrow$ MeOH and flash, Biotage SP1, SiO2 column, eluent EtOAc/MeOH+NH3 (9/1) gradient $95/5 \rightarrow$ 1/1). Final product 8 was obtained as a pale yellow oil (119 mg, 59%). IR (ATR): 3262w, 3059w, 2928w, 2838w, 1617w, 1585s, 1542m, 1458w, 1438w, 1396w, 1372w, 1339w, 1284w, 1243w, 1131w, 862w, 810w, 765m, 728w cm⁻¹. ¹H NMR (500MHz, CDCl₃, δ): 8.55-8.48 (m, H-C(2')), 7.98-7.91 (m, H-C(8')), 7.79 (d, J = 7.8, H-C(5')), 7.73-7.68 (m, H-C(7) and H-C(4)), 7.57-7.53 (m, H-C(7')), 7.36-7.28 (m, H-C(5) and H-C(6)), 7.20-7.15 (m, H-C(6') and H-C(3)), 6.96 (bs, H-N exchangeable with D2O), 6.35-6.32 (m, H-C(3')), 4.12 (s, 2H, ArCH2-), 3.45-3.39 (m, 2H, ArNHCH2-), 2.96-2.92 (m, 2H, ArCH2NHCH2-), 2.15 (bs, H-N exchangeable with D2O), 1.95-1.88 (m, 2H, ArNHCH2-D1-13°C NMR (50 MHz, CDCl₃, δ): 150.77, 150.36, 144.26, 139.65, 139.56, 129.25, 128.94, 124.32, 124.10, 123.19, 122.37, 121.84, 120.40, 118.91, 98.06, 49.27, 48.27, 43.12, 27.62. HRMS: m/z 348.15289 corresponds to molecular formula C_{21} H₂₁N₂SH* (error in ppm 0.07). HPLC purity ($\lambda = 330$ nm): method A: RT 10.408, area 96.80%; method B: RT 8.140, area 96.44%.

N-(1-benzothiophen-2-ylmethyl)-N'-(quinolin-4-yl)butane-1,4-diamine (9).

Compound **9** was prepared by method A, using 1-benzothiophene-2-carbaldehyde (120 mg, 0.74 mmol), **AQ8** [1] (240 mg, 1.1 mmol), glac. AcOH (63 μ L, 1.1 mmol) and MeOH/CH₂Cl₂ (24 mL, 2:1, v/v). The product was purified

using column chromatography (dry-flash, SiO₂, eluent EtOAc/hexane gradient $1/9 \rightarrow$ EtOAc, EtOAc/MeOH gradient 95/5 \rightarrow 1/9). Final product **9** was obtained as a pale yellow oil (160 mg, 58%). IR (ATR): 3649w, 3626w, 3436w, 3250m, 3117w, 3060m, 2929m, 2855m, 1617w, 1582s, 1541m, 1457m, 1438m, 1396w, 1374w, 1342m, 1280w, 1260w, 1225w, 1129w, 1065w, 1016w, 972w, 861w, 811w, 764m, 744m, 703w, 589w, 558w, 476w cm⁻¹. ¹H NMR (500MHz, CDCl₃, δ): 8.52 (d, J = 5.2, H-C(2')), 7.96 (d, J = 8.2, H-C(8')), 7.79-7.73 (m, H-C(4) and H-C(7)), 7.68 (d, J = 7.6, H-C(5')), 7.60-7.56 (m, H-C(7')), 7.35-7.25 (m, H-C(5) and H-C(6) and H-C(6')), 7.13 (s, H-C(3)), 6.37 (d, J = 5.2, H-C(3')), 5.62-5.55 (m, H-N exchangeable with D2O), 4.08 (s, 2H, ArCH₂-), 3.34-3.27 (m, 2H, ArNHCH₂-), 2.75 (t, J = 6.8, 2H, ArCH₂NHCH₂-), 2.05-1.80 (m, 3H, ArNHCH₂-CH₂- and H-N exchangeable with D2O), 1.68 (quin, J = 6.8, 2H, ArNHCH₂-CH₂-CH₂-). ¹³C NMR (125 MHz, CDCl₃, δ): 150.98, 149.78, 148.35, 145.07, 139.70, 139.53, 129.77, 128.86, 124.40, 124.17, 123.88, 123.08, 122.32, 121.27, 119.51, 118.76, 98.60, 49.07, 48.36, 43.09, 27.60, 26.30. HRMS: m/z 362.16771 corresponds to molecular formula C₂₂H₂₃N₃SH⁺ (error in ppm -2.30). HPLC purity ($\lambda = 330$ nm): method A: RT 8.370, area 96.73%; method B: RT 8.293, area 97.83%.

N-[(6-fluoro-1-benzothiophen-3-yl)methyl]-N'-(quinolin-4-yl)propane-1,3-diamine (12).

Compound 12 was prepared by method A, using aldehyde 11 (164.3 mg, 0.9117 mmol), AQ7 [1] (275.3 mg, 1.368 mmol), glac. AcOH (78 μ L, 1.4 mmol) and MeOH/CH₂Cl₂ (24 mL, 2:1, v/v). The product was purified using column

chromatography (dry-flash, SiO₂, eluent EtOAc/hexane gradient $1/9 \rightarrow$ EtOAc, EtOAc/MeOH gradient $95/5 \rightarrow 4/6$, flash, Biotage SP1, NH column, eluent EtOAc/hexane gradient $8/2 \rightarrow$ EtOAc, EtOAc/MeOH gradient $95/5 \rightarrow$ MeOH and flash, Biotage SP1, SiO₂ column, eluent EtOAc/MeOH+NH₃ (9/1) gradient $95/5 \rightarrow 3/7$). Final product **12** was obtained as a colorless oil (165 mg, 50%). IR (ATR): 3252m, 3072m, 2925m, 2850m, 2359w, 1583s, 1539m, 1466m, 1398w, 1372w, 1338w, 1283w, 1252w, 1210w, 1132w, 1051w, 895w, 851w, 811w, 765w, 736w cm⁻¹. ¹H NMR (500MHz, CDCl₃, δ): 8.52-8.49 (m, H-C(2')), 7.93 (d, J = 8.6, H-C(8')), 7.76-7.71 (m, H-C(4)), 7.58-7.48 (m, H-C(7)) and H-C(7') and H-C(5')), 7.29 (s, H-C(2)), 7.15-7.10 (m, H-C(6')), 7.08-6.99 (m, H-C(5) and H-N exchangeable with D₂O), 6.34-6.31 (m, H-C(3')), 4.07 (s, 2H, ArCH₂-), 3.45-3.39 (m, 2H, ArNHCH₂-), 3.04-2.98 (m, 2H, ArCH₂NHCH₂-), 2.10-1.85 (m, 3H, ArCH₂NHCH₂-) and H-N exchangeable with D₂O). ¹³C NMR (125 MHz, CDCl₃, δ): 160.64 (d, J = 243.2),

150.82, 150.30, 148.09, 141.56 (d, J = 9.6), 134.75, 134.20, 129.41, 128.88, 124.24, 122.89 (d, J = 3.5), 122.54 (d, J = 8.8), 120.06, 118.87, 113.20 (d, J = 24.5), 108.97 (d, J = 25.4), 98.10, 49.17, 47.75, 43.49, 27.74. HRMS: m/z 366.14294 corresponds to molecular formula $C_{21}H_{20}FN_3SH^+$ (error in ppm -1.45). HPLC purity ($\lambda = 330$ nm): method A: RT 8.353, area 98.30%; method B: RT 7.413, area 95.19%.

N-[(5-fluoro-1-benzothiophen-3-yl)methyl]-N'-(quinolin-4-yl)butane-1,4-diamine (13).

Compound 13 was prepared by method A, using aldehyde 10 (90.0 mg, 0.499 mmol), AQ8 [1] (161.3 mg, 0.7492 mmol), glac. AcOH (43 μ L, 0.75 mmol) and MeOH/CH₂Cl₂ (24 mL, 2:1, v/v). The product was purified using column chromatography (dry-

flash, SiO₂, eluent EtOAc/hexane gradient 1/9 \rightarrow EtOAc, EtOAc/MeOH gradient 95/5 \rightarrow 8/2 and flash, Biotage SP1, NH column, eluent EtOAc/hexane gradient 8/2 \rightarrow EtOAc, EtOAc/MeOH gradient 95/5 \rightarrow MeOH). Final product 13 was obtained as pale yellow oil (112 mg, 59%). IR (ATR): 3649w, 3566w, 3255m, 3074m, 2933m, 2858m, 1582s, 1541m, 1438m, 1396w, 1374w, 1342w, 1249w, 1198w, 1130w, 1082w, 1035w, 914w, 855w, 808w, 765w, 736w, 647w cm⁻¹. ⁻¹H NMR (500MHz, CDCl₃, δ): 8.53 (d, J = 5.2, H-C(2')), 7.98-7.93 (m, H-C(8')), 7.76 (dd, J = 4.8, J = 8.7, H-C(7)), 7.70 (d, J = 8.2, H-C(5')), 7.60-7.55 (m, H-C(7')), 7.52-7.47 (m, H-C(4)), 7.37 (s, H-C(3)), 7.30-7.25 (m, H-C(6')), 7.13-7.06 (m, H-C(6)), 6.37 (d, J = 5.2, H-C(3')), 5.55 (bs, H-N exchangeable with D2O), 4.01-3.97 (m, 2H, ArCH₂-), 3.33-3.27 (m, 2H, ArNHCH₂-), 2.78 (t, J = 6.9, 2H, ArCH₂NHCH₂-), 1.89-1.81 (quin, J = 6.9, 2H, ArNHCH₂-), 1.80-1.66 (m, 3H, H-N exchangeable with D2O and ArNHCH₂CH₂-). ¹³C NMR (125 MHz, CDCl₃, δ): 160.70 (d, J = 240.1), 150.97, 149.75, 148.33, 139.49 (d, J = 9.0), 135.94, 134.89 (d, J = 4.5), 129.78, 128.87, 125.33, 124.38, 123.92 (d, J = 9.0), 119.40, 118.74, 113.20 (d, J = 25.3), 107.50 (d, J = 23.5), 98.60, 49.02, 47.67, 43.07, 27.68, 26.42. HRMS: m/z 190.58320 corresponds to molecular formula C₂₂H₂₂N₃SFH₂²⁺ (error in ppm 0.00) m/z 380.15904 corresponds to molecular formula C₂₂H₂₂N₃SFH₂²⁺ (error in ppm 0.00) m/z 380.15904 corresponds to molecular formula C₂₂H₂₂N₃SFH₂²⁺ (error in ppm 0.00) m/z 380.15904 corresponds to molecular formula C₂₂H₂₂N₃SFH₂²⁺ (error in ppm 0.00) m/z 380.15904 corresponds to molecular formula C₂₂H₂₂N₃SFH₂²⁺ (error in ppm 0.00) m/z 380.15904 corresponds to molecular formula C₂₂H₂₂N₃SFH₂²⁺ (error in ppm 0.00) m/z 380.15904 corresponds to molecular formula C₂₂H₂₂N₃SFH₂²⁺ (error in ppm 0.01) m/z 380.15904 corresponds to

tert-butyl [4-(quinolin-4-ylamino)pentyl]carbamate (S2).

4-chloroquinoline (216 mg, 1.32 mmol) and amine *tert*-butyl (4-aminopentyl)carbamate **S1** [1] (401 mg, 1.98 mmol) were heated at 120-130 °C for 8 h with continued stirring as previously described in literature [2]. The reaction mixture was cooled to r.t. and taken up in CH₂Cl₂. The organic layer

was washed with NaHCO₃, wather and brine. The organic layer was dried over anhydrous Na₂SO₄ and solvent was evaporated under reduced pressure. The product S2 was purified using column chromatography (dry-flash, SiO₂, eluent hexane/EtOAc gradient $1/1 \rightarrow$ EtOAc, EtOAc/MeOH gradient 9/1 \rightarrow 7/3 and flash, Biotage SP, NH column, 25+M, eluent hexane, hexane/EtOAc gradient 7/3 \rightarrow EtOAc, EtOAc/MeOH \rightarrow MeOH). Final product S2 was obtained as a yellow oil (230.5 mg, 53%). IR (ATR): 3430w, 3343m, 3237m, 3116w, 3059w, 2974m, 2933m, 2870w, 1691s, 1618w, 1580s, 1537s, 1453m, 1394m, 1367m, 1343m, 1258m, 1171m, 1045w, 1024w, 976w, 870w, 810w, 765m, 738m, 703w cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 8.53 (d, J = 5.4, H-C(2)), 7.99-7.95 (m, H-C(8)), 7.80-7.74 (m, H-C(5)), 7.64-7.60 (m, H-C(7)), 7.44-7.39 (m, H-C(6)), 6.42 (d, J = 5.4, H-C(3)), 5.04-4.94 (m, NH), 4.61 (bs, NH), 3.80-3.70 (m, 1H, ArNHCH-), 3.25-3.10 (m, 2H, ArNHCH(CH₃)CH₂CH₂CH₂CH₂-), 1.75-1.55 (m, 4H, ArNHCH(CH₃)CH₂- and ArNHCH(CH₃)CH₂CH₂-), 1.44 (s, 9H, -NHCOOC(CH₃)₃), 1.32 (d, J = 6.2, 3H, ArNHCH(CH₃)-). ¹³C NMR

(125 MHz, CDCl₃, δ): 156.11, 151.00, 148.76, 148.64, 129.99, 128.91, 124.46, 119.29, 118.76, 98.88, 79.30, 48.12, 40.33, 33.52, 28.38, 27.03, 20.46. HRMS: *m/z* 330.21811 corresponds to molecular formula C₁₉H₂₇N₃O₂H⁺ (error in ppm 1.54).

N⁴-(quinolin-4-yl)pentane-1,4-diamine (S3).

A solution of compound **S2** (210 mg, 0.64 mmol) in TFA/CH₂Cl₂ (5.5 mL, 1:10, v/v), was stirred at r.t. for 6 h. Solvents were evaporated under reduced pressure and the residue was treated with CH₂Cl₂/2.5M NaOH. The organic layer was dried over MgSO₄, and the solvent was evaporated under reduced pressure. Final

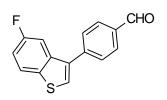
product S3 was obtained as a yellow oil (130 mg, 92%). IR (ATR): 3293m, 2972m, 2933m, 2872w, 1583s, 1547m, 1503w, 1447w, 1397w, 1373w, 1342w, 1282w, 1257w, 1226w, 1148w, 917w, 890w, 809w, 769m cm⁻¹. 1 H NMR (500 MHz, CD₃OD, δ): 8.32 (d, J = 5.5, H-C(2)), 8.17-8.13 (m, H-C(8)), 7.80-7.76 (m, H-C(5)), 7.63-7.57 (m, H-C(7)), 7.43-7.38 (m, H-C(6)), 6.50 (d, J = 6.0, H-C(3)), 3.82-3.74 (m, 1H, ArNHCH-), 2.65 (t, 2H, J = 7.0, ArCH(CH₃)CH₂CH₂CH₂-), 1.80-1.70 (m, 1H, ArNHCH(CH₃)CH₂-), 1.70-1.50 (m, 3H, ArNHCH(CH₃)CH₂- and ArNHCH(CH₃)CH₂CH₂-), 1.31 (d, 3H, J = 6.4, CH₃). 13 C NMR (125 MHz, CD₃OD, δ): 152.02, 151.25, 149.12, 130.39, 128.82, 125.43, 122.28, 120.33, 99.35, 49.42, 42.51, 34.67, 30.66, 20.43. HRMS: m/z 115.58609 corresponds to molecular formula C₁₄H₁₉N₃H₂²⁺ (error in ppm -1.16).

3-Bromo-5-fluoro-1-benzothiophene (17).

Compound 17 was prepared by method B, using 5-fluoro-1-benzothiophene [1] (250 mg, 1.6 mmol), Br $_2$ (91 μ L, 1.8 mmol) and CH $_2$ Cl $_2$ (6.3 mL + 6.3 mL). The product was purified using column chromatography (dry-flash, SiO $_2$, eluent hexane). Final product

17 was obtained as colorless crystals (320 mg, 84%). M.p. = 70 - 73 °C. IR (ATR): 3964w, 3856w, 3818w, 3795w, 3739w, 3641w, 3145w, 3099s, 3072m, 3021w, 2925w, 2889w, 2732w, 2684w, 2623w, 2561w, 2423w, 2378w, 2264w, 2214w, 2162w, 2103w, 2055w, 1945w, 1880w, 1834w, 1712w, 1665w, 1602s, 1564w, 1538w, 1494m, 1425s, 1326w, 1293m, 1244m, 1188s, 1126m, 1064w, 971m, 857s, 807w, 761w, 716w, 642w, 614w cm⁻¹. ¹H NMR (500MHz, CDCl₃, δ): 7.78 (dd, $J_1 = 4.7$, $J_2 = 8.8$, H-C(7)), 7.53-7.48 (m, H-C(4) and H-C (2)), 7.19-7.14 (m, H-C(6)). ¹³C NMR (125 MHz, CDCl₃, δ): 161.36 (d, J = 241.2), 138.92 (d, J = 9.9), 133.92, 125.89, 124.01 (d, J = 9.5), 114.36 (d, J = 25.3), 108.87 (d, J = 24.4), 107.02 (d, J = 4.5). GC/MS (m/z, %): 231.9 ([M⁺], 100), 229.9 (99), 151.0 (22), 107.0 (58).

3-Bromo-1-benzothiophene-5-carbonitrile (18).


Compound 18 was prepared by method B, using 1-benzothiophene-5-carbonitrile [1] (100.0 mg, 0.6281 mmol), Br₂ (35 μ L, 0.69 mmol) and DCE (2.5 mL + 2.5 mL). The product was purified using column chromatography (dry-flash, SiO₂, eluent hexane,

hexane/EtOAc gradient $97/3 \rightarrow 9/1$). Final product 18 was obtained as colorless crystals (130 mg, 87%). M.p. = 144 - 147 °C. IR (ATR): 3116s, 3074m, 2224s, 1768m, 1597m, 1572m, 1497m, 1431s, 1322m, 1293m, 1253m, 1154w, 1128w, 1058m, 966w, 887m, 808m cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 8.16-8.14 (m, H-C(7)), 7.93 (d, *J* = 8.2, H-C(4)), 7.64-7.61 (m, H-C(6)), 7.60 (s, H-C(2)). ¹³C NMR (125 MHz, CDCl₃, δ): 142.68, 137.68, 127.76, 127.20, 126.11, 123.78, 118.82, 109.03, 107.72. GC/MS (m/z, %): 239.8 ([M+], 100).

3-Bromo-1-benzothiophene-6-carbonitrile (19).

Compound 19 was prepared by method B, using compound 1-benzothiophene-6carbonitrile [1] (1.05 g, 6.60 mmol), Br₂ (0.37 mL, 7.2 mmol) and DCE (26.3 mL + 26.3 mL). The product was purified using column chromatography (dry-flash, SiO2, eluent hexane, hexane/EtOAc $97/3 \rightarrow$ EtOAc). Final product 19 was obtained as colorless crystals (320 mg, 84%). M.p. = 140 - 144 °C (EtOAc). IR (ATR): 3950w, 3858w, 3821w, 3422m, 3145m, 3096s, 3070s, 3034m, 2979m, 2935m, 2873w, 2852m, 2805w, 2718w, 2659m, 2629w, 2582w, 2528w, 2492w, 2225s, 2176m, 2048w, 1903w, 1788m, 1770m, 1640m, 1598w, 1548m, 1513m, 1484w, 1455m, 1413s, 1392m, 1350w, 1322s, 1258s, 1195s, 1164m, 1135m, 1058w, 937s, 894m, 816s, 769s, 709m, 605m cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 8.19-8.18 (m, H-C(7)), 7.93-7.90 (m, H-C(4)), 7.71-7.68 (m, H-C(2) and H-C(5)). ¹³C NMR (125 MHz, CDCl₃, δ): 140.35; 138.54; 128.16; 127.63; 127.38; 123.92; 118.68; 108.91; 108.04. GC/MS (m/z, %): 238.9 ([M+], 100); 158.0 (16); 114.0 (36).

4-(5-Fluoro-1-benzothiophen-3-yl)benzaldehyde (20).

Compound 20 was prepared by method C, using compound 17 (241 mg, 1.04 mmol), 4-formylphenylboronic acid (195 mg, 1.30 mmol), Pd(OAc)2 (11.6 mg, 0.0519 mmol), SPhos (85.3 mg, 0.208 mmol), 2M Na₂CO₃ (1.6 mL), DME (2 mL + 2 mL) and EtOH (2 mL). The product was purified using column

chromatography (dry-flash, SiO₂, eluent hexane \rightarrow hexane/EtOAc = 9/1). Final product 20 was obtained as white crystals (235 mg, 88%). M.p. = 125 - 127 °C. IR (ATR): 3094w, 2831w, 2736w, 1979w, 1702s, 1606s, 1568w, 1493w, 1439m, 1388w, 1306w, 1282w, 1255w, 1208m, 1171w, 1117w, 885w, 860w, 836w, 816w, 789w cm⁻¹. ¹H NMR (500MHz, CDCl₃, δ): 10.08 (s, CHO), 8.03-7.99 (m, 2H-Ar), 7.85 (dd, J_1 = 4.9, J_2 = 8.8, H-C(7)), 7.75-7.71 (m, 2H-Ar), 7.59 (s, H-C(2)), 7.58-7.54 (m, H-C(4)), 7.21-7.15 (m, H-C(6)). ¹³C NMR (125 MHz, CDCl₃, δ): 191.69, 161.26 (d, J = 241.0), 141.59, 138.50, 136.56 (d, J = 3.8), 136.09, 135.56, 130.33, 128.97, 127.41, 124.20 (d, J = 9.9), 113.8 (d, J = 25.3), 108.33 (d, J = 23.5). GC/MS (m/z, %): 256.0 ([M+], 100), 226.0(35), 183.0 (31).

3-(4-Formylphenyl)-1-benzothiophene-5-carbonitrile (21).

Compound **21** was prepared by method C, using compound **18** (300.0 mg, 1.260 mmol), 4-formylphenylboronic acid (236.2 mg, 1.575 mmol), Pd(OAc)₂ (14.1 mg, 0.0628 mmol), SPhos (103.4 mg, 0.2519 mmol), 2 M Na₂CO₃ (2.4 mL), DME (3.6 mL + 3.6 mL) and EtOH (3.6 mL). The product was purified

using column chromatography (dry-flash, SiO₂, eluent hexane/CH₂Cl₂ gradient 9/1 \rightarrow 1/9, CH₂Cl₂, CH₂Cl₂/MeOH = 9/1). Final product **21** was obtained as pale yellow powder (120 mg, 37%). M.p. = 210 – 215 °C. IR (ATR): 3084m, 2854m, 2756w, 2229s, 2011w, 1686s, 1604s, 1568w, 1438w, 1389m, 1344w, 1303w, 1211s, 1167m, 1106m, 1059w, 1014w, 893w, 856w, 833s, 811s, 798m, 737w, 654w, 560w, 485w cm⁻¹. ¹H NMR (500 MHz, C₅D₅N, δ): 10.23 (s, H-CHO), 8.36-8.33 (m, H-C(4)), 8.12 (d, J = 8.2, H-C(7)), 8.10-8.07 (m, 2H-Ar), 7.97 (s, H-C(2)), 7.77-7.73 (m, 2H-Ar), 7.71-7.68 (m, H-C(6)). ¹³C NMR (125 MHz, C₅D₅N, δ): 192.58, 145.72, 141.19, 138.04, 136.85, 136.31, 131.08, 130.03, 129.34, 128.19, 127.54, 125.21, 120.27, 109.35.

3-(4-Formylphenyl)-1-benzothiophene-6-carbonitrile (22).

Compound 22 was prepared by method C, using compound 19 (89.3 mg, 0.375 mmol), 4-formylphenylboronic acid (70.3 mg, 0.469 mmol), $Pd(OAc)_2$ (4.2 mg, 0.019 mmol), SPhos (30.8 mg, 0.0750 mmol), 2 M Na_2CO_3 (0.7 mL), DME (1 mL + 1 mL) and EtOH (1 mL) . The product

was purified using column chromatography (dry-flash, SiO₂, eluent hexane/ CH₂Cl₂ gradient 9/1→2/8). Final product **22** was obtained as white powder (75 mg, 76%). M.p. = 186 − 188 °C. IR (ATR): 3083m, 2982w, 2837m, 2747m, 2225s, 2176w, 1998w, 1686s, 1603s, 1572m, 1489m, 1454w, 1396m, 1348m, 1307m, 1264w, 1215s, 1171m, 1105w, 886w, 858w, 823s, 791m, 717w cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 10.11 (s, H-CHO), 8.29-8.27 (m, H-C(7)), 8.06-8.02 (m, 2H-Ar), 7.99-7.96 (m, H-C(4)), 7.78 (s, H-C(2)), 7.75-7.72 (m, 2H-Ar), 7.68-7.64 (m, H-C(5)). ¹³C NMR (125 MHz, CDCl₃, δ): 191.56; 140.74; 140.64; 140.14; 137.06; 135.87; 130.38; 129.46; 129.23; 127.78; 127.36; 123.41; 118.94; 108.29. HRMS: *m/z* 264.04675 corresponds to molecular formula C₁₆H₉NOSH⁺ (error in ppm -3.84).

N-[4-(5-fluoro-1-benzothien-3-yl)benzyl]-N'-quinolin-4-ylpropane-1,3-diamine (23).

Compound 23 was prepared by method A, using aldehyde 20 (65.3 mg, 0.255 mmol), AQ7 [1] (76.9 mg, 0.382 mmol), glac. AcOH (22 μ L, 0.38 mmol) and MeOH/CH₂Cl₂ (18 mL, 2:1, v/v). The product was purified using column chromatography (dry-flash,

SiO₂, eluent hexane/EtOAc gradient $1/1 \rightarrow$ EtOAc, EtOAc/MeOH gradient $95/5 \rightarrow 4/6$). Final product **23** was obtained as a pale yellow foam (66.2 mg, 59%). M.p. = 37 - 40 °C. IR (ATR): 3648w, 3254m, 3063m,

2927m, 2849m, 1720w, 1583s, 1542m, 1495w, 1438m, 1401w, 1371w, 1338w, 1255w, 1196w, 1132w, 884w, 863w, 808w, 766m, 737m, 651w, 542w, 432w cm⁻¹. ¹H NMR (500MHz, CDCl₃, δ): 8.51 (d, J = 5.2, H-C(2')), 7.96 (d, J = 7.8, H-C(8')), 7.84 (dd, J = 4.9, J = 8.8, H-C(7)), 7.71-7.67 (m, H-C(4)), 7.59-7.53 (m, 4H-Ar), 7.49-7.46 (m, 3H-Ar), 7.26-7.22 (m, H-C(6')), 7.18-7.12 (m, H-C(6)), 6.35 (d, J = 5.5, H-C(3')), 3.92 (s, 2H, ArCH₂-), 3.45 (t, J = 6.0, 2H, ArNHCH₂-), 3.02 (t, J = 5.6, 2H, ArCH₂NHCH₂-), 2.64 (bs, H-N exchangeable with D₂O), 1.99 (quin, J = 5.8, 2H, ArNHCH₂CH₂-). ¹³C NMR (125 MHz, CDCl₃, δ): 161.13 (d, J = 240.1), 150.72, 150.50, 147.71, 139.18, 139.06 (d, J = 8.8), 137.48 (d, J = 4.5), 136.01, 134.62, 129.09, 128.91, 128.70, 125.77, 124.34, 124.05 (d, J = 9.0), 120.47, 118.92, 113.39 (d, J = 25.3), 108.48 (d, J = 23.5), 98.00, 54.07, 49.24, 43.87, 27.60. HRMS: m/z 221.59133 corresponds to molecular formula C₂₇H₂₄N₃SFH₂²⁺ (error in ppm 1.38); m/z 442.17549 corresponds to molecular formula C₂₇H₂₄N₃SFH⁺ (error in ppm 1.61). HPLC purity: method A (λ = 330 nm): RT 11.323, area 96.48%; method B (λ = 254 nm): RT 7.986, area 95.32%.

N¹-(quinolin-4-yl)hexane-1,6-diamine AQ9.

The general procedure D was followed using 4-chloroquinoline (300 mg, 1.83 mmol) and 1,6-diaminohexane (1.49 g, 12.8 mmol). The final product was obtained as brown oil (249.8 mg, 55%). IR (ATR): 3318m, 3079m, 2928m, 2854m, 1618w, 1582s, 1545m, 1502w, 1468w, 1439m, 1376m, 1342m, 1262w,

1126w, 935w, 884w, 809w, 771m cm⁻¹. ¹H NMR (500 MHz, CD₃OD, δ): 8.34 (d, J = 5.5, H-C(2′)), 8.09 (d, J = 8.5, H-C(8′)), 7.80 (d, J = 8.3, H-C(5′)), 7.63 – 7.60 (m, H-C(7′)), 7.44 – 7.41 (m, H-C(6′)), 6.48 (d, J = 5.7, H-C(3′)), 3.35 (t, 2H, J = 3.6, H-C(1)), 2.64 – 2.61 (m, 2H, H-C(6)), 1.79 – 1.73 (m, 2H, H-C(2)), 1.53 – 1.38 (m, 6H, 2H-C(3), 2H-C(4) and H-C(5)). ¹³C NMR (125 MHz, CD₃OD, δ): 152.82, 151.38, 149.10, 130.54, 128.96, 125.64, 122.32, 120.45, 99.24, 44.05, 42.60, 33.84, 29.58, 28.26, 27.94. HRMS m/z 244.18071 corresponds to molecular formula C₁₅H₂₁N₃ (error in ppm -0.49).

N-[4-(5-fluoro-1-benzothien-3-yl)benzyl]-N'-quinolin-4-ylhexane-1,6-diamine (24).

Compound **24** was prepared by method A, using aldehyde **20** (62.8 mg, 0.245 mmol), **AQ9** (89.4 mg, 0.368 mmol), glac. AcOH (21 μ L, 0.37 mmol) and MeOH/CH₂Cl₂ (18 mL, 2:1, v/v). The product

was purified using column chromatography (dry-flash, SiO₂, eluent EtOAc/hexane gradient $1/9 \rightarrow$ EtOAc, EtOAc/MeOH gradient $95/5 \rightarrow 2/8$ and flash, Biotage SP1, NH column, eluent EtOAc/hexane gradient $8/2 \rightarrow$ EtOAc, EtOAc/MeOH gradient $95/5 \rightarrow$ MeOH). Final product **24** was obtained as a pale yellow oil (74.2 mg, 63%). IR (ATR): 3258w, 3068w, 2930m, 2855w, 1584s, 1540m, 1495w, 1439m, 1397w, 1374w, 1342w, 1252w, 1196w, 1117w, 884w, 864w, 809w, 768w, 738w, 652w cm⁻¹. ¹H NMR (500MHz, CDCl₃, δ):

8.56-8.53 (m, H-C(2')), 8.00-7.96 (m, H-C(8')), 7.81 (dd, J_1 = 4.9, J_2 = 8.8, H-C(7)), 7.73 (d, J = 8, H-C(5')), 7.63-7.58 (m, H-C(7')), 7.58-7.53 (m, H-C(4)), 7.52-7.48 (m, H-C(10) and H-C(11)), 7.45-7.42 (m, H-C(8) and H-C(9) and H-C(2)), 7.41-7.37 (m, H-C(6')), 7.16-7.10 (m, H-C(6)), 6.40 (d, J = 5.4, H-C(3')), 5.09 (bs, H-N exchangeable with D₂O), 3.85 (s, 2H, ArCH₂-), 3.32-3.26 (m, 2H, ArNHCH₂-), 2.69 (t, J = 7.1, 2H, ArCH₂NHCH₂-), 1.94 (bs, H-N exchangeable with D₂O), 1.79-1.72 (m, 2H, ArNHCH₂CH₂-), 1.61-1.54 (m, 2H, ArCH₂NHCH₂CH₂-), 1.52-1.41 (m, 4H, ArNHCH₂CH₂CH₂- and ArCH₂NHCH₂CH₂-). ¹³C NMR (125 MHz, CDCl₃, δ): 161.03 (d, J = 240.1), 150.93, 149.67, 148.27, 140.09, 139.07 (d, J = 9.0), 137.62 (d, J = 4.5), 135.93, 134.09, 129.80, 128.94, 128.54, 128.45, 125.51, 124.51, 123.93 (d, J = 9.0), 119.20, 118.63, 113.24 (d, J = 24.4), 108.47 (d, J = 23.5), 98.69, 53.74, 49.32, 43.12, 29.99, 28.82, 27.04. HRMS: m/z 484.22010 corresponds to molecular formula C₃₀H₃₀N₃SFH⁺ (error in ppm -3.35). HPLC purity (λ = 330 nm): method A: RT 9.792, area 95.26%; method B: RT 8.382, area 95.22%.

N^4 -(7-chloroquinolin-4-yl)- N^1 -[4-(5-fluoro-1-benzothien-3-yl)benzyl]pentane-1,4-diamine (25).

Compound **25** was prepared by method A, using aldehyde **20** (61.5 mg, 0.240 mmol), amine N^4 -(7-chloroquinolin-4-yl)pentane-1,4-diamine [1] (94.9 mg, 0.360 mmol), glac. AcOH (21 μ L, 0.36 mmol) and MeOH/CH₂Cl₂ (15 mL, 2:1, v/v). The product was

purified using column chromatography (dry-flash, SiO₂, eluent hexane/EtOAc gradient $1/1 \rightarrow$ EtOAc, EtOAc/MeOH gradient 95/5 \rightarrow 6/4). Final product **25** was obtained as a white powder (79.4 mg, 66%). M.p. = 44 – 47 °C. IR (ATR): 3247w, 3074w, 2929w, 2858w, 1607m, 1576s, 1536w, 1491w, 1441m, 1375w, 1334w, 1252w, 1197w, 1142w, 882w, 810w, 649w cm⁻¹. ¹H NMR (500MHz, CDCl₃, δ): 8.51 (d, J = 5.2, H-C(2')), 7.94-7.93 (m, H-C(8')), 7.83 (dd, J_1 = 4.8, J_2 = 8.8, H-C(7)), 7.64 (d, J = 9.2, H-C(5')), 7.58-7.54 (m, H-C(4)), 7.53, 7.44 (ABq, J_{AB} = 8.2, 4H-Ar), 7.46 (s, H-C(2)), 7.28-7.24 (m, H-C(6')), 7.15 (td, J_1 = 2.8, J_2 = 8.8, H-C(6)), 6.41 (d, J = 5.5, H-C(3')), 5.35-5.30 (m, H-N exchangeable with D₂O), 3.86 (s, 2H, ArCH₂-), 3.77-3.68 (m, 1H, ArNHCH(CH₃)-), 2.77-2.71 (m, 2H, ArCH₂NHCH₂-), 1.86-1.47 (m, 5H, ArNHCH(CH₃)CH₂- and ArNHCH(CH₃)CH₂- and H-N exchangeable with D₂O), 1.33 (d, J = 6.4, 3H, ArNHCH(CH₃)-). ¹³C NMR (125 MHz, CDCl₃, δ): 161.08 (d, J = 240.1), 152.00, 149.35, 148.98, 139.79, 139.08 (d, J = 9.0), 137.56 (d, J = 3.8), 135.98, 134.73, 134.30, 128.82, 128.56, 128.54, 125.63, 125.00, 123.98 (d, J = 9.0), 121.05, 117.27, 113.31 (d, J = 25.3), 108.49 (d, J = 23.5), 99.17, 53.75, 49.00, 48.30, 34.14, 26.47, 20.24. HRMS: m/z 252.58726 corresponds to molecular formula C₂₉H₂₇ClN₃SFH₇ (error in ppm -0.26); m/z 504.16695 corresponds to molecular formula C₂₉H₂₇ClN₃SFH₇ (error in ppm -0.30). HPLC purity: method A (λ = 330 nm): RT 9.825, area 97.97%; method B (λ = 254 nm): RT 8.027, area 96.12%.

N¹-[4-(5-fluoro-1-benzothien-3-yl)benzyl]-N⁴-quinolin-4-ylpentane-1,4-diamine (26).

Compound **26** was prepared by method A, using aldehyde **20** (94.2 mg, 0.368 mmol), amine **S3** (126.4 mg, 0.5513 mmol), glac. AcOH (30 μ L, 0.5 mmol) and MeOH/CH₂Cl₂ (24 mL, 2:1, v/v). The product was

purified using column chromatography (dry-flash, SiO₂, eluent hexane/EtOAc gradient $1/1 \rightarrow$ EtOAc, EtOAc/MeOH gradient 95/5 \rightarrow 4/6 and flash, Biotage SP1, NH column, eluent EtOAc/hexane gradient 8/2 \rightarrow EtOAc, EtOAc/MeOH gradient 95/5 \rightarrow MeOH). Final product **26** was obtained as a colorless oil (66.1 mg, 38%). IR (ATR): 3265w, 3068w, 2928m, 2855w, 1579s, 1536m, 1496w, 1439m, 1396w, 1341w, 1254w, 1224w, 1196w, 1135w, 1116w, 885w, 865w, 808w, 766w, 737w cm⁻¹. ¹H NMR (500MHz, CDCl₃, δ): 8.53 (d, J = 5.2, H-C(2')), 7.96 (d, J = 8.4, H-C(8')), 7.82 (dd, J = 5.0, J = 8.8, H-C(7)), 7.72 (d, J = 8.2, H-C(5')), 7.62-7.57 (m, H-C(2')), 7.57-7.54 (m, H-C(4)), 7.50, 7.42 (ABq, J AB = 8.0, 4H-Ar), 7.42 (s, H-C(2)), 7.37-7.32 (m, H-C(6')), 7.17-7.11 (m, H-C(6)), 6.42 (d, J = 5.3, H-C(3')), 5.24-5.19 (m, H-N exchangeable with D₂O), 3.86 (s, 2H, ArCH₂-), 3.78-3.69 (m, 1H, ArNHCH(CH₃)-), 2.78-2.70 (m, 2H, ArCH₂NHCH₂-), 1.85-1.50 (m, 5H, ArNHCH(CH₃)-CH₂- and ArNHCH(CH₃)-CH₂- and H-N exchangeable with D₂O), 1.33 (d, J = 6.4, 3H, ArNHCH(CH₃)-). ¹³C NMR (125 MHz, CDCl₃, δ): 161.05 (d, J = 240.1), 151.00, 148.84, 148.62, 139.91, 139.06 (d, J = 9.0), 137.58 (d, J = 4.5), 135.94, 134.19, 129.97, 128.85, 128.53, 128.50, 125.56, 124.32, 123.95 (d, J = 9.0), 119.31, 118.80, 113.37 (d, J = 25.3), 108.48 (d, J = 24.4), 98.86, 53.72, 49.05, 48.16, 34.18, 26.52, 20.30. HRMS: m/z 470.20471 corresponds to molecular formula C₂9H₂8N₃SFH⁺ (error in ppm -2.90). HPLC purity (λ = 330 nm): method A: RT 10.651, area 97.28%; method B: RT 8.430, area 97.16%.

N^1 -[4-(5-fluoro-1-benzothien-3-yl)benzyl]- N^1 -methyl- N^4 -quinolin-4-ylpentane-1,4-diamine (27).

Compound 27 was prepared by method E, using compound 26 (20.0 mg, 0.0426 mmol), 37% aqueous formaldehyde (6.4 μ L, 0.085 mmol), ZnCl₂ (11.6 mg, 0.0852 mmol), NaBH₃CN (10.7 mg, 0.170 mmol) and

MeOH (1 mL + 1 mL). The product was purified using column chromatography (dry-flash, SiO₂, eluent hexane/EtOAc gradient $1/1 \rightarrow$ EtOAc, EtOAc/MeOH gradient $95/5 \rightarrow 1/1$ and flash, Biotage SP1, NH column, eluent EtOAc/hexane gradient $8/2 \rightarrow$ EtOAc, EtOAc/MeOH gradient $95/5 \rightarrow$ MeOH). Final product **27** was obtained as a colorless oil (12.3 mg, 60%). IR (ATR): 3730w, 3625w, 3276m, 3068m, 2931m, 2792m, 1720w, 1579s, 1536m, 1496w, 1439m, 1395w, 1342m, 1253w, 1195w, 1136w, 1115w, 1058w, 1019w, 883w, 864w, 807w, 765w, 736w, 654w, 571w, 542w, 423w cm⁻¹. ¹H NMR (500MHz, CDCl₃, δ): 8.51 (d, J = 5.4, H-C(2')), 7.98-7.95 (m, H-C(8')), 7.82 (dd, $J_1 = 4.8$, $J_2 = 8.8$, H-C(7)), 7.73-7.70 (m, H-C(5')), 7.62-

7.55 (m, H-C(7') and H-C(4)), 7.50, 7.43 (ABq, J_{AB} = 8.2, 4H-Ar), 7.46 (s, H-C(2)), 7.38-7.33 (m, H-C(6')), 7.17-7.11 (m, H-C(6)), 6.41 (d, J = 5.4, H-C(3')), 5.22-5.16 (m, H-N exchangeable with D₂O), 3.77-3.69 (m, 1H, ArNHCH(CH₃)-), 3.56 (s, 2H, ArCH₂-), 2.50-2.41 (m, 2H, ArCH₂NHCH₂-), 2.23 (s, 3H, CH₃-N), 2.19 (bs, H-N exchangeable with D₂O), 1.82-1.65 (m, 4H, ArNHCH(CH₃)CH₂- and ArNHCH(CH₃)CH₂CH₂-), 1.33 (d, J = 6.4, 3H, ArNHCH(CH₃)-). ¹³C NMR (125 MHz, CDCl₃, δ): 161.07 (d, J = 240.1), 150.91, 148.96, 148.52, 139.08 (d, J = 9.0), 138.64, 137.63 (d, J = 4.5), 135.98, 134.25, 129.88, 129.49, 128.91, 128.34, 125.57, 124.34, 123.97 (d, J = 9.0), 119.32, 118.79, 113.28 (d, J = 25.3), 108.52 (d, J = 23.5), 98.91, 62.06, 57.02, 48.11, 42.38, 34.28, 23.91, 20.33. HRMS: m/z 484.22192 corresponds to molecular formula C₃₀H₃₀N₃SFH+ (error in ppm 0.41). HPLC purity (λ = 330 nm): method A: RT 9.127, area 97.38%; method B: RT 7.846, area 97.18%.

3-[4-({[4-(quinolin-4-ylamino)butyl]amino}methyl)phenyl]-1-benzothiophene-5-carbonitrile (28).

Compound **28** was prepared by method A, using aldehyde **21** (97.4 mg, 0.370 mmol), **AQ8** [1] (119.5 mg, 0.5548 mmol), glac. AcOH (32 μ L, 0.55 mmol) and MeOH/CH₂Cl₂ (18 mL, 2:1, v/v). The product was

purified using column chromatography (dry-flash, SiO₂, eluent hexane/EtOAc gradient 1/1 → EtOAc, EtOAc/MeOH gradient 95/5 → MeOH, flash, Biotage SP1, NH column, eluent EtOac/hexane gradient 8/2 → EtOAc, EtOAc/MeOH gradient 95/5 → 7/3 and flash, Biotage SP1, SiO₂ column, eluent EtOAc/MeOH+NH₃ (9/1) gradient 95/5 \rightarrow 8/2). Final product 28 was obtained as a white foam (35.9 mg, 20%). M.p. = 54 - 60 °C. IR (ATR): 3280m, 3078m, 2932m, 2856m, 2225m, 1617w, 1580s, 1541m, 1495w, 1437w, 1398w, 1374w, 1341m, 1256w, 1222w, 1129w, 1058w, 808m, 765m, 655w, 560w cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 8.54 (d, J = 5.2, H-C(2')), 8.20-8.19 (m, H-C(4)), 8.01-7.95 (m, H-C(7) and H-C(8')), 7.75 (d, J = 5.2) = 8.2, H-C(5')), 7.62-7.57 (m, H-C(7') and H-C(6)), 7.52 (s, H-C(2)), 7.51-7.46 (m, 4H-Ar), 7.37-7.32 (m, H-C(5')), 7.51-7.46 (m, H-C(5' C(6'), 6.41 (d, I = 5.2, H-C(3')), 5.69 (bs, H-N exchangeable with D₂O), 3.92 (s, 2H, ArCH₂-), 3.38-3.33 (m, 2H, ArNHCH2-), 2.80 (t, J = 6.9, 2H, ArCH2NHCH2-), 1.94-1.81 (m, 3H, ArNHCH2CH2- and H-N exchangeable with D₂O), 1.80-1.71 (m, 2H, ArCH₂NHCH₂CH₂-). ¹³C NMR(125 MHz, CDCl₃, δ): 150.91, 149.88, 148.26, 144.75, 140.35, 137.90, 133.31, 129.75, 128.94, 128.73, 128.71, 127.71, 126.27, 125.53, 124.43, 123.91, 119.51, 119.42, 118.76, 108.13, 98.62, 53.63, 48.73, 43.18, 27.76, 26.46. HRMS: m/z 232.10162 corresponds to molecular formula C₂₉H₂₆N₄SH₂²⁺ (error in ppm 1.88); m/z 463.19503 corresponds to molecular formula $C_{29}H_{26}N_{4}SH^{+}$ (error in ppm -0.14). HPLC purity: method A (λ = 330 nm): RT 8.902, area 96.09%; method B (λ = 254 nm): RT 7.653, area 96.05%.

3-[4-([[4-(quinolin-4-ylamino)pentyl]amino)methyl)phenyl]-1-benzothiophene-5-carbonitrile (29).

Compound **29** was prepared by method A, using aldehyde **21** (70.8 mg, 0.269 mmol), amine **S3** (89.2 mg, 0.389 mmol), glac. AcOH (23 μ L, 0.39 mmol) and MeOH/CH₂Cl₂ (18 mL, 2:1, v/v). The product was purified using column chromatography (dry-

flash, SiO₂, eluent hexane/EtOAc gradient 1/1 → EtOAc, EtOAc/MeOH gradient 95/5 → MeOH, flash, Biotage SP1, NH column, eluent EtOac/hexane gradient $8/2 \rightarrow$ EtOAc, EtOAc/MeOH gradient $95/5 \rightarrow 1/1$ and flash, Biotage SP1, SiO₂ column, eluent EtOAc/MeOH+NH₃ (9/1) gradient 95/5 → 65/35). Final product 29 was obtained as a white foam (28.1 mg, 21%). M.p. = 71 - 74 °C. IR (ATR): 3395w, 3267w, 3071w, 2964w, 2929m, 2858w, 2225m, 1617w, 1577s, 1537m, 1495w, 1439m, 1395w, 1340m, 1282w, 1258w, 1221w, 1186w, 1136w, 1058w, 1020w, 892w, 809m, 765m, 656w, 632w, 560w cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 8.52 (d, J = 5.2, H-C(2')), 8.19 (s, H-C(4)), 8.00-7.95 (m, H-C(7) and H-C(8')), 7.74 (d, J = 8.2, H-C(2')), 8.19 (s, H-C(4)), 8.00-7.95 (m, H-C(7)) and H-C(8')), 7.74 (d, J = 8.2, H-C(2')), 8.19 (s, H-C(4)), 8.00-7.95 (m, H-C(7)) and H-C(8')), 7.74 (d, J = 8.2, H-C(2')), 8.19 (s, H-C(4)), 8.00-7.95 (m, H-C(7)) and H-C(8')), 7.74 (d, J = 8.2, H-C(1)) C(5')), 7.63-7.56 (m, H-C(6) and H-C(7')), 7.52 (s, H-C(2)), 7.50-7.44 (m, 4H-Ar), 7.38-7.34 (m, H-C(6')), 6.43 (d, I = 5.5, H-C(3')), 5.25-5.20 (m, H-N exchangeable with D₂O), 3.88 (s, 2H, ArCH₂-), 3.79-3.72 (m, 1H, ArNHCH(CH3)-), 2.77-2.71 (m, 2H, ArNHCH(CH3)CH2CH2CH2-), 1.86-1.67 (m, 5H, ArNHCH(CH3)CH2and ArNHCH(CH₃)CH₂CH₂- and H-N exchangeable with D₂O), 1.34 (d, 3H, I = 6.2, ArNHCH(CH₃)-). 13 C NMR (125 MHz, CDCl₃, δ): 150.87, 148.93, 148.47, 144.74, 140.47, 137.91, 133.24, 129.86, 128.93, 128.73, 128.66, 127.71, 126.25, 125.49, 124.39, 123.89, 119.42, 119.32, 118.77, 108.11, 98.86, 53.66, 49.04, 48.19, 34.19, 26.52, 20.33. HRMS: m/z 239.10924 corresponds to molecular formula C₃₀H₂₈N₄SH₂²⁺ (error in ppm 0.95); m/z 477.21086 corresponds to molecular formula C₃₀H₂₈N₄SH⁺ (error in ppm 0.25). HPLC purity: method A (λ = 330 nm): RT 8.915, area 98.20%; method B (λ = 254 nm): RT 7.647, area 95.15%.

3-[4-({[6-(quinolin-4-ylamino)hexyl]amino}methyl)phenyl]-1-benzothiophene-5-carbonitrile (30).

Compound 30 was prepared by method A, using aldehyde 21 (113.8 mg, 0.4322 mmol), AQ9 (157.8 mg, 0.6486 mmol), glac. AcOH (37 μ L, 0.65 mmol) and MeOH/CH₂Cl₂ (22.5 mL, 2:1, v.v). The

product was purified using column chromatography (dry-flash, SiO₂, eluent hexane/EtOAc gradient 1/1 \rightarrow EtOAc, EtOAc/MeOH gradient 95/5 \rightarrow MeOH, flash, Biotage SP1, NH column, eluent EtOac/hexane gradient 8/2 \rightarrow EtOAc, EtOAc/MeOH gradient 95/5 \rightarrow 7/3 and flash, Biotage SP1, SiO₂ column, eluent EtOAc/MeOH+NH₃ (9/1) gradient 95/5 \rightarrow 7/3). Final product **30** was obtained as a white foam (42.0 mg, 19%). M.p. = 45 - 49 °C. IR (ATR): 3301m, 3074m, 2928s, 2853m, 2225m, 1618w, 1579s, 1540s, 1495m, 1457w, 1436m, 1397m, 1374w, 1340m, 1254w, 1222w, 1128w, 1057w, 765m cm⁻¹. ¹H NMR (500 MHz,

CDCl₃, δ): 8.54 (d, J = 5.2, H-C(2')), 8.20-8.19 (m, H-C(4)), 8.00-7.96 (m, H-C(7) and H-C(8')), 7.73 (d, J = 8.0, H-C(5')), 7.64-7.60 (m, H-C(7')), 7.60-7.56 (m, H-C(6)), 7.52 (s, H-C(2)), 7.50-7.46 (m, 4H-Ar), 7.44-7.39 (m, H-C(6')), 6.42 (d, J = 5.2, H-C(3')), 5.06 (bs, H-N exchangeable with D₂O), 3.88 (s, 2H, ArCH₂-), 3.36-3.30 (m, 2H, ArNHCH₂-), 2.71 (t, J = 7.1, 2H, ArCH₂NHCH₂-), 1.88 (bs, H-N exchangeable with D₂O), 1.79 (quin, J = 7.1, 2H, ArNHCH₂CH₂-), 1.60 (quin, J = 7.1, 2H, ArCH₂NHCH₂CH₂-), 1.53-1.43 (m, 4H, ArNHCH₂CH₂CH₂- and ArCH₂NHCH₂CH₂CH₂-). 13 C NMR (125 MHz, CDCl₃, δ): 151.01, 149.62, 148.37, 144.74, 140.76, 137.98, 137.93, 133.14, 129.94, 128.92, 128.74, 128.63, 127.74, 126.24, 125.43, 124.52, 123.88, 119.44, 119.13, 118.65, 108.10, 98.74, 53.72, 49.33, 43.16, 30.05, 28.88, 27.08. HRMS: m/z 246.11747 corresponds to molecular formula C₃₁H₃₀N₄SH₂²⁺ (error in ppm 2.58); m/z 491.22632 corresponds to molecular formula C₃₁H₃₀N₄SH⁺ (error in ppm -0.15). HPLC purity: method A ($\lambda = 330$ nm): RT 9.042, area 99.09%; method B ($\lambda = 254$ nm): RT 7.712, area 96.73%.

3-[4-({[4-(quinolin-4-ylamino)butyl]amino}methyl)phenyl]-1-benzothiophene-6-carbonitrile (31).

Compound 31 was prepared by method A, using aldehyde 22 (100.0 mg, 0.3798 mmol), AQ8 [1] (122.6 mg, 0.5697 mmol), glac. AcOH (33 μ L, 0.57 mmol) and MeOH/CH₂Cl₂ (18 mL, 2:1, v/v). The

product was purified using column chromatography (dry-flash, SiO₂, eluent hexane/EtOAc gradient 1/1 → EtOAc, EtOAc/MeOH gradient 9/1 → MeOH, EtOAc/MeOH(NH3 sat.)=95/5 flash, Biotage SP1, NH column, eluent EtOAc/hexane gradient 8/2 → EtOAc, EtOAc/MeOH gradient 95/5 → 7/3 and flash, Biotage SP1, SiO₂ column, eluent EtOAc/MeOH+NH₃ (9/1) gradient 95/5 \rightarrow 8/2). Final product 31 was obtained as a white foam (92.2 mg, 52%). M.p. = 75 - 80 °C. IR (ATR): 3620w, 3269m, 3067m, 2935m, 2858m, 2224s, 1616w, 1580s, 1539s, 1449m, 1396m, 1374m, 1341s, 1258w, 1194w, 1129m, 946w, 825m, 765m, 622w cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 8.54 (d, *J* = 5.3 Hz, H-C(2')), 8.24-8.22 (m, H-C(7)), 7.98-7.96 (m, H-C(4)), 7.95-7.93 (m, H-C(8')), 7.74-7.73 (m, H-C(5')), 7.63 (s, H-C(2)), 7.61-7.57 (m, H-C(5) and H-C(7')), 7.51-7.46 (m, 4H-Ar), 7.34-7.31 (m, H-C(6')), 6.41 (d, J = 5.2 Hz, H-C(3')), 5.69 (bs, H-N, exchangeable with D₂O), 3.91 (s, 2H, ArCH₂NH-), 3.38-3.33 (m, 2H, ArCH₂NHCH₂-), 2.80 (t, *J* = 6.9 Hz, 2H, ArNHCH2-), 1.94-1.88 (m, 2H, ArNHCH2CH2-), 1.82-1.72 (m, 3H, ArNHCH2CH2-CH2- and H-N exchangeable with D₂O). ¹³C NMR (125 MHz, CDCl₃, δ): 150.95; 149.84; 148.31; 140.71; 140.53; 140.26; 138.08; 133.49; 129.82; 128.92; 128.74; 128.66; 127.85; 127.63; 126.94; 124.41; 123.62; 119.50; 119.18; 118.77; 107.77; 98.62; 53.66; 48.80; 43.17; 27.76; 26.45. HRMS: m/z 463.19424 corresponds to molecular formula $C_{29}H_{26}N_4SH^+$ (error in ppm -1.85). HPLC purity (λ = 330 nm): method A: RT 8.824, area 96.60%; method B: RT 7.642, area 97.10%.

3-[4-({[6-(Quinolin-4-ylamino)hexyl]amino}methyl)phenyl]-1-benzothiophene-6-carbonitrile (32).

Compound **32** was prepared by method A, using aldehyde **22** (98.0 mg, 0.372 mmol), **AQ9** (135.9 mg, 0.5585 mmol), glac. AcOH (32 μ L, 0.56 mmol) and MeOH/CH₂Cl₂ (18

mL, 2:1, v/v). The product was purified using column chromatography (dry-flash, SiO₂, eluent hexane/EtOAc gradient $1/1 \rightarrow$ EtOAc, EtOAc/MeOH gradient $9/1 \rightarrow$ MeOH, EtOAc/MeOH(NH₃ sat.) = 95/5 flash, Biotage SP1, NH column, eluent EtOAc/hexane gradient 8/2 → EtOAc, EtOAc/MeOH gradient $95/5 \rightarrow 7/3$ and flash, Biotage SP1, RP column, eluent MeOH/H₂O gradient $7/3 \rightarrow$ MeOH). Final product 32 was obtained as a white foam (60.1 mg, 33%). M.p. = 68 – 75 °C. IR (ATR): 3402m, 3266m, 3069m, 2927s, 2853s, 2225m, 1669w, 1616w, 1580s, 1539s, 1452m, 1396m, 1374m, 1341s, 1258w, 1193w, 1127w, 1019w, 946w, 862w, 825m, 765m, 622w cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 8.55 (d, J = 5.5 Hz, H-C(2')), 8.24-8.22 (m, H-C(7)), 7.99-7.97 (m, H-C(4)), 7.97-7.94 (m, H-C(8')), 7.73-7.70 (m, H-C(5')), 7.64-7.61 (m, 2H, H-C(7')) and H-C(2)), 7.61-7.58 (m, H-C(5)), 7.50-7.45 (m, 4H-Ar), 7.43-7.40 (m, H-C(6')), 6.42 (d, I = 5.2 Hz, H-C(3')), 5.00 (bs, H-N, exchangeable with D2O), 3.87 (s, 2H, ArCH2NH-), 3.35-3.31 (m, 2H, ArCH2NHCH2-), 2.71 (t, J = 7.1 Hz, 2H, ArNHCH₂-), 1.82-1.76 (m, 2H, ArNHCH₂CH₂-), 1.65-1.57 (m, 3H, H-N ArCH2NHCH2CH2and exchangeable with D₂O), 1.53-1.46 4H, (m, NHCH₂CH₂CH₂CH₂CH₂CH₂NH-). ¹³C NMR (125 MHz, CDCl₃, δ): 151.03; 149.61; 148.40; 140.76; 140.66; 140.53; 138.19; 133.34; 130.00; 128.95; 128.66; 127.77; 127.63; 126.93; 124.56; 123.65; 119.19; 119.09; 118.66; 107.75; 98.76; 53.77; 49.45; 43.16; 30.06; 28.89; 27.09. HRMS: m/z 491.22593 corresponds to molecular formula C₃₁H₃₀N₄SH + (error in ppm -0.94). HPLC purity (λ = 330 nm): method A: RT 8.949, area 98.93%; method B: RT 7.699, area 98.28%.

i) $ArB(OH)_2$, $PdO \times 1.4H_2O$, K_2CO_3 , $EtOH/H_2O$, 60 °C; ii) Br_2 , $C_2H_4CI_2$, 0 °C to r.t.; iii) 1) aminoquinoline, AcOHglac, $MeOH/CH_2CI_2$, r.t., 2 h 2) $NaBH_4$, r.t; iv) HCHO, $ZnCI_2$, $NaBH_3CN$, MeOH, r.t.

4-(thiophen-2-yl)benzonitrile(34).

The general procedure F was followed using 2-bromothiophene (412 μ L, 4.17 mmol), 4-cyanophenylboronic acid (734 mg, 5.00 mmol), PdO × 1.4 H₂O (6.2 mg, 0.042 mmol), K₂CO₃ (691 mg, 5.00 mmol), and ethanol/water (14 mL, 3:1, v/v). The purification of final product was performed using hexane/toluene as eluent to obtain **34** as a white powder (635 mg, 82%). M.p. = 78 – 80 °C. [3] IR (film): 3094w, 2925w, 2225w, 1912w, 1666w, 1603w, 1491w, 1421m, 1352w, 1311w, 1264w, 1211w, 1110w, 1052w, 959w, 849m, 823s, 770w, 713s cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 7.71 – 7.64 (m, 4H, H-C(2), H-C(3), H-C(5), H-C(6)), 7.43 – 7.40 (m, 2H, H-C(3') and H-C(5')), 7.13 (dd, J_1 = 5.0, J_2 = 3.7, H-C(4')). ¹³C NMR (125 MHz, CDCl₃, δ): 142.10, 138.69, 132.76, 128.54, 127.08, 126.12, 125.12, 118.84, 110.60. GC/MS (m/z (%)): 185.0 ([M⁺], 100); 140.0 (16).

4-(5-bromothiophen-2-yl)benzonitrile (35).

MHz, CDCl₃, δ): 143.41, 137.76, 132.88, 131.39, 125.78, 125.31, 118.64, 114.16, 111.05. GC/MS (m/z (%)): 264.8 ([M+], 100); 140.1 (68).

4-[5-(4-formylphenyl)thiophen-2-yl]benzonitrile (36).

The general procedure F was followed using **35** (886 mg, 3.35 mmol), 4-formylphenylboronic acid (603 mg, 4.02 mmol), PdO \times 1.4 H₂O (24.7 mg, 0.0419 mmol), K₂CO₃ (556 mg, 4.02 mmol) and ethanol/water (40 mL, 3:1, v/v). The purification of final product was

performed using toluene/ethyl-acetate as eluent to obtain **36** as a yellow solid (1.07 g, 92%). M.p. = 212 – 214 °C. IR (film): 2916w, 2849w, 2754w, 2222m, 1698s, 1598s, 1535w, 1492w, 1449w, 1396w, 1342w, 1306w, 1277w, 1214m, 1167m, 1110w, 833s, 792s, 696w cm⁻¹. ¹H NMR (500 MHz, (CD₃)₂SO, δ): 10.01 (s, H-CO), 7.98 – 7.89 (m, 8H, H-C(2), H-C(3), H-C(5), H-C(6), H-C(2'), H-C(3'), H-C(5') and H-C(6')), 7.84 (bs, 2H, H-C(3") and H-C(4")). ¹³C NMR (125 MHz, (CD₃)₂SO, δ): 192.31, 143.19; 142.35; 138.51, 137.47, 135.30, 133.16, 130.47, 127.90, 127.65, 125.89, 125.78, 118.74, 110.04. HRMS: *m/z* 290.06339 corresponds to molecular formula C₁₈H₁₁NOSH⁺ (error in ppm -0.08).

4-(5-{4-[({2-[(7-chloroquinolin-4-yl)amino]ethyl}amino)methyl]phenyl}-2-thienyl)benzonitrile (37).

The general procedure A was followed using **36** (59.3 mg, 0.205 mmol), **AQ2** (66.5mg, 0.299 mmol), MeOH/ CH₂Cl₂ (5.3 mL, 2:1, v/v), glac. AcOH (18 μ L, 0.30 mmol) and NaBH₄ (45.4 mg, 1.20 mmol). After

working up the reaction in a manner provided in a general procedure, the crude product was subjected to silica-gel column chromatography using EtOAc/MeOH as eluent and NH flash chromatography, Biotage SP1, using hexane/EtOAc and EtOAc/MeOH as eluents. The final product **37** was obtained as a yellow solid (33 mg, 32%). M.p. = 147 – 149 °C. IR (film): 3245w, 3067w, 2954w, 2841w, 2224w, 1603w, 1579s, 1541w, 1493w, 1452w, 1432w, 1367w, 1333w, 1279w, 1250w, 1206w, 1139w, 878w, 837w, 793m, 767w, 737w, 705w, 684w, 659w, 650w, 620w, 604w, 601w cm⁻¹. ¹H NMR (500 MHz, CDCl₃ + CD₃OD, δ): 8.41 (d, J = 5.5, H-C(2")), 7.90 (d, J = 2.1, H-C(8")), 7.83 (d, J = 8.9, H- C(5")), 7.71, 7.67 (ABq, 4H, J_{AB} = 8.4, H-C(2), H-C(3), H-C(5) and H-C(6)), 7.59, 7.36 (ABq, 4H, J_{AB} = 8.1, H-C(2'), H-C(3'), H-C(5') and H-C(6')), 7.42, 7.32 (Abq, J_{AB} = 3.7, 2H, H-ArS), 7.39 (dd, J = 2.1, J₂ = 8.9, H-C(6")), 6.38 (d, J = 5.5, H-C(3")), 3.87 (s, 2H, ArCH₂-), 3.43 – 3.39 (m, 2H, ArNHCH₂-, ovlp with solvent signal), 3.06 – 3.04 (m, 2H, ArNHCH₂CH₂-). ¹³C NMR (125 MHz, CDCl₃ + CD₃OD, δ): 151.32, 150.29, 148.38, 145.42, 140.87, 139.17, 138.45, 135.15, 132.79, 132.67, 128.76, 127.58, 126.08, 125.85, 125.60, 125.33, 124.32, 121.66, 118.74, 117.21, 98.74, 52.88, 46.67, 42.01. HRMS:

m/z 495.13994 corresponds to molecular formula C₂₉H₂₃ClN₄SH⁺ (error in ppm -1.06). HPLC purity (λ = 330 nm): method E: RT 6.741, area 96.66%, method F: RT 7.940, area 96.79%.

4-(5-{4-[({3-[(7-chloroquinolin-4-yl)amino]propyl}amino)methyl]phenyl}-2-thienyl)benzonitrile (38).

The general procedure A was followed using 36 (137.2 mg, 0.4742 mmol), AQ3 (168 mg, 0.711 mmol), MeOH/ CH₂Cl₂ (12 mL, 2:1, v/v), glac. AcOH (43 μ L, 0.71 mmol) and NaBH₄ (107.6 mg, 2.844 mmol). After working up the reaction

in a manner provided in a general procedure, the crude product was subjected to silica-gel column chromatography using EtOAc/MeOH as eluent and NH flash chromatography, Biotage SP1, using hexane/EtOAc and EtOAc/MeOH as eluents. The final product 38 was obtained as a yellow solid (141.8 mg, 59%). M.p. = 138 - 140 °C. IR (film): 3248 m, 3066w, 2946w, 2907w, 2846m, 2560w, 2357w, 2223m, 2184w, 2166w, 2097w, 1987w, 1962w, 1918w, 1602m, 1579s, 1537m, 1494m, 1450m, 1426m, 1364w, 1332m, 1281m, 1240w, 1183w, 1136m, 1106w, 1070w, 953w, 897w, 851m, 798m, 763w, 615w, 541w cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 8.50 (d, J = 5.3, H-C(2")), 7.91 (d, J = 2.2, H-C(8")), 7.69, 7.67 (ABq, 4H, J = 8.7, H-C(2), H-C(5) and H-C(6)), 7.61, 7.37 (ABq, 4 H, J = 8.3, H-C(2'), H-C(3'), H-C(5'), H-C(6')), 7.50 (d, J = 8.9, H-C(5")), 7.48 – 7.44 (m, H-N, exchangeable with D2O), 7.42, 7.34 (ABq, 2H, J = 3.9, H-ArS), 7.12 (dd, $J_1 = 2.2$, $J_2 = 8.9$, H-C(6")), 6.32 (d, J = 5.4, H-C(3")), 3.87 (s, 2H, ArCH₂-), 3.42 – 3.39 (m, 2H, ArNHCH₂-), 3.00 – 2.98 (m, 2H, -CH₂NHCH₂-CH₂-), 1.98 – 1.94 (m, 2H, -CH₂CH₂-CH₂-), 1.68 (bs, H-N, exchangeable with D2O). ¹³C NMR (125 MHz, CDCl₃, δ): 152.18, 150.36, 149.19, 145.53, 141.09, 139.64, 138.49, 134.55, 132.91, 132.76, 129.06, 128.58, 126.17, 126.03, 125.71, 124.82, 124.46, 122.03, 118.85, 117.51, 110.48, 98.37, 53.94, 49.26, 43.92, 27.49. HRMS: m/z 509.15630 corresponds to molecular formula C₃H₂sClN₄SH⁺ (error in ppm 0.35). HPLC purity ($\lambda = 330$ nm): method C: RT 8.427, area 97.74%, method D: RT 7.073, area 98.21%.

4-(5-{4-[({4-[(7-chloroquinolin-4-yl)amino]butyl}amino)methyl]phenyl}-2-thienyl)benzonitrile (39).

The general procedure A was followed using 36 (60 mg, 0.2 mmol), AQ4 (77.7 mg, 0.311 mmol), MeOH/CH₂Cl₂ (5.3 mL, 2:1, v/v), glac.

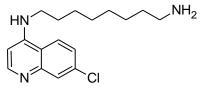
AcOH (19 μ L, 0.31 mmol) and NaBH₄ (47 mg, 1.2 mmol). After working up the reaction in a manner provided in a general procedure, the crude product was subjected to silica-gel column chromatography using EtOAc/MeOH as eluent and NH flash chromatography, Biotage SP1, using hexane/EtOAc and EtOAc/MeOH as eluents. The final product 39 was obtained as a yellow solid (41.2 mg, 38%). M.p. = 163 –

164 °C. IR (film): 3278w, 3068w, 2935m, 222w, 1583s, 1544w, 1494w, 1451m, 1366w, 1338w, 1281w, 1209w, 1175w, 1139w, 1034w, 882w, 825m, 797m, 771w cm⁻¹. ¹H NMR (500 MHz, CDCl₃ + CD₃OD, δ): 8.42 (d, *J* = 5.5, H-C(2")), 7.89 (d, *J* = 2.1, H- C(8")), 7.77 (d, *J* = 8.9, H-C(5")), 7.71, 7.66 (ABq, 4H, *J*_{AB} = 8.6, H-C(2), H-C(3), H-C(5) and H-C(6)), 7.60, 7.35 (ABq, 4H, *J*_{AB} = 8.1, H-C(2'), H-C(3'), H-C(5') and H-C(6')), 7.41, 7.32 (ABq, 2H, *J*_{AB} = 3.9, H-ArS), 7.30 – 7.27 (m, H-C(6")), 6.37 (d, *J* = 5.6, H-C(3")), 3.83 (s, 2H, ArCH₂-), 3.32 (t, 2H, *J* = 6.6, ArNHCH₂-), 2.74 (t, 2H, *J* = 6.9, ArCH₂NHCH₂-), 1.86 – 1.81 (m, 2H, ArNHCH₂CH₂-), 1.74 – 1.69 (m, 2H, ArNHCH₂CH₂-). ¹³C NMR (125 MHz, CDCl₃ + CD₃OD, δ): 151.41, 148.48, 145.54, 140.87, 139.27, 138.47, 135.02, 132.73, 132.69, 128.79, 127.72, 126.08, 125.85, 125.62, 125.12, 124.31, 121.59, 118.78, 117.13, 110.23, 98.61, 53.31, 48.35, 42.84, 27.27, 26.03. HRMS: *m*/*z* 523.17161 corresponds to molecular formula C₃₁H₂₇ClN₄SH⁺ (error in ppm -0.32). HPLC purity (λ = 330 nm): method C: RT 8.278, area 95.92%, method D: RT 7.072, area 96.32%.

4-(5-{4-[(5-[(7-chloroquinolin-4-yl)amino]pentyl}amino)methyl]phenyl}-2-thienyl)benzonitrile (40).

The general procedure A was followed using **36** (70.0 mg, 0.242 mmol), **AQ5** [2] (95.4 mg, 0.362 mmol), MeOH/CH₂Cl₂ (6 mL, 2:1, v/v), glac. AcOH (22 µL, 0.36 mmol)

and NaBH₄ (54.8 mg, 1.45 mmol). After working up the reaction in a manner provided in a general procedure A, the crude product was subjected to silica-gel column chromatography using EtOAc/MeOH as eluent and NH flash chromatography, Biotage SP1, using hexane/EtOAc and EtOAc/MeOH as eluent. The final product **40** was obtained as a yellow solid (31.4 mg, 40%). M.p. = 150 – 152 °C. IR (film): 3405m, 3022w, 2988w, 2932m, 2858m, 2823w, 2219m, 2182w, 1604m, 1582s, 1531m, 1498w, 1478m, 1450m, 1371w, 1335w, 1278w, 1180w, 1134w, 1107w, 1076w, 902w, 879w, 850w, 831w, 801m, 739w cm⁻¹. ¹H NMR (500 MHz, CDCl₃ + CD₃OD, δ): 8.25 (d, J = 5.5, H-C(2")), 7.73 (d, J = 2.1, H-C(8")), 7.63 (d, J = 9.0, H-C(5")), 7.54, 7.50 (ABq, 4H, J_{AB} = 8.6, H-C(2), H-C(3), H-C(5) and H-C(6)), 7.45 – 7.43 (m, 2H, H- C(2') and H-C(6')), 7.24 (d, J = 3.9, H-ArS), 7.19 – 7.15 (m, 4H, H-C(3'), H-C(5'), H-ArS and H-C(6")), 6.22 (d, J = 5.6, H-C(3")), 3.65 (s, 2H, ArCH₂-), 3.16 (t, 2H, J = 7.0, ArNHCH₂-), 2.79 (s, H-N, exchangeable with D₂O), 2.52 (t, 2H, J = 7.1, ArCH₂NHCH₂-), 1.63 – 1.57 (m, 2H, ArNHCH₂-), 1.49 – 1.43 (m, 2H, -CH₂NHCH₂-), 1.38 – 1.31 (m, 2H, ArNHCH₂-CH₂-). ¹³C NMR (125 MHz, CDCl₃ + CD₃OD, δ): 151.29, 150.29, 148.39, 145.55, 140.76, 139.23, 138.45, 135.02, 132.64, 128.82, 127.58, 126.06, 125.76, 125.56, 125.13, 124.25, 121.49, 118.75, 117.03, 110.12, 98.60, 53.21, 48.54, 42.73, 29.08, 28.09, 24.53. HRMS: m/z 537.18574 corresponds to molecular


formula $C_{32}H_{29}ClN_4SH^+$ (error in ppm -3.13). HPLC purity (λ = 330 nm): method C: RT 8.209, area 98.02%, method D: RT 6.985, area 97.40%.

4-(5-{4-[(6-[(7-chloroquinolin-4-yl)amino]hexyl}amino)methyl]phenyl}-2-thienyl)benzonitrile (41).

The general procedure A was followed using **36** (279 mg, 0.964 mmol), **AQ6** (401.7 mg, 1.466 mmol), MeOH/CH₂Cl₂

(23.5 mL, 2:1, v/v), glac. AcOH (87 µL, 1.4 mmol) and NaBH₄ (218.8 mg, 5.784 mmol). After working up the reaction in a manner provided in a general procedure, the crude product was subjected to silica-gel column chromatography using EtOAc/MeOH as eluent and NH flash chromatography, Biotage SP1, using hexane/EtOAc and EtOAc/MeOH as eluents. The final product **41** was obtained as a yellow solid (205.7 mg, 39%). M.p. = 130 - 131 °C. IR (film): 3411w, 3059w, 2927w, 2854w, 2221w, 1578s, 1451m, 1365w, 1323w, 1132w, 833w, 797w cm⁻¹. ¹H NMR (500 MHz, CDCl₃ + D₂O, δ): 8.51 (d, J = 8.3, H-C(2"), 7.95 (d, J = 2.1, H-C(5"), 7.70 – 7.58 (m, 7H, H-C(2), H-C(3), H-C(5), H-C(6), H-C(6"), H-C(6"), H-C(6")), 7.39 – 7.33 (m, 4H, H-ArS, H-C(3"), H-C(5'), H-C(6")), 7.30 (d, J = 3.7, H-ArS), 6.40 (d, J = 5.5, H-C(3")), 3.82 (s, 2H, ArCH₂-), 3.30 (t, J = 7.2, 2H, ArNHCH₂-), 2.65 (t, J = 7.1, 2H, ArCH₂NHCH₂-), 1.79 – 1.73 (m, 2H, ArNHCH₂-L), 1.59 – 1.43 (m, 6H, ArNHCH₂-CH₂-CH₂-CH₂-C). ¹³C NMR (125 MHz, CDCl₃, δ): 152.05, 149.68, 149.13, 145.94, 140.78, 140.64, 138.55, 134.86, 132.76, 132.44, 128.89, 128.79, 126.10, 125.81, 125.68, 125.29, 124.22, 120.76, 118.88, 117.10, 110.42, 99.10, 53.68, 49.24, 43.21, 30.00, 28.85, 27.05. HRMS: m/z 551.20336 corresponds to molecular formula C₃₃H₃₁ClN₄SH⁺ (error in ppm 0.53). HPLC purity (λ = 330 nm): method A: RT 8.681, area 95.22%, method B: RT 7.415, area 95.74%.

N-(7-chloroquinolin-4-yl)octane-1,8-diamine AQ88.

NH₂ The general procedure D was followed using 4,7-dichloroquinoline (500 mg, 2 mmol) and 1,8-diaminooctane (1.8 g, 13 mmol). The final product **AQ88** was obtained as a pale yellow solid (535.6 mg, 69%).

M.p. = 97 - 98 °C. IR (ATR): 3325m, 3262m, 2928m, 2851m, 1612m,

1577m, 1537m, 1480w, 1449w, 1431w, 1369m, 1330w, 1281w, 1251w, 1198w, 1134w, 1080w, 1027w, 960w, 922w, 903w, 876w, 852w, 809w, 771w, 729w, 649 cm⁻¹. 1 H NMR (500 MHz, CDCl₃ + D₂O, δ): 8.51 (d, J = 5.4, H-C(2')), 7.95 (d, J = 2.1, H-C(8')), 7.66 (d, J = 8.9, H-C(5')), 7.34 (dd, J₁ = 8.9, J₂ = 2.1, H-C(6')), 6.40 (d, J = 5.4, H-C(3')), 3.29 (t, 2H, J = 7.2, H-C(1)), 2.66 (t, 2H, J = 7.0, H-C(8)), 1.78 – 1.72 (m, 2H, H-C(2)), 1.48 – 1.32 (m, 10H, H-C(3), H-C(4), H-C(5), H-C(6) and H-C(7)). 13 C NMR (125 MHz, CDCl₃, δ): 152.02, 149.68, 149.12,

134.74, 128.79, 125.16, 120.83, 117.09, 99.02, 43.22, 42.16, 33.70, 29.34, 29.28, 28.84, 27.05, 26.76. HRMS: *m/z* 306.17168 corresponds to molecular formula C₁₇H₂₄N₃ClH⁺ (error in ppm -4.82).

4-(5-{4-[({8-[(7-chloroquinolin-4-yl)amino]octyl}amino)methyl]phenyl}-2-thienyl)benzonitrile (42).

The general procedure A was followed using **36** (242 mg, 0.835 mmol), AQ88 (383.4 mg, 1.253 mmol), MeOH/CH₂Cl₂

(23.5 mL, 2:1, v/v), glac. AcOH (75 μL, 1.2 mmol) and NaBH₄ (189.5 mg, 5.009 mmol). After working up the reaction in a manner provided in a general procedure A, the crude product was subjected to silica-gel column chromatography using EtOAc/MeOH as eluent and NH flash chromatography, Biotage SP1, using hexane/EtOAc and EtOAc/MeOH as eluents. The final product 42 was obtained as a pale yellow solid (173.8 mg, 36%). M.p. = 123 – 125 °C. IR (film): 3641w, 3612w, 3298m, 3072m, 2930s, 2855m, 2222m, 2173w, 1602m, 1581s, 1543m, 1495m, 1471m, 1450m, 1373m, 1332m, 1280w, 1207w, 1177w, 1137w, 1076w, 1022w, 907w, 877w, 840m, 798m, 770w, 733w, 648w, 538w cm⁻¹. ¹H NMR (500 MHz, CDCl₃ + D₂O, δ): 8.51 (d, I = 5.4, H-C(2")), 7.95 (d, I = 2.0, H-C(8")), 7.69 - 7.57 (m, 7H, H-C(2), H-C(3), H-C(5), H-C(6), H-C(2'), H-C(6), H-C(H-C(6'), H-C(5''), 7.38 - 7.29 (m, 5H, H-(3'), H-C(5'), 2H-ArS, H-C(6'')), 6.39 (d, I = 5.3, H-C(3'')), 3.80 (s, ArCH₂NH-), 3.28 (t, 2H, J = 7.1, ArNHCH₂-), 2.63 (t, 2H, J = 7.2, ArCH₂NHCH₂-), 1.77 - 1.71 (m, 2H, ArNHCH2CH2-), 1.54 - 1.42 (m, 4H, ArNHCH2CH2CH2CH2CH2CH2CH2-), 1.42 - 1.29 (m, 6H, CH₂NHCH₂CH₂CH₂CH₂-). ¹³C NMR (125 MHz, CDCl₃, δ): 152.01, 149.67, 149.08, 145.93, 140.69, 138.50, 134.78, 132.70, 132.33, 128.80, 128.74, 126.05, 125.74, 125.61, 125.20, 124.14, 120.76, 118.84, 117.07, 110.32, 99.03, 53.64, 49.38, 43.23, 30.02, 29.38, 29.24, 28.84, 27.21, 27.04. HRMS: m/z 579.23307 corresponds to molecular formula C₃₅H₃₅N₄SClH⁺ (error in ppm -2.25). HPLC purity (λ = 330 nm): method D: RT 11.456, area 96.24%, method G: RT 6.658, area 99.44%.

4-{5-[4-({[4-(quinolin-4-ylamino)butyl]amino}methyl)phenyl]-2-thienyl}benzonitrile (43).

The general procedure A was followed using **36** (70.0 mg, 0.241 mmol), **AQ8** [1] (77.5 mg, 0.360 mmol), MeOH/CH₂Cl₂ (6 mL, 2:1, v/v), glac. AcOH (22 μ L, 0.36

mmol) and NaBH₄ (54.5 mg, 1.44 mmol). After working up the reaction in a manner provided in a general procedure, the crude product was subjected to silica-gel column chromatography using

EtOAc/MeOH as eluent and NH flash chromatography, Biotage SP1, using hexane/EtOAc and EtOAc/MeOH as eluent. The final product **43** was obtained as a yellow solid (53 mg, 45%). M.p. = 117 – 118 °C. IR (film): 3401m, 3273m, 3067m, 2930m, 2856m, 2225m, 1584s, 1543m, 1497w, 1454m, 1376w, 1344m, 1279w, 1129w, 839w, 804m, 767w, 737w cm⁻¹. ¹H NMR (500 MHz, CDCl₃ + D₂O, δ): 8.53 (d, J = 5.3, H-C(2")), 7.98 – 7.96 (m, H-C(8")), 7.73 – 7.58 (m, 8H, H-C(5"), H-C(2), H-C(3), H-C(5), H-C(6), H-C(7"), H-C(2') and H-C(6')), 7.40 – 7.31 (m, 5H, 2H-ArS, H-C(3'), H-C(5'), H-C(6")), 6.40 (d, J = 5.3, H-C(3")), 3.84 (s, 2H, Ar-CH₂), 3.34 (t, J = 6.7, 2H, ArNHCH₂-), 2.75 (t, J = 6.8, 2H, -CH₂NHCH₂-CH₂-), 1.91 – 1.85 (m, 2H, ArNHCH₂-CH₂-), 1.75 – 1.70 (m, 2H, -CH₂NHCH₂-CH₂-). ¹³C NMR (125 MHz, CDCl₃, δ): 150.94, 149.85, 148.27, 145.80, 140.80, 140.26, 138.49, 132.71, 129.75, 128.93, 128.73, 126.08, 125.83, 125.64, 124.42, 124.24, 119.49, 118.84, 118.76, 110.37, 98.60, 53.55, 48.62, 43.14, 27.70, 26.40. HRMS: m/z 489.21074 corresponds to molecular formula C₃₁H₂₈N₄SH⁺ (error in ppm -3.81). HPLC purity (λ = 330 nm): method C: RT 8.238, area 96.23%, method D: RT 6.871, area 96.87%.

4-{5-[4-({[6-(quinolin-4-ylamino)hexyl]amino}methyl)phenyl]-2-thienyl}benzonitrile (44).

The general procedure A was followed using **36** (70.0 mg, 0.241 mmol), **AQ9** (88 mg, 0.36 mmol), MeOH/CH₂Cl₂ (6 mL, 2:1, v/v), glac. AcOH (22 µL, 0.36 mmol)

and NaBH₄ (54.9 mg, 1.45 mmol). After working up the reaction in a manner provided in a general procedure A, the crude product was subjected to silica-gel column chromatography using EtOAc/MeOH as eluent and NH flash chromatography, Biotage SP1, using hexane/EtOAc and EtOAc/MeOH eluent. The final product 44 was obtained as a yellow solid (33 mg, 26%). M.p. = 117 – 119 °C. IR (film): 3298w, 3068w, 2926m, 2853m, 2224m, 1729w, 1581s, 1541m, 1496m, 1452m, 1375w, 1342m, 1279w, 1224w, 1177w, 1126w, 1017w, 972w, 837w, 801m, 765m, 733w, 671w cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 8.55 (d, *J* = 5.3, H-C(2")), 7.98 (d, *J* = 7.8, H-C(8")), 7.72 – 7.58 (m, 8H, H-C(5"), H-C(2), H-C(3), H-C(5), H-C(6), H-C(7"), H-C(2') and H-C(6')), 7.73 – 7.35 (m, 4H, H-C(6"), H-ArS, H-C(2') and H-C(6')), 7.30 (d, *J* = 3.9, H-ArS), 6.42 (d, *J* = 5.5, H-C(3")), 4.97 (bs, H-N), 3.82 (s, 2H, Ar-CH₂), 3.33 – 3.29 (m, 2H, ArNHCH₂-), 2.66 (t, *J* = 7.1, 2H, -CH₂NHCH₂-CH₂-), 1.80 – 1.74 (m, 2H, ArNHCH₂CH₂-), 1.60 – 1.54 (m, 2H, -CH₂NHCH₂-), 2.66 (t, *J* = 7.1, 2H, -CH₂NHCH₂CH₂-), 1.80 – 1.74 (m, 2H, ArNHCH₂CH₂-), 1.60 – 1.54 (m, 2H, -CH₂NHCH₂-), 1.52 – 1.42 (m, 4H, ArNHCH₂CH₂-). ¹³C NMR (125 MHz, CDCl₃, δ): 151.06, 149.59, 148.43, 145.94, 140.72, 138.52, 132.72, 132.36, 130.02, 128.92, 128.73, 126.06, 125.77, 125.63, 124.54, 124.17, 119.09, 118.85, 118.66, 110.36, 98.77, 53.67, 49.27, 43.15, 30.03, 28.88, 27.05. HRMS: *m*/*z* 517.24197 corresponds to molecular

formula $C_{33}H_{32}N_4SH^+$ (error in ppm -0.14). HPLC purity (λ = 330 nm): method A: RT 7.995, area 95.20%, method B: RT 9.836, area 95.69%.

4-{5-[4-({[8-(quinolin-4-ylamino)octyl]amino}methyl)phenyl]-2-thienyl}benzonitrile (45).

The general procedure A was followed using **36** (96.0 mg, 0.332 mmol), **AQ10** (135 mg, 0.497 mmol), MeOH/CH₂Cl₂ (7.5 mL, 2:1, v/v), glac. AcOH

(31 μL, 0.50 mmol) and NaBH₄ (75.3 mg, 1.99 mmol). After working up the reaction in a manner provided in a general procedure A, the crude product was subjected to silica-gel column chromatography using EtOAc/MeOH as eluent and NH flash chromatography, Biotage SP1, using hexane/EtOAc and EtOAc/MeOH as eluents. The final product 45 was obtained as a yellow solid (62.7 mg, 35 %). M.p. = 110 - 112 °C. IR (film): 3255m, 3072m, 2928s, 2854m, 2226m, 1582s, 1541m, 1496w, 1454m, 1396w, 1375w, 1343m, 1280w, 1179w, 1128w, 838w, 803m, 766w, 737w cm⁻¹. ¹H NMR (500 MHz, CDCl₃ + D₂O, δ): 8.54 (d, J = 5.4, H-C(2")), 7.98 (d, J = 8.3, H-C(8")), 7.72 – 7.58 (m, 8H, H-C(5"), H-C(7"), H-C(2), H-C(3), H-C(5), H-C(C(6), H-C(2') and H-C(6'), 7.43 – 7.35 (m, 4H, H-C(6"), H-ArS and H-C(3') and H-C(5')), 7.30 (d, I = 3.8, H-ArS), 6.4 (d, I = 5.3, H-C(3")), 3.80 (s, 2H, ArCH₂-), 3.30 (t, I = 7.1, 2H, ArNHCH₂-), 2.63 (t, I = 7.2, 2H, -– 1.72 (m, CH₂NH*CH*₂CH₂-), 1.78 2H, ArNHCH₂ CH_2 -), 1.54 - 1.35 10H, (m, CH₂NHCH₂CH₂CH₂CH₂CH₂CH₂-). ¹³C NMR (125 MHz, CDCl₃, δ): 151.01, 149.64, 148.35, 145.96, 140.73, 140.70, 138.52, 132.72, 132.34, 129.94, 128.94, 128.75, 126.06, 125.76, 125.63, 124.54, 124.16, 119.09, 118.84, 118.64, 110.35, 98.74, 53.66, 49.42, 43.22, 30.05, 29.41, 29.27, 28.91, 27.22, 27.07. HRMS: m/z 545.27237 corresponds to molecular formula C₃₅H₃₆N₄SH⁺ (error in ppm -1.78).

4-{5-[4-({methyl[8-(quinolin-4-ylamino)octyl]amino}methyl)phenyl]-2-thienyl}benzonitrile (46).

The general procedure E was followed using the solution of **45** (47.9 mg, 0.0879 mmol) in MeOH (2 mL), 37 % aqueous formaldehyde (13.2 µL, 0.176

mmol) and a mixture of ZnCl₂ (24.0 mg, 0.176 mmol), NaBH₃CN (22.1 mg, 0.352 mmol) and MeOH (2 mL). After working up the reaction in a manner provided in a general procedure E, the crude product was subjected to NH flash chromatography, Biotage SP1, using hexane/EtOAc and EtOAc/MeOH as eluents. The final product 46 was obtained as a yellow solid (23.4 mg, 45 %). Mp = 99 – 100 °C. IR (film):

3285m, 3056m, 2926s, 2853s, 2225m, 1602s, 1582s, 1541s, 1497m, 1456s, 1372m, 1343m, 1273m, 1176m, 1124m, 1068m, 1016w, 838m, 802m, 765m, 736m cm⁻¹. ¹H NMR (500 MHz, CDCl₃ + D₂O, δ): 8.53 (d, J = 5.2, H-C(2")), 7.98 (d, J = 8.4, H-C(8")), 7.71 – 7.57 (m, 8H, H-C(5"), H-C(7"), H-C(2), H-C(3), H-C(5), H-C(6), H-C(2') and H-C(6')), 7.43 – 7.40 (m, 4H, H-C(6"), H-ArS, H-C(3') and H-C(5')), 7.30 (d, J = 3.9, H-ArS), 6.41 (d, J = 5.4, H-C(3")), 3.50 (s, 2H, Ar-CH₂), 3.29 (t, J = 7.2, 2H, ArNHCH₂-), 2.39 – 2.36 (m, 2H, -CH₂N(CH₃)CH₂-), 2.21 (s, 3H, CH₃N), 1.78 – 1.72 (m, 2H, ArNHCH₂CH₂-), 1.54 – 1.33 (m, 10H, ArCH₂N(CH₃)CH₂CH₂CH₂CH₂CH₂CH₂-). ¹³C NMR (125 MHz, CDCl₃, δ): 151.00, 149.69, 148.35, 146.08, 140.68, 139.67, 138.56, 132.75, 132.35, 129.96, 129.68, 129.00, 126.09, 125.65, 125.60, 124.58, 124.14, 119.11, 118.89, 118.66, 110.37, 98.78, 62.02, 57.45, 43.29, 42.36, 29.44, 29.34, 28.97, 27.38, 27.30, 27.14. HRMS: m/z 559.28899 corresponds to molecular formula C₃₆H₃₈N₄SH⁺ (error in ppm -2.13). HPLC purity (λ = 330 nm): method I: RT 5.420, area 95.23 %, method H: RT 4.826, area 96.54 %.

i) $ArB(OH)_2$, $Pd(OAc)_2$, PPh_3 , Na_2CO_3 , MeOH/PhMe, 110 °C; ii) NBS, THF, r.t.; iii) ethynyltrimethylsilane, $PdCl_2(PPh_3)_2$, PPh_3 , Cul, Et,NH, DMF, MW; iv) 1) AQ10, AcOH glac, $MeOH/CH_2Cl_2$, r.t., 2 h 2) $NaBH_4$, r.t.; v) K_2CO_3 , MeOH, r.t.

4-(2-thienyl)benzaldehyde (47).

5' S 4

The general procedure G was followed using Pd(OAc) $_2$ (68.8 mg, 0.306 mmol) and PPh $_3$ (321.6 mg, 1.226 mmol) in toluene (35 mL), 2-bromothiophene (594 μ L, 6.13 mmol), 4-formylphenylboronic acid (1.01 g, 6.74 mmol) and 2M aq. Na $_2$ CO $_3$ (6 mL) in MeOH (6 mL). After colling to room temperature, the reaction mixture

was extracted with CH₂Cl₂, organic layers were washed with brine and dried over anh. Na₂SO₄. After filtration, the solvent was removed under reduced pressure. The crude product was subjected to silica-gel flash chromatography, Biotage SP1, using hexane / EtOAc as eluent. The final product 47 was obtained as a pale yellow solid (1.00 g, 87%). M.p. = 60 - 61 °C. [5] IR (ATR): 3107w, 2926w, 2851w, 2738w, 2005w,

1703s, 1604m, 1565w, 1426w, 1216w, 1174w, 822m, 708w cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 10.00 (s, H-CO), 7.90 – 7.76 (m, 4H, H-C(2), H-C(3), H-C(5) and H-C(6)), 7.47 – 7.40 (m, 2H, H-C(3') and H-C(5')), 7.15 - 7.13 (m, H-C(4')). ¹³C NMR (125 MHz, CDCl₃, δ): 191.47, 142.74, 140.12, 135.10, 130.47, 128.47, 126.92, 126.05, 125.03. GC/MS (m/z (%)): 188.0 ([M+], 100); 115.1 (40).

4-(5-bromo-2-thienyl)benzaldehyde (48).

N-bromosuccinimide (228.9 mg, 1.286 mmol) was added to the stirring solution of 47 (226.4 mg, 1.203 mmol) in dry THF (11 mL) in the dark, at room temperature. Reaction progress was monitored by TLC (RP, MeOH). After 4h of stirring, an aq. Na₂S₂O₃ solution was added, and the desired product was

extracted with CH2Cl2. Combined organic layers were washed with brine, and dried over anh. Na2SO4. After filtration, the solvent was removed under reduced pressure. The crude product was subjected to reversed-phase flash chromatography, Biotage SP1, using MeOH/H2O as eluent. The final product 48 was obtained as an orange solid (256.1 mg, 80%). M.p. = 117 - 118 °C. IR (ATR): 3477s, 2922m, 2851m, 2759w, 1692s, 1666m, 1604m, 1566w, 1425m, 1397w, 1220w, 1204w, 1175m, 1110w, 832w, 796m, 686w, 652w cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 10.00 (s, H-CO), 7.88, 7.66 (ABq, J_{AB} = 8.3, 4H, H-C(2), H-C(3), H-C(5) and H-C(6)), 7.20, 7.09 (ABq, I_{AB} = 3.9, 2H, H-C(3') and H-C(4')). ¹³C NMR (125 MHz, CDCl₃, δ): 191.29, 144.08, 139.14, 135.36, 131.32, 130.53, 125.70, 125.18, 113.92. GC/MS (m/z (%)): 267.9 ([M+], 100); 158.0 (66).

C(4')). ¹³C NMR (125 MHz, CDCl₃, δ): 191.32, 144.42, 142.15, 139.72, 135.16, 132.76, 132.11, 130.48, 127.16,

126.08, 125.70, 124.73, 121.90. GC/MS (m/z (%)): 343.9 ([M+], 100); 234.0 (54).

4-[5-(4-bromophenyl)-2-thienyl]benzaldehyde (49).

0.0650 mmol) and PPh3 (68.7 mg, 0.262 mmol) in toluene (15 mL), 48 (350 mg, 1.3 mmol), 4-bromophenylboronic acid (289.2 mg, 1.440 mmol) and 2M aq. Na₂CO₃ (1.3 mL) in MeOH (6 mL) and toluene (15 mL). After colling to room temperature, the reaction mixture was diluted with CH₂Cl₂, filtered through a small pad of celite and dried over anh. Na2SO4. After filtration, the solvent was removed under reduced pressure. The crude product was subjected to silica-gel flash chromatography, Biotage SP1, using hexane / EtOAc as eluent. The final product 49 was obtained as a pale yellow solid (249.6 mg, 56%). IR (ATR): 3435s, 2922w, 2852w, 2728w, 1698s, 1662w, 1560s, 1564w, 1541w, 1508w, 1438w, 1450w, 1418w, 1394w, 1338w, 1307w, 1277w, 1213m, 1169m, 1112w, 1068w, 1007w, 939w, 831m, 803s, 695w, 671w, 633w cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 10.01 (s, H-CO), 7.90, 7.76 (ABq, 4H, J_{AB} = 8.4, H-C(2), H-C(3), H-C(5) and H-C(6)), 7.53, 7.50 $(ABq, 4H, I_{AB} = 8.8, H-C(2"), H-C(3"), H-C(5")$ and H-C(6")), 7.02, 6.83 $(ABq, 2H, I_{AB} = 4.0, H-C(3'))$ and H-C(3'), H-C(3'),

The general procedure G was followed using Pd(OAc)2 (14.6 mg,

4-(5-{4-[(trimethylsilyl)ethynyl]phenyl}-2-thienyl)benzaldehyde (50).

added under an argon atmosphere. The reaction mixture was subjected to microwave irradiation using Biotage Initiator 2.5 apparatus for 35 min at 120 °C. After cooling to room temperature, the reaction mixture was diluted with ether and CH₂Cl₂ and filtrate through a small pad of celite. The filtrate was washed with 0.1M HCl and extracted with CH₂Cl₂. The organic layer was washed with satd. aq. solution of NaHCO₃ and water and dried over anh Na₂SO₄. After filtration, the solvent was removed under reduced pressure. The crude product was subjected to silica-gel flash chromatography, Biotage SP1, using hexane / EtOAc as eluent. The final product **50** was obtained as a pale yellow solid (30.4 mg, 41%). IR (ATR): 3392w, 2962w, 2835w, 2742w, 2156w, 1702m, 1598m, 1566w, 1491w, 1449w, 1415w, 1341w, 1308w, 1250m, 1216w, 1169w, 1112w, 838m, 799m, 762w, 699w, 643w cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 10.00 (s, H-CO), 7.89, 7.76 (ABq, J_{AB} = 8.2, 4H, H-C(2), H-C(3), H-C(5) and H-C(6)), 7.57, 7.49 (ABq, J_{AB} = 8.4, 4H, H-C(2"), H-C(3"), H-C(5") and H-C(6")), 7.44, 7.34 (ABq, J_{AB} = 3.8, 2H, H-C(3') and H-C(4')), 0.27 (s, 9H, 3 × Si-CH₃). ¹³C NMR (125 MHz, CDCl₃, δ): 191.40, 145.03, 142.33, 139.84, 135.21, 133.77, 132.63, 130.56, 126.18, 125.75, 125.38, 124.94, 122.69, 104.74, 95.79. GC/MS (m/z (%)): 360.1 ([M+], 91); 345.1 (100).

N^1 -(quinolin-4-yl)octane-1,8-diamine AQ10.

The general procedure D was followed using 4-chloroquinoline (650 mg, 4.0 mmol) and 1,8-diaminooctane (2.86 g, 19.8 mmol). The final product was obtained as a brown oil (701.9 mg, 65%). IR (ATR): 3290m, 2928s, 2854m, 1653w, 1583s, 1544m, 1462m, 1440m, 1396w,

1375w, 1342m, 1256w, 1127w, 882w, 809w, 767m cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 8.55 (d, J = 5.3, H-C(2′)), 7.99 – 7.97 (m, H-C(8′)), 7.74 – 7.72 (m, H-C(5′)), 7.64 – 7.60 (m, H-C(7′)), 7.43 – 7.40 (m, H-C(6′)), 6.42 (d, J = 5.4, H-C(3′)), 5.04 (bs, H-N), 3.33 – 3.29 (m, 2H, H-C(1)), 2.68 (t, 2H, J = 7.0, H-C(8)), 1.79 – 1.73 (m, 2H, H-C(2)), 1.50 – 1.30 (m, 12H, 2H-N, 2H-C(3), 2H-C(4), 2H-C(5), 2H-C(6) and H-C(7)). ¹³C NMR (125 MHz, CDCl₃, δ): 151.03, 149.64, 148.40, 129.93, 128.89, 124.48, 119.14, 118.66, 98.72, 43.19, 42.16, 33.71, 29.30, 28.89, 27.06, 26.76. HRMS m/z 272.21141 corresponds to molecular formula C₁₇H₂₅N₃H⁺ (error in ppm -2.62).

N-quinolin-4-vl-N-[4-(5-{4-[(trimethylsilyl)ethynyl]phenyl}-2-thienyl)benzyl]octane-1,8-diamine (51).

mmol), AQ10 (40.2 mg, 0.148 mmol), MeOH/CH₂Cl₂ (5.4 mL, 2:1, v/v), glac. AcOH (12 μL, 0.21 mmol) and NaBH₄ (28 mg, 0.74 mmol). After working up the reaction in a manner provided in a general procedure A, the crude product was subjected to silica-gel column chromatography using EtOAc/MeOH as eluent and NH flash chromatography, Biotage SP1, using hexane/EtOAc and EtOAc/MeOH as eluent. The final product 51 was obtained as a pale vellow solid (19 mg, 25%). IR (ATR): 3244m, 3073m, 3025m, 2924s, 2852m, 2156m, 1582s, 1544m, 1496m, 1454m, 1398m, 1376m, 1280w, 1248m, 1130w, 1109w, 1017w, 943w, 863m, 841m, 802m, 760m, 664w cm⁻¹. ¹H NMR (500 MHz, CDCl₃ + D₂O, δ): 8.53 (d, *J* = 5.3, H-C(2)), 7.98 (d, I = 8.5, H-C(8)), 7.71 (d, I = 8.4, H-C(5)), 7.64 – 7.60 (m, H-C(7)), 7.58 – 7.54 (m, 4H, H-C(2'), H-C(6'), H-C(6'), H-C(8')) C(2'') and H-C(6''), 7.47 - 7.46 (m, 2H, H-C(3'') and H-C(5'')), 7.43 - 7.40 (m, H-C(6)), 7.34 - 7.33 (m, 2H, H-C(5') and H-C(3'), 7.29 – 7.26 (m, 2H, ovlp with solvent signal, H-ArS), 6.41 (d, J = 5.3, H-C(3)), 3.79 (s, 2H, ArCH2-), 3.30 (t, J = 7.2, 2H, ArNHCH2-), 2.63 (t, J = 7.2, 2H, -CH2NHCH2CH2-), 1.78 - 1.72 (m, 2H, ArNHCH₂CH₂-), 1.54 - 1.43 (m, 4H, -CH₂NHCH₂CH₂(CH₂)₃CH₂-), 1.39 - 1.35 (m, 6H, -CH₂NHCH₂CH₂CH₂CH₂CH₂-), 0.26 (s, 9H, 3 × Si-CH₃). ¹³C NMR (125 MHz, CDCl₃, δ): 151.03, 149.70, 148.37, 144.19, 142.51, 140.20, 134.28, 132.84, 132.52, 129.96, 128.99, 128.73, 125.67, 125.14, 124.59, 124.57, 123.96, 121.99, 119.14, 118.68, 104.93, 98.79, 95.31, 53.72, 49.42, 43.27, 30.09, 29.46, 29.33, 28.97, 27.28, 27.12. HRMS: m/z 616.31641 corresponds to molecular formula C₃₉H₄₅N₃SSiH⁺ (error in ppm -1.96).

N-{4-[5-(4-ethynylphenyl)-2-thienyl]benzyl}-N'-quinolin-4-yloctane-1,8-diamine (52).

To a solution of **51** (16 mg, 0.026 mmol) in a dry MeOH (0.5 mL), anh. K₂CO₃ was added. The reaction mixture

was stirred at room temperature for 24h. The organic product was extracted using ethyl-acetate, combined organic layers were washed with satd. aqueous solution of NaHCO₃ and dried over anh. NaSO₄. After filtration, the crude product was subjected to NH flash chromatography, Biotage SP1, using CH₂Cl₂/MeOH as eluent. The final product **52** was obtained as a pale yellow solid (14 mg, 99%). M.p. = 110 – 112 °C. IR (film): 3302s, 2928m, 2854m, 1583s, 1541m, 1496m, 1456m, 1397w, 1375w, 1342m, 1281w, 1127w, 940w, 837m, 801s, 765m, 737m, 647m cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 8,54 (d, *J* = 5.3, H-C(2)),

In vitro antiplasmodial activity

The Malaria SYBR Green I - Based Fluorescence (MSF) Assay is a microtiter plate drug sensitivity assay that uses the presence of malarial DNA as a measure of parasitic proliferation in the presence of antimalarial drugs or experimental compounds. As the intercalation of SYBR Green I dye and its resulting fluorescence is relative to parasite growth, a test compound that inhibits the growth of the parasite will result in a lower fluorescence. D6 (CDC/Sierra Leone), TM91C235 (WRAIR, Thailand), and W2 (CDC/Indochina III) laboratory strains of P. falciparum were used for each drug sensitivity assessment. The parasite strains were maintained continuously in long-term cultures as previously described in Johnson et al [6]. Pre-dosed microtiter drug plates for use in the MSF assay were produced using sterile 384-well black optical bottom tissue culture plates containing quadruplicate 12 two-fold serial dilutions of each test compound suspended in dimethyl sulfoxide. The final concentration range tested was 0.5 – 10000 ng/ml for all assays. Predosed plates were stored at 4°C until used, not to exceed five days. No difference was seen in drug sensitivity determinations between stored or fresh drug assay plates (data not shown). A batch control plate using Chloroquine (Sigma-Aldrich Co., Catalog #C6628) at a final concentration of 2000 ng/ml was used to validate each assay run. The Tecan Freedom Evo liquid handling system (Tecan US, Inc., Durham, NC) was used to produce all drug assay plates. Based on modifications of previously described methods by Plouffe et al [7] and Johnson et al [6], P. falciparum strains in late-ring or early-trophozoite stages were cultured in the predosed 384-well microtiter drug assay plates in 38 µl culture volume per well at a starting parasitemia of 0.3% and a hematocrit of 2%. The cultures were then incubated at 37°C within a humidified atmosphere of 5% CO₂, 5% O₂ and 90% N₂, for 72 hours. Lysis buffer (38 µl per well), consisting of 20mM Tris HCl, 5mM EDTA, 1.6% Triton X, 0.016% saponin, and SYBR green I dye at a 20x concentration (Invitrogen, Catalog #S-7567) was then added to the assay plates for a final SYBR Green concentration of 10x. The Tecan Freedom Evo liquid handling system was used to dispense malaria cell culture and lysis buffer. The plates were then incubated in the dark at room temperature for 24 hours and examined for the relative fluorescence units (RFU) per well using the Tecan Genios Plus (Tecan US, Inc., Durham, NC). Each drug concentration was transformed into Log[X] and plotted against the RFU values. The 50% inhibitory concentrations (IC50s) were then generated with GraphPad Prism (GraphPad Software Inc., SanDiego, CA) using the nonlinear regression (sigmoidal dose-response/variable slope) equation.

_

^{1.} Terzić, N.; Konstantinović, J.; Tot, M.; Burojević, J.; Đurković-Đaković, O.; Srbljanović, J.; Štajner, T.; Verbić, T.; Zlatović, M.; Machado, M.; Albuquerque, I. S.; Prudêncio, M.; Sciotti, R. J.; Pecic, S.; D'Alessandro, S.; Taramelli, D.; Solaja, B. A. Reinvestigating Old Pharmacophores: Are 4-Aminoquinolines and Tetraoxanes Potential Two-Stage Antimalarials? *J. Med. Chem.* **2016**, 59, 264 – 281, doi:

10.1021/acs.jmedchem.5b01374.

Available

online:

http://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.5b01374 (accessed on 19 December 2016).

^{2.} Solaja, B. A.; Opsenica, D.; Smith, K. S.; Milhous, W. K.; Terzic, N.; Opsenica, I.; Burnett, J. C.; Nuss, J.; Gussio, R.; Bavari, S. Novel 4-Aminoquinolines Active against Chloroquine-Resistant and Sensitive P. falciparum Strains that also Inhibit Botulinum Serotype A. *J. Med. Chem.* **2008**, *51*, 4388 – 4391, doi: 10.1021/jm800737y. Available online: http://pubs.acs.org/doi/abs/10.1021/jm800737y (accessed on 19 December 2016)

^{3.} Seggio, A.; Priem, G.; Chevallier, F.; Mongin, F. Palladium-Catalyzed Cross-Couplings of Lithium Arylzincates with Aromatic Halides: Synthesis of Analogues of Isomeridianin G and Evaluation as GSK-

- 3β Inhibitors *Synthesis* **2009**, 21, 3617 3632, doi: 10.1055/s-0029-1217003. Available online: https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0029-1217003.
- 4. Chaires, J. B.; Ren, J.; Hamelberg, D.; Kumar, A.; Pandya, V.; Boykin, D. W.; Wilson, W. D. Structural Selectivity of Aromatic Diamidines. *J. Med. Chem.* **2004**, *47*, 5729 5742, doi: 10.1021/jm049491e. Available online: http://pubs.acs.org/doi/abs/10.1021/jm049491e (accessed on 19 December 2016).
- 5. Baghbanzadeh, M.; Pilger, C.; Kappe, C. O. Palladium-Catalyzed Direct Arylation of Heteroaromatic Compounds: Improved Conditions Utilizing Controlled Microwave Heating. *J. Org. Chem.* **2011**, *76*, 8138 8142, doi: 10.1021/jo201516v. Available online: http://pubs.acs.org/doi/abs/10.1021/jo201516v (accessed on 19 December 2016).
- 6. Johnson, J. D.; Dennull, R. A.; Gerena, L.; Lopez-Sanchez, M.; Roncal, N. E.; Waters, N. C. Assessment and Continued Validation of the Malaria SYBR Green I-Based Fluorescence Assay for Use in Malaria Drug Screening. *Antimicrob. Agents Chemother.* **2007**, *51*, 1926-1933, doi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1891422/ (accessed on 27 January 2017).
- 7. Plouffe, D.; Brinker, A.; McNamara, C.; Henson, K.; Kato, N.; Kuhen, K.; Nagle, A.; Adrián, F.; Matzen, J. T.; Anderson, P.; Nam, T.G.; Gray, N. S.; Chatterjee, A.; Janes, J.; Yan, S. F.; Trager, R.; Caldwell, J.S.; Schultz, P.G.; Zhou, Y.; Winzeler, E. A. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. *Proc. Natl. Acad. Sci. U.S.A.* 2008, 105, 9059-9064, doi: 10.1073/pnas.0802982105. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2440361/ (accessed on 27 January 2017).