Supplementary data for article:

Dimitrijević, M. S.; Bogdanović Pristov, J.; Žižić, M.; Stanković, D. M.; Bajuk-Bogdanović, D.; Stanić, M.; Spasić, S.; Hagen, W.; Spasojević, I. Biliverdin-Copper Complex at Physiological PH. Dalton Transactions 2019, 48 (18), 6061-6070. https://doi.org/10.1039/c8dt04724c

Electronic Supplementary Information

Biliverdin-copper complex at physiological pH

Milena Dimitrijević, Jelena Bogdanović Pristov, Milan Žižić,Dalibor Stanković, Danica BajukBogdanović, Marina Stanić, Snežana Spasić, Wilfred Hagen, Ivan Spasojević ${ }^{*}$
*E-mail: : redoxsci@gmail.com

Figure S1. The stability of $[\mathrm{BV}] /\left[\mathrm{Cu}^{2+}\right]=1$ system in the presence of copper chelating agent bathocuproine in phosphate buffer (50 mM ; pH 7.4). Green line - BV and Cu^{2+} were incubated for 5 min before the addition of bathocuproine. Blue line $-\mathrm{Cu}^{2+}$ was added to the buffer after BV and bathocuproine (arrow - absorbance line of bathocuproine complex with copper). It is important to note that bathocuproine is a non-innocent copper chelator. In the presence of bathocuproine, the reduction potential for the $\mathrm{Cu}^{2+} / \mathrm{Cu}^{1+}$ couple is raised by approximately 500 mV , making Cu^{2+} a powerful oxidant. ${ }^{1}$ In the process, Cu^{2+} oxidizes $\mathrm{BV}-\mathrm{Cu}$ complex, resulting in BV degradation (note that BV-related absorance is completely lost (blue line)) and Cu release.

Figure S2. Changes in UV-Vis spectra of $\mathrm{BV}-\mathrm{Cu}^{2+}$ systems prepared at high concentrations in 50 mM phosphate buffer, pH 7.4 . Left: $[\mathrm{BV}] /\left[\mathrm{Cu}^{2+}\right]=1$; $[\mathrm{BV}]=\left[\mathrm{Cu}^{2+}\right]=0.3 \mathrm{mM}$. Right: $[\mathrm{BV}] /\left[\mathrm{Cu}^{2+}\right]=2 ;[\mathrm{BV}]=2 \mathrm{mM} ;\left[\mathrm{Cu}^{2+}\right]=1 \mathrm{mM}$. Aliquots were taken from each system and diluted to lower final concentrations (10 or $40 \mu \mathrm{M}$, respectively), to allow spectra acquisition. It can be observed that the $[\mathrm{BV}] /\left[\mathrm{Cu}^{2+}\right]=1$ system underwent degradation within 10 min, whereas the $[\mathrm{BV}] /\left[\mathrm{Cu}^{2+}\right]=2$ system was relatively stable for 5 h .

$$
\left[\mathrm{Cu}^{2+}\right]=40 \mu \mathrm{M}
$$

$$
\left[\mathrm{PO}_{4}{ }^{3-}\right]=50 \mathrm{mM}
$$

$$
\begin{aligned}
& {\left[\mathrm{Cu}^{2+}\right]=0.3 \mathrm{mM}} \\
& {\left[\mathrm{PO}_{4}{ }^{3-}\right]=50 \mathrm{mM}}
\end{aligned}
$$

(

Figure S3. Speciation diagrams of Cu^{2+} in phosphate buffer (50 mM) at two concentrations - 40 $\mu \mathrm{M}$ (top) and $300 \mu \mathrm{M}$ (bottom). Diagrams were prepared in Hydra-Medusa Software, using the presented parameters.

Figure S4. Comparison of UV-Vis spectra of biliverdin (BV) in the absence and the presence of Cu^{2+} in phosphate buffer (50 mM ; pH 7.4) and in DMSO. Spectra were recorded after 5 min incubation period.

Figure S5. HESI-MS spectrum (full scan mode) of the system with [BV] $=20 \mu \mathrm{M}$ and $[\mathrm{Cu}]=40$ $\mu \mathrm{M}([\mathrm{BV}] /[\mathrm{Cu}]=0.5)$. Assignation: $m / z 643$, BV-Cu complex; $m / z 264$, propentdyopent; m / z 320 , propentdyopent complex with copper. ${ }^{2}$

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra of biliverdin $(0.3 \mathrm{mM})$ in DMSO-d6 in the absence or the presence of Cu^{2+} at equimolar concentration. The bottom spectrum was recorded in a copper-free system, with the equimolar amount of $\mathrm{D}_{2} \mathrm{O}$ as in experiments with copper. It can be observed that Cu^{2+} and $\mathrm{D}_{2} \mathrm{O}$ induced similar (but not identical) changes. Changes in NH signals could not be observed in the presence of $\mathrm{D}_{2} \mathrm{O}$ because of the chemical exchange. The peaks were assigned in accordance to previous reports. ${ }^{3}$ The signals labeled with 4 come from two types of protons ($\mathrm{CH}=$ and $=\mathrm{CH}_{2}$). The spectra were collected within 20 min after sample preparation.

Figure S7. Scan rate analysis of BV and BV-Cu complex in phosphate buffer (50 mM ; pH 7.4). (a) Cyclic voltammograms of $\mathrm{BV}(0.4 \mathrm{mM})$ in absence or presence of $\mathrm{Cu}^{2+}(0.2 \mathrm{mM})$ at the boron doped diamond electrode obtained at different scan rates $(v=0.025-0.5 \mathrm{~V} / \mathrm{s})$. (b) The dependence between anodic peak currents I at potentials $E_{p a 1}$ (oxidation of BV), and $E_{p a 2}$ and $E_{p a 3}$ (oxidation of BV-Cu complex(es)) and $v^{1 / 2}$. Linear fit and R^{2} values are presented. (c) D for BV and BV-Cu complex(es). Randles-Sevick equation (in the box): n, number of transferred e^{-}
($1 \mathrm{e}^{-}$for all peak currents), A, area of the working electrode $\left(0.0707 \mathrm{~cm}^{2}\right)$; C, concentration of redox species in solution $([B V]=0.4 \mathrm{mM} ;[B V-C u]=0.2 \mathrm{mM})$. Results are presented as means (\pm standard deviation) of measurements made at various v. All three D values were statistically different ($\mathrm{p}<0.001$; ANOVA with post hoc Duncan's test).

Table S1. Raman spectral lines that were observed for BV (1 mM), using the $\lambda=532 \mathrm{~nm}$ laser excitation line.

Line $\mathbf{c m}^{-1}$]	Assignment	References
1619	Lactam stretching	4
1470	C-C deformation, likely between rings	4,5
1443	Stretching CC, stretching CN	6
1393	CH3 asymmetric deformation	6
1362	CH3 deformation	6
1331	In plane bending CH(CH3)	6
1303	CH wagging	6
1254	Lactam ring	6
1179	C-H twisting	4
1101	Stretching C-C, stretching C-N	6
1003	Asymmetric CH3 deformation	6
971	C-C stretching mixed with C-H rocking	4
954	Stretching C-C-O	7
844	Stretching ring	6
767	In plane ring deformation	6
717	Out of plane ring deformation	6
684	Out of plane bending C=O	6

References

(1) L. M. Sayre, Science, 1996, 274, 1933-1934.
(2) A. L. Balch, M. Mazzanti, B. C. Noll, M. M. Olmstead, J. Am. Chem. Soc., 1993, 115, 12206-12207.
(3) (a) D. Chen, J. D. Brown, Y. Kawasaki, J. Bommer, J. Y. Takemoto, BMC Biotechnol., 2012, 12, 89; (b) G. M. Godziela, H. M. Goff, J. Am. Chem. Soc., 1986, 108, 2237-2243.
(4) J. Hu, T. Wang, D. Moigno, M. Wumaier, W. Kiefer, J. Mao, Q. Wu, F. Niu, Y. Gu, Q. Chen, J. Ma, H. Feng, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2001, 57, 2737-2743.
(5) J. M. Hu, E. J. Liang, F. Duschek, W. Kiefer, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 1997, 53, 1431-1438.
(6) F. Celis, M. M. Campos-Vallette, J. S. Gómez-Jeria, R. E. Clavijo, G. P. Jara, C. Garrido, Spectrosc. Lett., 2016, 49, 336-342.
(7) J. Chen, J. M. Hu, R. S. Sheng, Spectrochim. Acta, Part A., 1994, 50, 929-936.

