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Abstract 

 

This study presents the synthesis, characterization and antitumor action of five new Pt(II) 

halogenido, chlorido and iodido, complexes with edda type of ligands. (S,S)-ethylendiamine-

N,N'-di-2-(3-cyclohexyl)propanoic acid dihydrochloride and its methyl, ethyl and n-propyl 

esters, were prepared according to the previously reported procedure. All investigated 

complexes were characterized by IR, ESI-MS, (
1
H, 

13
C and HMBC) NMR spectroscopy and 

elemental analysis. Their cytotoxic action was investigated in four human tumor cell lines: 

promyelocytic (HL-60) and lymphocytic (REH) leukemia, glioma (U251) and lung 

carcinoma (H460). Cell viability was assessed by acid phosphatase and LDH assay, while 

oxidative stress and cell death parameters were analyzed by flow cytometry. The results 

showed that novel Pt(II) complexes exhibited antitumor action superior to precursor ligands, 

with iodido complexes being more efficient than corresponding chlorido complexes. Human 

promyelocytic cell line (HL-60) was the most sensitive to antitumor action of all investigated 

substances, and was used for investigation of the underlying mode of antileukemic action. 

The investigated Pt(II) complexes showed more potent antileukemic action than 

corresponding Pt(IV) complex, through induction of oxidative stress and apoptosis, 

evidenced by caspases (8, 9 and 3) activation and phosphatidylserine externalization.  

Keywords: platinum(II) complexes, edda ligands, antileukemic, phosphatidylserine, caspases 

 

1. Introduction 

Blood cancers (leukemia, lymphoma, myeloma and myelodysplastic syndromes) account for 

10.2 % of new malignancies diagnosed in the US in 2016 [1]. Survival rates vary by leukemia 

subtype, and average 5-year survival is less than 30 % for patients with acute myeloid 

leukemia. As chemotherapy is used to treat most types of leukemia, the search for new and 

more effective drugs is ongoing.  

The discovery of the potent antitumor activity of cisplatin was the beginning of platinum-

based medicinal chemistry [2,3]. Cisplatin binds at the N7 position of guanine and by 

forming a range of adducts, intrastrand in particular, causes DNA damage and provokes 

apoptosis [4]. Apoptosis, a type of regulated programmed cell death [5] is a mechanism of 

action of many chemotherapeutics. Apoptotic cells undergo caspase activation (through 

extrinsic or intrinsic pathways), phosphatidylserine externalization on the outer leaflet of the 
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cell membrane, and DNA and cytoplasm fragmentation in the absence of plasma membrane 

damage. They are quickly engulfed by phagocytic cells in the absence of immune response 

[6].  

Nowadays cisplatin is used in the therapy of lymphomas and myelomas, testicular and 

ovarian cancer, bladder, melanoma, non-small cell and small cell lung cancer [7]. However, it 

is not universally effective in all cancer types and causes a number of side effects [8]. 

In the last four decades scientists have been searching for novel analogues of cisplatin in 

order to overcome its toxicity and tumor resistance. Initially, new platinum antitumor agents 

had two cis nonleaving amino ligands and two cis good leaving groups in their structure. 

Amino ligands were monodentate or bidentate amines, while the most common leaving 

groups were chlorido or carboxylato ligands. Only two out of thousands of synthesized and 

tested platinum compounds,  have been introduced into clinical use: oxaliplatin and 

carboplatin
 
[9,10,11,12] (Figure 1). Carboplatin and oxaliplatin are thought to possess 

mechanism of action similar to that of cisplatin, which is in essence DNA damage induction. 

Carboplatin causes fewer side effects compared to cisplatin, while oxaliplatin shows 

improved performance towards colorectal cancers. Nevertheless, cisplatin still remains the 

chemotherapeutic agent of choice in a number of malignancies [13,14].  

Among numerous complexes investigated so far, diaminedichloridoplatinum(II) complexes 

are of special importance. A series of asymmetric platinum complexes cis-Pt(LL´)Cl2 (L = 

NH3, L´ = CH3NH2, (CH3)2NH, C2H5NH2 and (C2H5)2NH and LL´ = N,N-

dimethylethylenediamine) were synthesized and tested in mouse lymphocytic leukemia cells, 

demonstrating IC50 values almost comparable to those of cisplatin [15]. 

Furthermore, with the aim of increasing lipophilicity, diaminocyclohexane platinum 

complexes were synthesized and their in vitro antitumor activity was widely studied. For 

example, water-soluble square-planar hydroxylated 1,2-diaminocyclohexane platinum(II) 

complex possesses the property of inhibiting the growth of tumors in mammals [16]. Another 

class of diamine platinum(II) compounds with antitumor activity is a group of 

ethylenediamine-based platinum complexes. In the last decade a number of these complexes 

were synthesized, using chelating ethylendiamine ligands derived from different amino acids 

and 1,2-dibromethane [17], including Pt(IV) and Pt(II) complexes with ethylendiamine-N,N’-

diacetate (edda) type ligands. These complexes showed antitumor activity equal to or better 

than cisplatin on a wide spectrum of tumor cell lines [18,19,20]. 

The possibility to replace chlorides with iodides within biologically active square-planar 

platinum(II) complexes has been recently described [21,22]. Namely, Pt−Cl bond more easily 

http://en.wikipedia.org/wiki/Mouse
http://en.wikipedia.org/wiki/Lymphocytic
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hydrolyzes than corresponding Pt−I bond, contributing to higher reactivity and biological 

efficacy compared to diiodidodiaminplatinum(II) complexes. The first report on cis-

[PtI2(NH3)2] documented the lack of antitumor activity in chosen in vivo animal models [23]. 

Nonetheless, several recent studies highlight an unexpected reactivity of iodido Pt(II) and 

Pt(IV) complexes towards serum albumin and glutathione
 
[24,25,26]. Our recent paper 

describes the synthesis and antitumor activity of three new platinum(II) iodido complexes 

with cyclohexyl substituted ethylendiamine type ligands [27]. The report shows that these 

complexes have a good in vitro antitumor activity, comparable with cisplatin. It has also been 

stated that bulky ligands increase lipophilicity with iodide ligands enabling kinetic stability in 

physiological conditions, thus leading to better intracellular accumulation and DNA binding, 

compared to cisplatin [27].   

Bearing in mind that cisplatin is still a widely used antitumor agent and that its analogue 

carboplatin together with other chemotherapeutics is included in phase II trial of 

relapsed/refractory Hodgkin lymphoma [28], the aim of this report was to synthesize new 

cisplatin analogues, chlorido-Pt(II) complexes with cyclohexyl substituted ethylendiamine 

type ligands, compare their activity to analogue iodido-Pt(II) complexes, investigate their 

antileukemic action and see if there is an agreement with the literature assumption that Pt(IV) 

complexes are more active compared to analogue Pt(II) complexes. 

 

2. Methods and materials 

2.1. Chemistry 

2.1.1. Starting substances 

 

(S)-2-amino-3-cyclohexyl propanoic acid hydrochloride was purchased from Senn Chemicals 

(Dielsdorf, Switzerland). (S,S)-ethylendiamine-N,N'-di-2-(3-cyclohexyl)propanoic acid 

dihydrochloride and its methyl, ethyl and n-propyl esters were prepared according to the 

previously described procedure [20]. K2[PtCl4] was prepared by the well known reduction of 

the K2[PtCl6] with hydrazine [29]. Solvents were obtained commercially and used without 

further purification. (S,S)-ethylendiamine-N,N'-di-2-(3-cyclohexyl)propanoic acid 

dihydrochloride and its methyl, ethyl and n-propyl esters, used for the synthesis of complexes 

described below, were prepared according to the procedure described in the literature [20] 

and were marked as L
2
, L

3
, L

4
, in the same manner as in our previous work. According to 

this, previously synthesized complex Pt(IV) with ligand L
3
, is designated as C3 in this paper. 
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2.1.2. Methods 

 

Elemental analyses were carried out with Elemental Vario EL III microanalyser. Infrared 

spectra were recorded on a Nicolet 6700 FTIR spectrometer using ATR technique. The NMR 

spectra were recorded on a Varian Gemini 200 instrument. Chemical shifts for 
1
H and 

13
C 

spectra were referenced to residual 
1
H and 

13
C presented in deuterated dimethylsulfoxide 

(DMSO). Melting points were determined on Electrothermal melting point apparatus.  

Agilent 6210 Time-of-Flight LC/MS system (Agilent Technologies, Santa Clara, California, 

USA) equipped with an ESI interface (ESI–TOF–MS) was used for the identification of 

compounds. The ESI was operated in a positive mode and nitrogen was used as the drying 

gas (12 L/min) and nebulizing gas at 350 °C (45 psi). The OCT RF voltage was set to 250 V 

and the capillary voltage was set to 4.0 kV. The voltages applied to the fragmentor and 

skimmer were 140 V and 60 V respectively. Scanning was performed from 100 to 2000 m/z 

(mass-to-charge ratio). The compound identification was as follows: the compound was 

dissolved in the methanol (concentration of 1 mg/mL), and a direct injection of 0.01 μL 

sample was conducted by 1200 Series HPLC (Agilent Technologies, Waldbronn, Germany) 

without a separation column. The isocratic mobile phase consisted of 50% acetonitrile and 

50% of 0.2% formic acid in water (v/v) at a flow rate of 0.2 mL/min. 

 

2.1.3. Synthesis of [PtCl2(L
2
)], C2a. Solution of ligand L

2
 (112.56 mg, 0.24 mmol) in 

methanol, neutralized with the solution of LiOH (c = 0.096 mol/dm
3
, 5 mL) was added to a 

solution of K2[PtCl4] (100 mg, 0.24 mmol) in H2O (10 mL). The reaction mixture was stirred 

for 24 h at room temperature. The precipitate was filtered off and dried in vacuum. The 

compound was isolated as yellow powder. 

Yield: 0.055g, 34.61%. Mp. 184 ºC. FTIR (ATR): ~ (cm
-1

) = 2928.0, 2852.7, 1744.5, 1651.0, 

1447.5, 1219.1, 850.7.  
1
H NMR (500 MHz, [D6]DMSO): 0.80 (m, C5, C5' 8H), 1.20 (m, C7, 

4H), 1.40 (m, C4, 2H), 1.60 (m, C3, 4H), 1.80 (m, C6, C6' 8H), 2.20 – 2.40 (m, –NH–

CH2CH2–NH–, 4H), 3.60 – 3.90 (m, CH3–OOC–, 6H), 4.35 and 3.20 (m, –OOC–CH–NH–, 

2H), 6.30 – 7.80 ppm (m, NH, 2H). 
13

C NMR (50 MHz, [D6]DMSO): 25.47 (C7), 26.04 (C6, 

C6'), 33.70 (C5, C5'), 34.40 (C4), 35.78 (C3), 46.58 (C8), 51.24 and 52.24 (–OCH3), 58.91 

(C2), 170.25 ppm (C1). MS (LC/MS, 4000 V): m/z: [M+NH4
+
]
+
 679.23. Anal. Calcd. for 

C22H40O4N2Cl2Pt %: N  4.23; C  39.88; H  6.04. Found: N 4.20; C 39.49; H 6.31.  
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2.1.4. Synthesis of [PtCl2(L
3
)], C3a. The complex was synthesized as described for 

complex C2a using 119.28 mg (0.24 mmol) of L
3
. The compound was isolated as yellow 

powder. 

Yield: 0.086 g, 51.93%. Mp. 168 ºC. FTIR (ATR): ~ (cm
-1

) = 2928.6, 2852.6, 1740.4, 

1651.3, 1446.9, 1198.5, 840.9 cm
-1

. 
1
H NMR (500 MHz, [D6]DMSO): 0.80 – 1.50 (m, C7, 

6',6, 12H; CH3CH2OOC– 6H), 1.20 and 2.00 (m, C3, 4H; C5',5, 8H; C4, 2H; CH3CH2–

OOC–, 4H); 2.32 – 2.80 (m, CH3CH2–OOC–, 4H), 3.94 – 4.15 (m, –NH–CH2CH2–NH–, 4H; 

–OOC–CH–NH–, 2H), 6.61 – 7.07 ppm (d, NH, 2H).
13

C NMR (50 MHz, [D6]DMSO): 14.38 

(CH3CH2OOC–), 26.50 (C7), 30.70 (C6, C6'), 32.40 (C5, C5'), 33.40 (C4), 34.50 (C3), 

49.03 (C8), 59.34 and 60.33 (CH3CH2OOC–), 61.42 (C2), 170.14 and 171.28 ppm (C1). MS 

(LC/MS, 4000 V): m/z [M +NH4
+
]
+ 

707.27. Anal. Calcd. for  C24H44O4N2Cl2Pt∙H2O: N 4.00; 

C 41.20; H 6.44. Found: N 4.22; C 40.92; H 6.27.  

 

2.1.5. Synthesis of [PtI2(L
2
)], C2b. KI (200 mg, 1.2 mmol) was added to a solution of 

K2[PtCl4] (100 mg, 0.24 mmol) in H2O (10 mL), and stirred for 10 minutes. A solution of 

ligand L
2
 (112.56 mg, 0.24 mmol) in methanol, primarily neutralized with LiOH·H2O (20.14 

mg, 0.48 mmol), was then added. The reaction mixture was stirred for 2 h at room 

temperature. The precipitate was filtered off and dried in vacuum. The compound was 

isolated as intensive yellow powder. 

Yield: 0.096 g, 47.34%. Mp. 178 ºC. FTIR (ATR): ~ (cm
-1

) = 2927.3, 2851.6, 1742.9, 

1650.4, 1446.1, 1206.9, 847.5 cm
-1

. 
1
H NMR (500 MHz, [D6]DMSO): 0.80 – 2.20 (m, C7, 

4H; C5,5',6,6', 8H; C3, 4H; C4, 2H) 2.60 – 3.00 (m, –NH2–CH2CH2–NH2–, 4H), 3.60 – 4.00 

(m, CH3–OOC–, 6H), 4.20 – 4.80 (m, –OOC–CH–NH2–, 2H), 6.40 – 7.50 ppm (m, NH, 2H). 

13
C NMR spectrum (50 MHz, [D6]DMSO): 25.82 (C7), 26.17 (C6, C6'), 32.20 (C5, C5'), 

33.07 (C4), 33.76 (C3), 46.24 (C8), 51.68 – 53.19 (–OCH3), 58.24 (C2), 170.08 i 171.38 

ppm (C1). MS (LC/MS, 4000 V): m/z: [M+NH4
+
]
+
 863.11. Anal. Calcd. for: C22H40O4N2I2Pt: 

N 3.31; C 31.24; H 4.73. Found: N 3.68; C 30.90; H 5.12.  

 

2.1.6. Synthesis of [PtI2(L
3
)], C3b. The complex was synthesized as described for complex 

C2b using 119.28 mg (0.24 mmol) of L
3
. The compound was isolated as intensive yellow 

powder. 
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Yield: 0.104 g, 62.80%. Mp. 162 ºC. FTIR (ATR): ~ (cm
-1

) = 3095.0, 2925.1, 2851.1, 

1741.1, 1633.7, 1446.1, 1194.2, 848.0 cm
-1

.  
1
H NMR (500 MHz, [D6]DMSO):  0.90 – 1.26 

(m, C7, 6',6, 12H; CH3CH2OOC– 6H) 1.60 – 2.30 (m, C3, 4H; C5',5, 8H; C4, 2H; CH3CH2–

OOC–, 4H), 2.77(m, CH3CH2–OOC–, 4H), 4.00 – 4.50 (m, –NH–CH2CH2–NH–, 4H; –

OOC–CH–NH–, 2H), 6.40 – 7.50 ppm (m, NH, 2H). 
13

C NMR (50 MHz, [D6]DMSO): 

14.40 (CH3CH2OOC–), 26.15 (C7), 32.38 (C6, C6'), 33.55 (C5, C5'), 34.32 (C4), 36.46 

(C3), 48.85 (C8), 53.03 (CH3CH2OOC–) 61.43 (C2), 171.04 ppm (C1). MS (LC/MS, 4000 

V): m/z [M +NH4
+
]
+ 

891.14. Anal. Calcd. for: C24H44O4N2I2Pt: N 3.21; C 33.00; H 5.04. 

Found: N 3.36; C 33.43; H 5.08.  

 

2.1.7. Synthesis of [PtI2(L
4
)], C4b. The complex was synthesized as described for complex 

C2b using 123.60 mg (0.24 mmol) of L
4
. The compound was isolated as intensive yellow 

powder. 

Yield: 0.117 g, 54.11%. Mp. 152 ºC. FTIR (ATR): ~ (cm
-1

) = 3155.7, 2926.1, 2852.5, 

1740.8, 1648.5, 1448.0, 1189.9, 843.2 cm
-1

. 
1
H NMR (500 MHz, [D6]DMSO):  0.88 – 1.40 

(m, CH3CH2–, 6H; C7, 2H, C6,C6', 8H), 1.55 – 1.90 (m, C7, 2H; C5,5', 8H; CH3CH2–, 4H), 

1.90 – 2.15 (C3, 4H; C4, 2H) 2.60 – 3.00 (m, –CH2–OOC–, 4H), 4.00 – 4.80 (m, –OOC–

CH–NH–, 2H, –NH–CH2CH2–NH–, 4H), 6.50 – 7.50 ppm (m, NH, 2H).
13

C NMR (50MHz, 

[D6]DMSO): 10.73 (CH3CH2CH2OOC–), 21.87 (CH3CH2CH2OOC–), 25.91 (C7), 32.42 

(C6, C6'), 33.68 (C5, C5'), 34.30 – 35.08 (C4), 37.14 (C3), 49.50 and 52.12 (C8), 60.43 and 

61.08 (CH3CH2CH2OOC–), 67.25 and 67.80 (C2), 170.29 and 171.18 ppm (C1). MS 

(LC/MS, 4000 V): m/z [M+NH4
+
]
+
 919.17. Anal. Calcd. for: C26H48O4N2I2Pt: N 3.11; C 

34.63; H 5.33. Found: N 3.15; C 34.80; H 5.23.  

 

2.2. Antitumor assessment 

2.2.1. Cell cultures and reagents 

Human cell lines: promyelocytic (HL-60) and lymphocytic leukemia (REH), glioma (U251) 

and lung carcinoma (H460), were obtained from the European Collection of Cell Cultures 

(ECACC; Salisbury, United Kingdom). All reagents used in biological experiments were 

obtained from Sigma (St. Louis, MO, USA) unless stated otherwise. Cell lines were 

maintained at 37°C in a humidified atmosphere with 5 % CO2, in HEPES (20 mM) buffered 

RPMI 1640 cell culture medium supplemented with 5 % fetal calf serum (10 % fetal calf 
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serum was used for leukemic cell lines), 2 mM L-glutamine, 10 mM sodium pyruvate, 1 % 

penicillin/streptomycin mixture. U251 and H460 cells were prepared for experiments by 

using the conventional trypsinisation procedure with trypsin/EDTA and incubated in 96-well 

flat-bottom plates (1 × 10
4
 cells per well) for cell viability assessment. The cells were allowed 

to rest for 24 h before treatment.  Leukemic cell lines HL-60 and REH were incubated in 96-

well flat-bottom plates (3 × 10
4
 cells/well) for the viability assessment or 24-well plates (2.5 

× 10
5
 cells/well) for the flow cytometry analysis (all plates were from Sarstedt, Nümbrecht, 

Germany). The leukemic cells were treated 2 h after seeding. All investigated cell lines were 

treated with novel Pt(II) complexes and corresponding ligands previously dissolved in 

DMSO according to their solubility and kept at room temperature until use. Each experiment 

contained two controls: untreated cells and cells treated with maximal concentration of 

DMSO used, in order to ensure that DMSO alone did not affect cell viability.  

 

 

2.2.2. Cell viability  

The acid phosphatase and the lactate dehydrogenase (LDH) assays were used to measure the 

number of viable cells.  

The acid phosphatase assay is based on p-nitrophenyl phosphate hydrolysis by intracellular 

acid phosphatases in viable cells and subsequent production of p-nitrophenol. In brief, p-

nitrophenyl phosphate solution (for HL-60 and REH: 55 mg p-nitrophenyl phosphate, 5 ml of 

0.3 M sodium acetate buffer, pH 5.5, with 0.3% Triton X-100; for U251 and H460: 37.4 mg 

p-nitrophenyl phosphate, 7 ml of 0.1 M sodium acetate buffer, pH 5.5, with 0.1% Triton X-

100) was added to each well and the samples were incubated for 2 h at 37°C. The reaction 

was stopped by addition of 50 μl of NaOH (1.3 M for HL-60 and REH and 1 M for U251 and 

H460) and the absorbance, which is directly proportional to the cell number, was measured in 

an automated microplate reader (Sunrise; Tecan, Dorset, UK) at 405 nm. The results were 

presented as % absorbance relative to untreated control. The IC50 values were calculated 

using GraphPad Prism software. 

The release of cytosolic enzyme LDH reflects a loss of membrane integrity and therefore 

necrotic type of cell death. The test was performed exactly as previously described [30]. The 

results were calculated using formula: (E–C)/(T–C)x100, where E is the experimental 
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absorbance of treated cells, C is the control absorbance of untreated cells, and T is the 

absorbance of Triton X-100-lysed cells. The results were presented as a percentage (%) of 

viable cells.  

2.2.3. Flow cytometric analysis of ROS production and apoptotic parameters  

The flow cytometry analysis was performed using CellQuest Pro software for acquisition and 

analysis on a FACSCalibur flow cytometer (BD Biosciences, Heidelberg, Germany). 

Production of reactive oxygen species (ROS) was determined by measuring the intensity of 

green fluorescence emitted by a non-selective redox-sensitive dye dihydrorhodamine 123 

(DHR; Invitrogen, Paisley, UK), which was added to cell cultures (5 μM) at the beginning of 

treatment. After incubation, cells were washed in PBS and the increase in green fluorescence 

(FL1) was analyzed as a measure of ROS production. Mitochondrial production of 

superoxide ions was analyzed using flow cytometry by measuring the intensity of red 

fluorescence (FL2) emitted by a superoxide-specific fluorochrome dihydroethidium, DHE 

(Sigma-Aldrich), which was incubated with cells (20 μM) for 30 min at the end of the 

treatment. The type of cell death (apoptotic or necrotic) was analyzed by double staining with 

annexinV-fluorescein isothiocyanate (FITC), which binds to early apoptotic cells with 

exposed phosphatidylserine, and propidium iodide (PI), which labels the late 

apoptotic/necrotic cells with membrane damage (staining kit from BD Pharmingen, San 

Diego, CA). The annexin negative (Ann
-
)/PI

+
 cells were considered necrotic. 

DNA fragmentation was assessed by the flow cytometric analysis of ethanol-fixed cells 

stained with DNA-binding red fluorescent (FL2 channel) dye propidium iodide (PI). The 

hypodiploid cells (sub-G0 compartment) were considered apoptotic. 

The activation of caspases was assessed using flow cytometer by measuring the increase in 

green fluorescence (FL1) of the cells stained with FITC-conjugated: pan-caspase (ApoStat; 

R&D Systems); caspase 8 (CaspGLOW Fluorescein Active Caspase-8 Staining Kit), 9 

(CaspGLOW Fluorescein Active Caspase-9 Staining Kit) and 3 (CaspGLOW Fluorescein 

Active Caspase-3 Staining Kit) inhibitors, all from BioVision, Inc, Milpitas, California, 

exactly according to the manufacturer’s instructions.  

The acidic autophagolysosomes were detected by the flow cytometric analysis of the cells 

stained with pH-sensitive supravital dye acridine orange which stains cytoplasmic 

autophagolysosomes orange-red, while nuclei green. Therefore, if present, autophagy is 
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detected as an increase in red/green fluorescence ratio (FL3/FL1). After incubation, the cells 

were washed with PBS and stained with acridine orange (1 µM) for 15 min at 37°C. Cells 

were then washed in PBS and analyzed on the flow cytometer.  

 

2.2.4. Statistical analysis 

Statistical analyses were performed using Student’s t-test for small independent samples. A p 

value of less than 0.05 (p<0.05) was considered significant. 

 

3. Results and discussion 

3.1. Synthesis of complexes 

Complexes [PtCl2L
2
] and [PtCl2L

3
] (C2a and C3a respectively) were synthesized by the 

reaction of K2[PtCl4] and corresponding ligand (L
2
= dimethyl-(S,S)-ethylenediamine-N,N'-di-

2-(3-cyclohexyl)propanoate and L
3
= diethyl-(S,S)-ethylenediamine-N,N'-di-2-(3-

cyclohexyl)propanoate) in molar ratio 1:1. In the synthesis of complexes [PtI2L
2
], [PtI2L

3
] 

and [PtI2L
4
] (C2b, C3b and C4b respectively) excess of potassium iodide was added to 

solution of K2[PtCl4], and then corresponding ligand (L
4
= di-n-propyl-(S,S)-ethylenediamine-

N,N'-di-2-(3-cyclohexyl)propanoate) was added. Reactions were performed at room 

temperature in water/methanol solutions (Scheme 1). Complexes precipitated after 2 to 24 

hours of stirring, in moderate yields. Complexes C2b, C3b and C4b are soluble in acetone, 

chloroform and DMSO while complexes C2a and C3a are soluble in DMSO. 

 

3.2. Spectroscopic studies 

In the IR spectra of all synthesized complexes characteristic C=O stretching bands appear at 

1740 – 1745 cm
–1

. There are no significant changes in the values for these vibrations 

compared to free ligands [20], indicating non-involvement of these groups into coordination. 

Characteristic bands for C–O stretching vibrations appear in the range from 1189 to 1219 cm
–

1
. Characteristic asymmetric C–N bands at 888.3 cm

–1
 were detected in spectra of all 

complexes. The absorption bands at around 2900-3100 cm
–1

 correspond to val(N-H) 

vibrations in secondary amines. These bands prove that ligands are deprotonated and 
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coordinated via nitrogen atoms to the central metal ion. (see the Supporting information, 

Fig.S1 – Fig.S5) 

In the 
1
H NMR spectra, the signals corresponding to cyclohexyl and alkyl protons from ester 

moiety (RCH2O–) are in the range from 0.80 ppm to 2.20 ppm. From 2.60 to 3.00 ppm are 

chemical shifts for protons from ethylendiamine bridge, while signals attributable to protons 

(O)C–CH–NH are slightly shifted downfield (4.00 – 4.80 ppm) comparing to free ligands. 

Signals of RCH2–OOC– protons were found at 3.60 – 4.00 ppm, similar to that of free 

ligands [19]. Signals of NH protons in complexes are shifted downfield corresponding to free 

ligands, and appear at 6.40 – 7.50 ppm. 
13

C NMR spectra showed characteristic signal for 

carbonyl groups at 169 – 171 ppm. Signals attributable to carbon atoms from alkyl chains and 

cyclohexyl groups were detected in the range 10 – 37 ppm, while signals for –HN–CH2–

CH2–NH–, RCH2–OOC– and (O)C–CH–NH carbon atoms were found in the region from 47 

to 67 ppm. (see the Supporting information, Fig.S6 – Fig.S20) 

The mass spectra were recorded in positive mode and showed [M+NH4]
+
 ions, for all 

complexes.  

3.3. Antitumor activity studies 

Acid phosphatase assays demonstrated that both ligands and corresponding novel chlorido 

and iodido Pt(II) complexes reduced the number of viable cells in most of investigated tumor 

cell lines. Novel complexes had superior antitumor action compared to their organic ligands, 

with iodido being more efficient than chlorido complexes of the same type. With the 

exception of C2a, the efficacy of complexes was equal to or superior than cisplatin in 24-

hour antitumor action. In this respect, C3b was the most powerful with IC50 value of 

approximately 3 μM on all tested tumor cell lines. Furthermore, the antileukemic action of 

C3a was 4 times stronger than its previously reported Pt(IV) complex analogue C3 [20], or 

cisplatin (Table 1). 

The antileukemic action of cyclohexyl analogues, esters (L
2
–L

5
) of ethylenediamine 

dipropanoic acid (L
1
)

 
has been previously reported, with L

3
 marked as the most potent ligand 

and the HL-60 cell line as the most sensitive to its cytotoxic action [31]. In the present study, 

human promyelocytic cell line (HL-60) was also the most sensitive to antitumor action of all 

investigated substances. Accordingly, we were particularly interested in determining the 

mode of antileukemic action of novel C3a and C3b complexes. Furthermore, antitumor 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

action of Pt(IV) chlorido complexes corresponding to herein investigated Pt(II), revealed 

good antiglioma action [20] but antileukemic action remained unexplored. Thus our goal was 

to examine the antileukemic potential of C3, chlorido Pt(IV) complex analogue, and compare 

it to chalogenido Pt(II) complexes (C3a and C3b) . 

 

3.4. ROS production and  induction of oxidative stress   

Having in mind that oxidative stress was the initial event involved in antileukemic action of 

organic ligand L
3
 [31] we first analyzed the ability of novel Pt(II) complexes to increase 

production of ROS and cause oxidative stress in HL-60 cells. 

Obtained results show that 4-hour treatment with both novel complexes, C3a and C3b, as 

well as Pt(IV) analogue C3, induced ROS production (when applied in IC50 concentrations) 

(Figure 2), unlike cisplatin and organic ligand L
3
, in the same experimental setting (data not 

presented for clarity). Namely, both C3a (5 µM) and C3b (3 µM) induced ROS 

hyperproduction with C3b being more potent, causing 2-fold increase in ROS-mediated 

DHR-derived fluorescence intensity (FL1) in comparison with untreated control (Figure 2A). 

Furthermore, C3a also caused (Figure 2B) the increase in DHE-derived fluorescence 

intensity (FL2), suggesting the superoxide hyperproduction indicative of oxidative stress. The 

treatment with C3 complex (4h, 18 μM) caused more pronounced increase in DHR-derived 

FL1 fluorescence compared to novel complexes (Figure 2A), , suggesting that C3, despite the 

lack of noticeable increase in superoxide production (Figure 2B), induces rapid and 

prominent oxidative damage in HL-60 cells, as observed previously in U251 glioma cells 

[20]. On the other hand, it was shown that organic ligand induced mitochondria-derived 

superoxide hyperproduction in HL-60 cells
 

[31], unlike cisplatin [20], indicating that 

cyclohexyl functionalized edda ligands significantly contributed to mitochondria-derived 

oxidative damage. 

 

3.5. Investigation of cell death type  

We next investigated the type of leukemic cell death induced by treatment with representative 

novel Pt(II) complexes (C3a, C3b) and their Pt(IV) complex analogue (C3). 
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The LDH test indicated that 24 h treatment with C3a (24h, 5 µM) and C3b (24h, 3 µM) 

resulted in less cell membrane damage than treatment with C3 (24 h; 18 μM), suggesting that 

for novel Pt(II) complexes necrosis is not as relevant a mechanism of cell death as for Pt(IV) 

complex (Figure 3A). This result is in accordance with the result obtained for C3 on U251 

glioma cells [20]. 

In order to determine the exact apoptotic pathway we investigated the activity of initiator 

caspases 8 and 9 and executioner caspase 3 in HL-60 cells after treatment. Novel complexes 

C3a and C3b both induced marked caspase 8 activation after 2 h, that decreased at later time 

points (6 h and 12 h) (Figure 3B). Complex C3 also caused caspase 8 activation, but to a 

lesser extent compared to novel Pt(II) halogenido complexes. Unlike caspase 8, the increase 

in caspase 9 activity with novel Pt(II) halogenido complexes was moderate (1.7-fold after 2 h 

treatment) and also decreased during the time, whereas with C3 caspase 9 activation was not 

detected (data not shown). Caspase 3 activation was more pronounced following novel Pt(II) 

halogenido complexes treatment (12 h), compared to the C3 treatment (Figure 3C). Pan-

caspase activation was still present in HL-60 cells after 24 h treatment with C3a, C3b and C3 

(Figure 3D). Our data show that novel Pt(II) halogenido complexes induce activation of both 

caspase 8 and 9, the former twice more pronounced than the latter. Although mixed 

(extrinsic-intrinsic) apoptotic HL-60 cell death has been described as a cytotoxic mechanism 

of action for some plant extracts and their chemical constituents [32], and taking into account 

a possible overlap in specificity of caspase inhibitors used [33], our data speak in favor of 

dominant role of caspase 8 activation in induction of leukemic cell death. The lack of caspase 

9 activation by Pt(IV) analogue C3 implicates the major role of extrinsic apoptotic pathway.  

Additionally, both novel complexes, C3a (5 μM) and C3b (3 μM), later (24 h) caused the 

increase in percentage of Ann
+
 cells from 6.2 % in untreated control to > 50 % following 

treatment. On the other hand, C3 treatment (24 h; 18 μM), caused not only the increase in 

percentage of Ann
+
 cells, but also in necrotic (Ann

-
/PI

+
) cells (> 30 % in comparison to 1.0 % 

in control). The obtained results suggest the importance of apoptosis in leukemic cell death 

induced by novel Pt(II) complexes, while both apoptosis and necrosis apparently contribute 

to leukemic cell death induced by corresponding Pt(IV) complex (Figure 3C).  

Furthermore, 24 h treatment of HL-60 cells with C3a (5 µM) and C3b (3 µM) caused 

massive disturbance in HL-60 cell cycle distribution with cell accumulation in sub-G0 phase 

(> 40%) indicating DNA fragmentation (data not shown). The intrinsic AIF-mediated 
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leukemic cell death has been reported as organic L
3
 ligand mechanism of action [31]. The 

obtained results demonstrated that Pt(II) complexes investigated herein induce apoptotic cell 

death of leukemic cells in the concentration several times lower compared to organic ligands. 

This indicates that complexation with platinum improves the antileukemic effect and possibly 

contributes to the extrinsic apoptotic pathway induction. On the other hand, Pt(IV) 

complexation results in presence of both apoptotic and necrotic markers of leukemic cell 

death, but in higher concentrations in comparison with Pt(II) complexes. Having in mind that 

Pt(IV) complexes are reduced to Pt(II) complexes in bloodstream [34,35] in order to achieve 

their biologically active form,  Pt(II) complexation with this type of organic ligands might be 

a better option for achieving antileukemic effect. 

It is noteworthy that the treatment with C3a (5 µM) , C3b (3 µM) and C3 (18 μM) failed to 

cause any increase in acidic cytoplasmic content in HL-60 cells (data not shown) implying 

the lack of autophagy involvement in novel Pt(II) complexes’ antileukemic action and 

confirming the result obtained on U251 glioma cells treated with C3 [20]. 

 

 

4. Conclusion 

Herein we present the synthesis of new cisplatin analogues, dihalogenido-Pt(II) complexes 

with cyclohexyl substituted ethylendiamine type ligands and report better antitumor efficacy 

of iodido than corresponding chlorido complexes. The novel Pt(II) complexes, excluding 

C2a,  exhibited comparable or better antitumor action in comparison with cisplatin and 

superior to precursor ligands. Human promyelocytic cell line (HL-60) was allocated as the 

most sensitive to cytotoxic action of all investigated substances, and was used for 

investigation of the underlying mode of antileukemic action. The investigated novel Pt(II) 

complexes C3a and C3b showed more potent antileukemic action than corresponding Pt(IV) 

complex C3, through induction of oxidative stress and apoptosis, evidenced by caspase 

activation and phosphatidylserine externalization. Obtained results indicate that novel Pt(II) 

halogenido complexes with cyclohexyl edda type ligands could have better antileukemic 

potential than corresponding Pt(IV) complexes and warrant further research. 
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Table 1.  In vitro cytotoxicity of organic compounds (L
2
, L

3
, L

4
) and corresponding Pt(II) 

complexes determined by acid phosphatase assay after 24 h incubation. 

 

Compound/ 

complex 

IC50 (µM) 

H460 U251 HL-60 REH 

L
2
 >100 40.2 ± 4.3 19.8 ± 1.3 73.6 ± 2.0 

C2a 30.2* ± 3.2 7.0*
#
 ± 0.6 6.7*

#
 ± 0.4 9.1*

#
 ± 0.2 

C2b 6.9*
#
 ± 0.5 4.5*

#
 ± 1.3 3.6*

#
 ± 0.2 6.5*

#
 ± 0.3 

L
3
 66.3 ± 2.7 26.6 ± 4.0 10.7 ± 1.4 44.4 ± 10.0 

C3
†
 n.a n.a 17.8 ± 1.2 n.a 

C3a 16.4* ± 1.0 4.1*
#
 ± 0.1 3.8*

#
 ± 0.4 7.1*

#
 ± 0.7 

C3b 3.5*
#
 ± 0.1 2.1*

#
 ± 0.2 2.1*

#
 ± 0.2 2.7*

#
 ± 0.3 

L
4
 49.7 ± 6.4 41.8 ± 8.2 80.8 ± 9.1 92.7 ± 13.3 

C4b 8.6* ± 0.4 4.3*
#
 ± 0.3 2.7*

#
 ± 0.1 6.2*

#
 ± 0.2 

cisplatin 10.4 ± 1.3 20.2 ± 2.9 17.5 ± 2.4 17.1 ± 1.6 

 

Values represent the mean ± SD from two independent experiments. † - Pt (IV) analogue of C3a; *p < 0.05 

denotes lower IC50 value compared to ligands; #p<0.05 denotes lower IC50 compared to cisplatin. n.a= not 

assessed 

 

 

 
 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 


