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Abstract 

Mono and dinuclear p-cymene-ruthenium(II) complexes [RuCl(L1)(η6-p-cymene)]Cl, where L
1 is 

propionic acid hydrazide (1) and [Ru2Cl2(L2)(η6-p-cymene)2], where H2L
2 is N

1
,N

2-

dipropionylhydrazine (2) were prepared by reaction of [RuCl2(η6-p-cymene)]2 with the 

corresponding ligand precursor. Upon the reaction of [RuCl2(η6-p-cymene)]2  with  butyric acid 

hydrazide and pentanoic acid hydrazide in 1:1 molar ratio in situ formation of tetradentate bridging 

ligands, N1
,N

2-dibutanoylhydrazine and N1
,N

2-dipentanoylhydrazine, respectively, occurred and the 

dinuclear complexes [Ru2Cl2(L3)(η6-p-cymene)2] (3) and [Ru2Cl2(L4)(η6-p-cymene)2] (4) were 

isolated. The compounds were characterised by elemental analysis, ESI-mass spectrometry, IR, 1D 

and 2D NMR spectroscopies. Single crystals of [3][RuCl2(η6-p-cymene)]2 were grown from a 

mixture of N
1
,N

2-dibutanoylhydrazine and excess [RuCl2(η6-p-cymene)]2. The structures of all 

complexes were established by single crystal X-ray crystallography. According to these data in both 

the mono- and dinuclear complexes the ruthenium atoms adopt the usual „three-leg piano-stool” 

geometry which is common for this type of complexes. Combining DFT calculations with the 

characterization of final products by X-ray single-crystal diffraction, possible reaction mechanism 

was discussed.  

 

Introduction 
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Dinuclear metal complexes, called also "clips" represent building blocks for the 

multifunctional supramolecular systems with diverse potential applications.1,2,3 In recent years, 

dinuclear and polynuclear ruthenium complexes incorporating di- and tridentate bridging ligands 

have received considerable attention because of their possible applications in homogeneous 

catalysis, as multielectron storage systems4 and as antitumour agents.5 Through the choice of 

chelating bridging linkers and introduction of various functional groups the reactivity of the metal 

center can be tuned. Recent efforts have focused on attempts to optimise the biological properties of 

arene ruthenium-assemblies.6 Of note is also the design and synthesis of new polynuclear ruthenium 

complexes with structural diversity.7  

A large number of the reported complexes in the literature is formed by self-assembly 

reactions.8

The approach often includes in situ reactions of the starting building blocks in the presence 

of metal ions with formation of new organic product (ligand) isolated as a metal complex. An 

advantage of this approach is the one step reaction to metal complex which does not need the direct 

ligand synthesis followed by complex formation reaction. The main disadvantage is the difficulty in 

isolation of the organic product formed. One possibility is via demetallation, which, however, not 

always is easily accomplished, and is mainly developed for first-row transition metals. Depending 

on the nature of ligating atoms, both chelating and bridging ligands can be formed, leading to the 

compounds of varying nuclearities.9  

We have been interested in the reactions of the chlorido bridged arene ruthenium complex 

[RuCl2(η6-p-cymene)]2 with a variety of different ligand precursors.10 A number of mononuclear 

arene-ruthenium(II) complexes with caprylic acid hydrazide (a hydrazide with a long hydrocarbon 

chain) and isonicotinic acid hydrazide (a hydrazide with an aromatic pyridine ring), have been 

reported.11
 X-ray structure analysis confirmed the coordination of caprylic acid hydrazide in a 

bidentate manner through the hydrazide moiety.  

In order to examine the effect of the hydrocarbon chain length on both physicochemical and 

cytotoxic properties of p-cymene ruthenium complexes attempts to prepare new mononuclear 

complexes of aliphatic hydrazides were undertaken. While the reaction of [RuCl2(η6-p-cymene)]2 

with propionic acid hydrazide  afforded the expected product, with butyric acid hydrazide and 

pentanoic acid hydrazide dinuclear complexes with the bridging, in situ formed N
1
,N

2-
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dibutanoylhydrazine and N
1
,N

2-dipentanoylhydrazine were isolated. The dimeric complex with 

N
1
,N

2-dibutanoylhydrazine was also obtained by the reaction of starting dinuclear complex with a 

priori prepared N
1
,N

2-dibutanoylhydrazine. The corresponding dinuclear complex with N
1
,N

2-

dipropionylhydrazine was prepared by the reaction of starting complex with a priori synthesised 

N
1
,N

2-dipropionylhydrazine.  

Transformation of hydrazides into N,N’-diacylhydrazines is a well-known reaction in 

organic chemistry and usually demands oxidation agents like oxone,12 selenium based compounds,13 

iodine,14 iodobenzene diacetate,15 sodium perborate,16 or mercury(II) acetate.17 Microwave 

irradiation is also efficient.18 Depending on the nucleophile present in reaction mixture, hydrazide 

can be transformed into aldehyde, carboxylic acid or ester.19 This kind of transformations is also 

performed in the presence of thallium,20 or transition metal ions, e.g, lead,21 copper,22 iron23 or 

manganese.24 In the present study this transformation occurred in the presence of ruthenium arene 

complex. The reaction is presumably facilitated by the coordination of butyric - or pentanoic acid 

hydrazide to ruthenium centre.  

All new complexes were characterised by elemental analysis, 1H and 13C NMR, UV–vis and 

ESI-mass spectrometry, as well as by single crystal X-ray crystallography. On the basis of 

spectroscopic characterization and DFT calculations, a mechanism of in situ transformation was 

proposed.   

 

Results and discussion  

Synthesis of the ligand precursors and ruthenium(II)-arene complexes  

Disubstituted acyl hydrazines H2L
2 and H2L

3 were obtained by condensation of hydrazides with the 

corresponding acyl chlorides, in the presence of potassium carbonate in water as shown in Scheme 

1. The products precipitated directly from the reaction mixture or after evaporating the solvent 

under reduced pressure.  
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Scheme 1 

 

Surprisingly, the reaction of butyric acid hydrazide and pentanoic acid hydrazide with 

[RuCl2(η6-p-cymene)]2 afforded N,N'
-diacylhydrazines H2L

3 and H2L
4 isolated as dinuclear 

ruthenium(II) complexes 3 and 4, respectively. Unlike, in the case of the propionic acid hydrazide, 

formation of N1
,N

2-dipropionylhydrazine H2L
2 as ruthenium(II)-arene complex was not observed. 

Instead, complex 1 (Scheme 2) was isolated. However, dinuclear species 2 was obtained from a 

priori synthesised H2L
2 and [RuCl2(η6-p-cymene)]2 in 1:1 molar ratio. The complex 3 prepared 

from H2L
3 and ruthenium(II)-p-cymene dimer was identical to that prepared from butyric acid 

hydrazide and [RuCl2(η6-p-cymene)]2. 
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Scheme 2 

 

Spectroscopy 

The infrared spectra of the ligand precursors and the corresponding Ru(II) complexes were 

compared in order to gain preliminary information about the coordination mode of the ligands to the 

metal centre. The major changes are noticed in N-H stretching region of asymmetric and symmetric 

vibrations in the spectra of N,N'
-diacylhydrazines H2L

2-4
 and those of 2-4. Spectra of H2L

2-4
 contain 

a strong sharp band at 3200 cm−1 and this band is missing in the spectra of 2-4. The C=O vibrations 

in IR spectra of H2L
2-4

 are in the range 1585-1598 cm−1, while those of the corresponding 
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complexes 2-4 are shifted markedly (1528-1539 cm−1). Similar observations are of note for L1
 and 

1. These data suggest coordination of L1
-L

4 to ruthenium(II) via both carbonyl group and nitrogen 

atom. 

The 1H NMR spectra of the complexes show a characteristic pattern originating from the p-

cymene moiety. In the spectra of complexes 2-4 proton signals from the aromatic ring are separated 

in two groups, one at around 5.35 ppm corresponding to three protons and another at around 5.00 

ppm corresponding to one proton. A different pattern is observed in spectrum of 1, where signals at 

5.97 ppm correspond to two protons and resonances at 5.78 and 5.72 ppm to the other two protons. 

Isopropyl group from p-cymene shows a characteristic pattern for this type of ruthenium complexes.  

 In the spectrum of 1, signals for methylene group of L1 are split into two multiplets at 2.49 

and 2.26 ppm. The methyl group from the ligand appears at 1.15 ppm. In the spectra of 2 and 3 

signals of aliphatic protons of ligands have different shifts compared to these of the free proligand. 

H2L
2
 has two signals (CH2 and CH3 proton signals) and H2L

3 has three (two CH2 and CH3 proton 

resonances), as expected. Upon coordination to ruthenium centre, all signals from the ligands are 

well-separated. In spectrum of 2 terminal methyl protons resonate at 1.28 and 1.24 ppm. One CH2 

group is split into two multiplets at 2.90 and 2.69 ppm. Another CH2 group appears at 3.71 ppm as a 

quartet. These resonances were also assigned by COSY and HSQC NMR measurements. In the 

spectrum of 3 the first two CH2 groups are split into two multiplets at 2.82 and 2.66 ppm, whereas 

further CH2 groups are centred at around 1.81 ppm as a multiplet, and both terminal methyl groups 

are seen at 1.01 ppm as a triplet. The spectrum of 4 shows a triplet at 0.97 ppm from terminal 

methyl groups, multiplets at 1.39, 1.77 and 2.70 ppm from three (distant and nearest) CH2 groups. 

The reason why distant CH2 groups are at the same place may be in the length of aliphatic chain of 

the ligand and consequently the fact that the coordination has little effect on remote protons.  

The 13C NMR spectra of 2 - 4 are also in agreement with proposed structures.  Resonances 

in the δ range 78.84–101.84 ppm belong to aromatic carbons. Methine carbon of isopropyl group is 

found at around 30 ppm and its methyl groups carbons at around 22 ppm, while methyl group 

carbon in para position to isopropyl group is seen at around 18 ppm. Carbons from the ligand in 1 

are at 173.75 (carbonyl group), 24.36 (CH2 group) and 9.47 ppm (CH3 group). In 2 carbon of 

carbonyl group is located at 174.38 ppm, carbon from CH2 groups are at 58.14 ppm and 27.35 ppm, 

and methyl carbons are found at 18.29 and 11.74 ppm. The 13C NMR spectrum of 3 provides 
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resonances for carbons of the ligand at 173.75 ppm for carbonyl group, at 36.31 ppm resonates the 

carbon from nearest CH2 group, at 20.70 ppm the carbon from more distant CH2 group and terminal 

methyl groups are seen in 13C NMR spectrum at 14.39 ppm. Complex 4 shows a signal at 173.88 

ppm (C=O), at 34.06 from closer CH2 group, at 29.65, 29.29, 22.52 and 22.12 ppm from remote 

CH2 group and methyl carbon at 14.03 ppm.   

The ESI mass spectrum of 1 recorded in the positive ion mode showed a peak with m/z 

359.04 attributed to the [M-Cl]+. Complexes 2-4 exhibit peaks attributed to the [M-Cl]+ at m/z 

649.21, 677.08 and 704.13, respectively. 

 
X-ray crystallography  

The results of X-ray diffraction studies of 1, 2·2EtOH, [3][RuCl2(ηηηη
6
-p-cymene)]2  and 4 are shown 

in Figures 1−−−−4. Each ruthenium atom has the typical “three leg piano-stool’’ geometry, which is 

common for a large number of ruthenium(II) arene species. Despite the presence of one stereogenic 

centre in 1 or two stereogenic centres in 2 - 4, the complexes are not chiral and crystallise in 

centrosymmetric space groups P21/c, and P-1, respectively.  

 

Figure 1. ORTEP view of one of the two crystallographically independent cations [RuCl(L1)(η6-p-

cymene)]+ in 1 with thermal ellipsoids at 50% probability level. Selected bond distances (Å) and 

angles (deg): Ru2−O2 = 2.0880(17),  Ru2−N3 = 2.115(2), Ru2−Cl2 = 2.4028(7), Ru2−C17 = 

2.198(3),  Ru2−C18 = 2.176(3), Ru2−C19 = 2.159(3), Ru2−C20 = 2.166(3), Ru2−C21 = 2.145(3), 

Ru2−C22 = 2.171(3), N3−N4 1.423(3), C14−O2 1.250(3), O2−Ru2−N3 77.63(7).      

The N−N bond lengths in all three complexes correspond to typical single bonds. The C−O 

bond length in 1 has predominantly a double bond character, while in 2-4 the electronic 

delocalisation is slightly more pronounced leading to elongation of these by ca. 0.04 Å. The bond 
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lengths around ruthenium(II) are well-comparable to those in other related mono- and dinuclear p-

cymene ruthenium complexes.22   

 

Figure 2. ORTEP view of 2 with thermal ellipsoids at 50% probability level. Selected bond 

distances (Å) and angles (deg): Ru−O1 = 2.0534(7),  Ru−N1i = 2.0994(8), Ru−Cl1 = 2.4290(3), 

Ru−C4 = 2.1841(10),  Ru−C5 = 2.1674(10), Ru−C6 = 2.2010(10), Ru−C7 = 2.2164(10), Ru−C8 = 

2.2024(10), Ru−C9 = 2.1466(10), N1−N1i = 1.4345(16), C1−O1 = 1.2934(12), O1−Ru−N1i 

76.03(3).      

The Ru···Ru distances in 2 and 3 are of 4.9498(2) and 4.9356(3) Å. These are well-

comparable to that of 4.9411(5) Å in a related dinuclear p-cymene ruthenium complex with diethyl-

1,2-diazenedicarboxylate.11   

 

Page 8 of 23New Journal of Chemistry

N
ew

Jo
ur

na
lo

fC
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 0
1 

Ju
ne

 2
01

7.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
W

in
ds

or
 o

n 
01

/0
6/

20
17

 0
6:

15
:5

9.
 

View Article Online
DOI: 10.1039/C7NJ00965H

http://dx.doi.org/10.1039/c7nj00965h


 

 

9 

 

 

Figure 3. ORTEP view of [3][RuCl2(ηηηη
6
-p-cymene)]2 with thermal ellipsoids at 50% probability 

level. Selected bond distances (Å) and angles (deg): Ru1−O1 = 2.0678(15),  Ru−N2 = 2.1006(17), 

Ru1−Cl1 = 2.4176(6), Ru1−C9 = 2.208(2),  Ru1−C10 = 2.197(2), Ru1−C11 = 2.172(2), Ru1−C12 = 

2.201(2), Ru1−C13 = 2.187(2), Ru1−C14 = 2.201(2), O1−Ru1−N2 76.12(6); Ru2−O2 = 

2.0639(15),  Ru2−N1 = 2.0949(18), Ru2−Cl2 = 2.4102(6), Ru2−C19 = 2.172(2),  Ru2−C20 = 

2.158(2), Ru2−C21 = 2.191(2), Ru2−C22 = 2.222(2), Ru2−C23 = 2.202(2), Ru2−C24 = 2.151(2), 

N1−N2 = 1.433(3), C4−O1 = 1.287(3), C5−O2 = 1.289(3), O2−Ru2−N1 76.11(6); Ru3−Cl3 = 

2.4423(6),  Ru3−Cl3i = 2.4424(5), Ru3−Cl4 = 2.4087(6), Ru3−C29 = 2.205(2),  Ru3−C30 = 

2.178(2), Ru3−C31 = 2.145(2), Ru3−C32 = 2.168(2), Ru3−C33 = 2.148(2), Ru3−C34 = 2.158(2).   
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Figure 4. ORTEP view of 4 with thermal ellipsoids at 50% probability level. Selected bond 

distances (Å) and angles (deg): Ru1a−O1a = 2.0619(18), Ru1a−N1a = 2.091(2), Ru1a−Cl1a = 

2.4135(7), Ru1a−C6a = 2.171(2),  Ru1a−C7a = 2.147(3), Ru1a−C8a = 2.188(3), Ru1a−C9a = 

2.216(3), Ru1a−C10a = 2.187(2), Ru1a−C11a = 2.185(2), O1a−Ru1a−N1a 76.04(8); Ru1b−O1b = 

2.065(2), Ru1b−N1b = 2.087(2), Ru1b−Cl1b = 2.4244(8), Ru1b−C6b = 2.180(3),  Ru1b−C7b = 

2.175(2), Ru1b−C8b = 2.188(2), Ru1b−C9b = 2.204(3), Ru1b−C10b = 2.186(3), Ru1b−C11b = 

2.187(3), N1a−N1b = 1.428(3), C1a−O1a = 1.292(3), C1b−O1b = 1.349(9), O1b−Ru1b−N1b 

76.17(8). 

It is apparent from the crystal structures (vide infra) that the formation of H2L
2 and H2L

3 

takes place via the nucleophilic attack of the NH2 group of the neighboring molecule of hydrazide 

on coordinated C=O group of hydrazide, followed by release of N2H4 and formation of N,N'
-

diacylhydrazine bound to two ruthenium(II) centres with formation of the dinuclear complexes 3 

and 4. 

It is well established that transition metals increase the polarity of C=O bonds upon 

coordination and in such a way facilitate the subsequent reactions like hydrolysis, esterification or 

transamination.25 The IR stretching vibrations and 13C NMR signal of C=O group are shifted to 

lower wavenumbers and higher chemical shifts in comparison to proligand, indicating the 
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polarisation of C=O bond making it more reactive for nucleophilic attack of amine nitrogen of 

neighbouring hydrazide molecule. 

A certain view on the possible reaction pathway (Scheme 3) can be deduced from the quantum 

chemical calculations which were performed for the reaction of [RuCl2(η6-p-cymene)]2 complex 

(R1) with the butyric acid hydrazide (R2). If we suppose that the initial reaction step starts with the 

coordination of R2 molecule to the metal atom, the energetically preferred intermediate Ia has only 

one Ru···Cl···Ru bridge stabilising the bis-arene complex and it exhibits one bond between the 

C=O group and Ru atom at 2.207 Ǻ. The second direct addition of reactant molecule (R2´) to the Ia 

seems to be less preferable due to the steric reasons. The better steric conditions and the structural 

stability of reaction complex presumably ensure the consecutive elimination of two HCl molecules 

as shown in Scheme 3. The formed intermediate IIIa is stabilised via two bonds occurring between 

the N1 atom and both ruthenium atoms. The corresponding bond lengths are of 1.943 Ǻ for N1‒Ru 

and 2.133 Ǻ for N1‒Ru´. The bond length C=O‒Ru is shortened (2.087 Ǻ) compared to that in Ia. 

The second addition of R2´ molecule results in the intermediate IVa, where a new bond C´=O´‒Ru´ 

is formed. The two bond lengths Ru‒O and Ru´···O´are of 2.086 and 2.082 Ǻ, respectively. The 

hydrogen transfer from the hydrazine moiety to the neighbouring one in IVa leads to a stable 

intermediate Va. Finally, the abstraction of hydrazine molecule terminates the reaction and the final 

product P is generated. A view of the B3LYP optimal structures of all identified intermediates and 

their electronic energies are presented in Fig. S15. It should be also noted that calculated bond 

distances and angles in the DFT optimized structure satisfactorily agree with those from X-ray 

diffraction of 3 within  ± 0,034 Å (see Table S1). 

From the thermodynamic point of view, the Gibbs free energy (∆rG) of the reaction can be 

calculated as the difference of Gibbs free energies of products and reactants 

∆rG = G(P)+ 2 × G(HCl) + G(N2H2)  – G(R1) – 2 × G(R2) (1) 

The B3LYP energy for the gas-phase is 102 kJ·mol–1 what indicates the endothermic character of 

the studied reaction. This resulting energy is obtained as the sum of the reaction Gibbs free energies 

connected with the proposed individual reaction steps (see Scheme 3). The strongest endothermic 

character has the addition of R2´ molecule to the IIIa intermediate. On the other hand, the final 

dichlorido-bridged product formation after hydrazine elimination from the intermediate V is 

strongly exothermic. Nevertheless, it should be noted that the heat of solvation of hydrogen chloride 
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and hydrazine molecule in real environment will affect the final energy balance of chemical 

reaction.
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A tentative mechanism is purposed shown in Scheme 3.  

 

 

Scheme 3. The proposed reaction pathway, the B3LYP optimal geometries of predicted 

intermediates and the Gibbs free energies of individual reaction steps; cyan spheres indicate 

ruthenium atoms, violet – chloride, blue – nitrogen, red – oxygen, green – carbon.   

 

Experimental 

Material and methods 

RuCl3·3H2O was purchased from Johnson Matthey (London, United Kingdom). [RuCl2(η6-p-

cymene)]2 was prepared according to a published procedure.26 
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Propionyl and butyryl chloride were purchased from Acros, butyric acid hydrazide and pentanoic 

acid hydrazide from Alfa Aesar, and propionic acid hydrazide from Sigma Aldrich. Solvents of p.a. 

quality were from Acros or Sigma Aldrich, and were used without additional purification. 

Elemental analysis was carried out with Elemental Vario EL III microanalyser. Infrared spectra 

were recorded on a Nicolet 6700 FT-IR spectrometer using ATR or KBr pellet technique. 1H and 
13C NMR spectra were recorded on a Varian Gemini-200 spectrometer (at 200 and 50 MHz, 

respectively) and on a Bruker Ultrashield Advance III spectrometer (at 500 and 125 MHz, 

respectively) employing indicated solvents (vide infra) using TMS as the internal standard. 

Chemical shifts (δ) are expressed in ppm and coupling constants J in Hz. 

ESI mass spectra of ligand precursors and ruthenium complexes were recorded on 6210 Time-of-

Flight LC-MS instrument (G1969A, Agilent Technologies) in positive ion mode and on Bruker 

Daltonics HCT 6000 mass spectrometer in positive ion mode by using as solvents CH3CN/H2O or 

CH3CN. 

Synthesis of ligand precursors 

N
1
,N

2-dipropionylhydrazine H2L
2. Propionyl chloride (840 mg, 793 µl, 9.08 mmol) was added 

dropwise over 30 min to a stirred solution of propionic acid hydrazide (200 mg, 2.27 mmol) and 

potassium carbonate (627 mg, 4.54 mmol) in water (4 ml) at 0 °C. The mixture was stirred at 0°C 

for 2 h and at room temperature for 1 h. The solvent was removed under reduced pressure and the 

residue was purified by column chromatography on silica by using DCM/MeOH (1/4) as eluent. 

Yield: 190 mg (58%). IR (ATR): 3215 (s), 3046 (w), 2974 (m), 2938 (m), 1598 (s), 1489 (s), 1218 

(m), 1073 (w), 883 (w), 654 (m). 1H NMR (500 MHz, DMSO) δH 9.64 (NH, s, 1H), 2.14 – 2.08 

(H2, q, J = 7.5 Hz, 2H), 1.03 – 0.97 (H3, t, J = 7.5 Hz, 2H). 13C NMR (125 MHz, DMSO) δC 

171.89 (C1), 26.38 (C2), 9.67 (C3). (+)ESI-MS (m/z): [M+Na]+
 167.14. 

N
1
,N

2-dibutanoylhydrazine H2L
3. n-Butyryl chloride (1.03 g, 9.67 mmol) was added dropwise over 

30 min to a stirred mixture of butyric acid hydrazide (290 mg, 2.84 mmol) and potassium carbonate 

(782 mg, 5.68 mmol) in water (3 ml) at 0 °C. The reaction mixture was stirred at 0 °C for 2 h. The 

product was filtered off, recrystallised from ethanol (3 ml) and dried in air. Yield: 112 mg (23%). 

Anal. calcd for C8H16N2O2: C, 55.79; H, 9.36; N, 16.27. Found: C, 55.65; H, 9.38; N, 16.33. IR 

(ATR): 3206 (s), 3055 (w), 2964 (s), 2933 (m), 2870 (w), 1591 (s), 1503 (s), 1483 (s), 1437 (m), 
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1201 (m), 1093 (w), 663 (m), 607 (w). 1H NMR (500 MHz, DMSO-d6) δH 9.62 (s, 1H), 2.07 (H2, t, 

J = 7 Hz, 2H), 1.57 – 1.48 (H3, m, 2H), 0.87 (H4, t, J = 7.5 Hz, 3H). 13C NMR (125 MHz, CDCl3) 

δC 171.00 (C1), 35.09 (C2), 18.50 (C3), 13.52 (C4). (+)ESI-MS (m/z): [M+Na]+
 195.12; [2M+Na]+ 

367.26. 

Synthesis of ruthenium(II) complexes 

[RuCl(propionylhydrazine)(η6-p-cymene)]Cl (1). To a warm suspension of [RuCl2(η6-p-cymene)]2 

(49.9 mg, 0.081 mmol) in isopropanol (7 ml) was added dropwise a suspension of propionic acid 

hydrazide (16.3 mg, 0.16 mmol) in isopropanol (3 ml). The mixture was stirred at room temperature 

for 3 h and allowed to stand in the fridge for 10 days. The product was filtered off, washed with 

isopropanol, diethyl ether and dried in vacuo. Yield: 34 mg (59%). Anal. calcd for 

C13H22Cl2N2ORu: C, 39.60; H, 5.62; N, 7.10. Found: C, 39.92; H, 5.36; N, 7.00. IR (ATR): 3211 

(m), 3107 (m), 3052 (s), 2981 (s), 2958 (s), 2873 (s), 2775 (s), 2737 (s), 2654 (m), 1639 (s), 1569 

(s), 1467 (m), 1381 (w), 1330 (w), 1291 (m), 1233 (s), 1090 (w), 885 (w), 785 (w), 551 (w). 1H 

NMR (500 MHz, CDCl3) δH 12.08 (NH, s, 1H), 10.76 (NH from NH2, d, J = 8.5 Hz, 1H), 6.47 (NH 

from NH2, d, J = 8.5 Hz, 1H), 5.98 (H5, d, J = 6.0 Hz, 2H), 5.95 (H6, d, J = 5.5 Hz, 1H) 5.79 (H5', 

d, J = 6.0 Hz, 1H), 5.73 (H6', d, J = 6.0 Hz, 1H), 2.90 (H9, hept, J = 7.0 Hz, 1H), 2.54 – 2.46  (H2, 

hept, J = 7.5 Hz 1H), 2.45 – 2.36 (H2, hept, J = 8.0 Hz 1H), 2.26 (H8, s, 3H), 1.33 (H10, d, J = 7.0 

Hz, 3H), 1.30 (H10', d, J = 7.0 Hz, 3H), 1.15 (H3, t, J = 7.6 Hz, 3H). 13C NMR (125 MHz, CDCl3) 

δC 181.33 (C1), 102.18 (C7), 95.98 (C4), 83.11 (C5), 82.97 (C5'), 79.93 (C6), 79.58 (C6'), 31.01 

(C9), 24.63 (C2), 22.65 (C10), 22.23 (C10'), 18.36 (C8), 9.47 (C3). (+)ESI-MS (m/z):  ([M-Cl]+) 

359.04.  

 [Ru2Cl2(N1
,N

2-dipropionylhydrazine)(η6-p-cymene)2] (2). To [RuCl2(η6-p-cymene)]2 (62 mg, 0.101 

mmol) in DCM (4 ml) was added N1
,N

2-dipropionylhydrazine (18 mg, 0.125 mmol) in ethanol (4 

ml). The orange solution was stirred at room temperature for 4 h. Next day, the solution was 

concentrated, the product was filtered off, washed with Et2O and dried.  Yield: 46 mg (66%). A 

single crystal suitable for X-ray diffraction analysis was obtained by slow evaporation of the mother 

liquor. Anal. calcd for C26H38Cl2N2O2Ru2: C, 45.68; H, 5.60; N, 4.10. Found: C, 45.59; H, 5.57; N, 

4.02. IR (ATR): 3391 (m), 3209 (m), 3055 (s), 3031 (s), 2965 (s), 2875 (s), 2781 (m), 1697 (m), 
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1639 (s), 1570 (m), 1539 (s), 1464 (s), 1396 (s), 1234 (m), 1088 (w), 880 (w). 1H NMR (500 MHz, 

CDCl3): δH 5.35 (H7, 7', 8', dt, J1 = 16.5, J2 = 6.0 Hz, 3H), 4.99 (H8, d, J = 5.5 Hz, 1H), 3.71 (H4, 

q, J = 7.0 Hz, 2H), 2.90 (H2, m, 1H), 2.74 – 2.65 (H2, H11, m, 2H), 2.20 (H10, s, 3H), 1.28 (H1, t, 

J = 7.5 Hz, 3H), 1.24 (H5, t, J = 7.0 Hz, 3H), 1.16 (H12, 12', dd, J1 = 14.0, J2 = 6.5 Hz, 6H). 13C 

NMR (125 MHz, CDCl3) δC 174.38 (C3), 101.19 (C9), 98.49 (C6), 83.34 (C7), 80.49 (C8), 80.42 

(C7'), 79.98 (C8'), 58.14 (C4), 30.43 (C11), 27.35 (C2), 22.40 (C12), 22.08 (C12'), 18.51 (C10), 

18.29 (C5), 11.74 (C1). (+)ESI-MS (m/z): ([M-Cl]+) 649.21. 

[Ru2Cl2(N1
,N

2-dibutanoylhydrazine)(η6-p-cymene)2] (3) – Direct reaction. To a suspension of 

[RuCl2(η6-p-cymene)]2 (51 mg, 0.083 mmol) in ethanol (8 ml) was added a suspension of N1
,N

2-

dibutanoylhydrazine (14 mg, 0.083 mmol) in ethanol (3 ml) at room temperature. The mixture was 

stirred at room temperature for 6 h and allowed to stand in the fridge for 7 days. The product was 

filtered off, washed with EtOH, diethyl ether and dried in vacuo. Yield: 35 mg (59%). Anal. calcd 

for C28H42Cl2N2O2Ru2: C, 47.25; H, 5.95; N, 3.94. Found: C, 47.50; H, 7.61; N, 3.56. IR (ATR): 

3554 (m), 3495 (m), 3449 (s), 3032 (s), 2961 (s), 2928 (s), 2871 (s), 1529 (s), 1466 (m), 1390 (s), 

1094 (w), 1041 (m), 880 (m). 1H NMR (500 MHz, CDCl3) δH 5.37 – 5.29 (H9, 9', 10', m, 3H), 4.99 

(H10, d, J = 5.5 Hz, 1H), 2.83 (H3 and H5, m, 1H), 2.74 – 2.61 (H3 and H5, H13, m, 2H), 2.19 

(H12, s, 3H), 1.88 – 1.74 (H2 and H6, m, 2H), 1.17 (H14, H14', dd, J = 14.5, 7.0 Hz, 6H), 1.01 

(H1 and H7, t, J = 7.5 Hz, 3H). 13C NMR (125 MHz, CDCl3) δC 173.75 (C4), 101.85 (C11), 98.10 

(C8), 83.10 (C9), 80.96 (C9'), 80.73 (C10'), 79.84 (C10), 36.31 (C3, C5), 30.61 (C13), 22.62 (C14), 

22.11 (C14'), 20.70 (C12), 18.59 (C2, C6), 14.39 (C1, C7). (+)ESI-MS (m/z): ([M-Cl]+) 677.08; 

([M-2Cl]2+) 321.06. 

 [Ru2Cl2(N1
,N

2-dibutanoylhydrazine)(η6-p-cymene)2] (3) – In situ formation of ligand. To a solution 

of butyric acid hydrazide (33 mg, 0.32 mmol) in  ethanol (3 ml) was added a warmed solution of 

[RuCl2(η6-p-cymene)]2 (100 mg, 0.16 mmol) in ethanol (8 ml). The mixture was stirred at room 

temperature for 16 h and allowed to stand in the fridge for 4 days. The product was filtered off, 

washed with cold ethanol, diethyl ether and dried in vacuo. Yield: 25.6 mg (44%). Anal. calcd for 

C28H42Cl2N2O2Ru2: C, 47.25; H, 5.95; N, 3.94. Found: C, 47.50; H, 7.61; N, 3.56. IR (ATR): 3554 

(m), 3495 (m), 3449 (s), 3032 (s), 2961 (s), 2928 (s), 2871 (s), 1529 (s), 1466 (m), 1390 (s), 1094 

(w), 1041 (m), 880 (m). 1H NMR (500 MHz, CDCl3) δH 5.37 – 5.29 (H9, 9', 10', m, 3H), 4.99 
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(H10, d, J = 5.5 Hz, 1H), 2.83 (H3 and H5, m, 1H), 2.74 – 2.61 (H3 and H5, H13, m, 2H), 2.19 

(H12, s, 3H), 1.88 – 1.74 (H2 and H6, m, 2H), 1.17 (H14, H14', dd, J = 14.5, 7.0 Hz, 6H), 1.01 

(H1 and H7, t, J = 7.5 Hz, 3H). 13C NMR (125 MHz, CDCl3) δC 173.75 (C4), 101.85 (C11), 98.10 

(C8), 83.10 (C9), 80.96 (C9'), 80.73 (C10'), 79.84 (C10), 36.31 (C3, C5), 30.61 (C13), 22.62 (C14), 

22.11 (C14'), 20.70 (C12), 18.59 (C2, C6), 14.39 (C1, C7).  (+)ESI-MS (m/z):  ([M-Cl]+) 677.08.  

[Ru2Cl2(N1
,N

2-dipentanoylhydrazine)(η6-p-cymene)2] (4) – In situ formation of ligand. To a 

solution of [RuCl2(η6-p-cymene)]2 (64 mg, 0.1 mmol) in methanol (8 ml) at room temperature, a 

solution of pentanoic acid hydrazide (24.6 mg, 0.2 mmol) in methanol (2 ml) was added dropwise. 

Reaction mixture was stirred for 2.5 h and then left to stand in the fridge for 7 days. The resulting 

product was filtered off, washed with cold MeOH and dried in air. Yield: 39 mg (53%). Anal. calcd 

for C30H46Cl2N2O2Ru2: C, 48.71; H, 6.27; N, 3.79. Found: C, 46.65; H, 6.11; N, 3.17. IR (ATR): 

3053 (s), 3032 (s), 2961 (s), 2924 (s), 2869 (s), 1536 (s), 1496 (m), 1468 (s), 1389 (s), 1056 (m), 

1034 (m), 878 (m). 1H NMR (200 MHz, CDCl3) δH 5.32 (H11, 11', 12', m, 3H), 4.98 (H12, d, J = 

5.8 Hz, 1H), 2.87 (H15, m, 1H), 2.66 (H4 and H6, m, 2H), 2.18 (H14, s, 3H), 1.77  (H3 and H7, m, 

2H), 1.43 (H2 and H8, m, 2H), 1.17 (H16, H16', t, J = 6.6 Hz, 6H), 0.97 (H1 and H9, t, J = 8.2 Hz, 

3H). 13C NMR (50 MHz, CDCl3) δC 173.88 (C5), 101.83 (C13), 98.11 (C10), 83.03 (C11), 81.27 

(C11'), 80.50 (C12), 79.81 (C12'), 34.06 (C4, C6), 30.59 (C15), 29.65 (C3), 29.29 (C7), 22.93 (C16, 

C16'), 22.52 (C2), 22.12 (C8), 18.56 (C14), 14.03 (C1, C9). (+)ESI-MS (m/z): ([M-Cl]+) 704.13. 

X-ray crystallography. X-ray diffraction measurements were performed on a Bruker X8 APEXII 

CCD and Bruker D8-Venture diffractometers. Single crystals were positioned at 40, 34, 35 and 34 

mm from the detector  and 1784, 1630, 1832 and 2626 frames were measured, each for 10, 30 and 

10 s over 1° scan width for 1, 2·2EtOH, 3·0.5[RuCl2(ηηηη
6
-p-cymene)]2, and 4 respectively. The data 

were processed using SAINT software.27 Crystal data, data collection parameters, and structure 

refinement details are given in Table 1. The structures were solved by direct methods and refined by 

full-matrix least-squares techniques. Non-hydrogen atoms were refined with anisotropic 

displacement parameters. Hydrogen atoms were inserted in calculated positions and refined with a 

riding model. The following computer programs and hardware were used: structure solution, 

SHELXS-2013 and refinement, SHELXL-2013;28 molecular diagrams, ORTEP;29 computer, Intel 

CoreDuo. Disorder observed for p-cymene and alkyl chain of L
1 in 1 was resolved by applying 
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SADI and EADP restraints and DFIX constraints implemented in SHELXL. Crystallographic data 

for these complexes have been deposited with the Cambridge Crystallographic Data Center as 

supplementary publications no. CCDC-1492601, -1492600, -1492602 and -1492599. Copy of the 

data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, 

Cambridge CB2 1EZ, UK (email: deposit@ccdc.cam.ac.uk). 

Table 1. Crystal Data and Details of Data Collection for 1, 2·2EtOH, 3·0.5[RuCl2(ηηηη
6
-p-cymene)]2 and 4 

compound 1 2·2EtOH 3·0.5[RuCl2(ηηηη
6
-p-cymene)]2 4 

empirical formula  C13H22Cl2N2ORu C30H50Cl2N2O4Ru2 C38H56Cl4N2O2Ru3 C30H50Cl2N2O4Ru2 
fw 394.30 775.76 1017.86 775.76 
space group P21/c P-1 P-1 P-1 
α, Å 13.8233(6) 9.0536(4) 9.916(1) 9.6072(5) 
b, Å 20.4127(9) 9.0906(4) 12.3781(5) 9.7722(5) 
c, Å 12.0459(5) 9.9218(4) 16.9971(7) 17.7727(8) 
α, ° 103.277(2) 88.9010(11) 76.132(2) 95.264(2) 
β, °  88.7726(11) 78.331(2) 90.765(2) 
γ, °  85.6563(11) 88.314(2) 93.160(2) 
V [Å3] 3308.2(2)  813.93(6) 1983.2(2) 1658.71(14) 
Z 8 1 2 2 
λ [Å] 0.71073 0.71073 0.71073 0.71073 
ρcalcd, g cm−3 1.583 1.583 1.705 1.553 
crystal size, mm 0.30 × 0.19 × 0.08 0.25 × 0.21 × 0.11 0.19 × 0.13 × 0.05 0.16 × 0.16 × 0.07 
T [K] 100(2) 100(2) 100(2) 100(2) 
µ, mm−1 1.265 1.128 1.433 1.107 
R1

a 0.0315 0.0148 0.0224 0.0335 
wR2

b 0.0843 0.0386 0.0551 0.0822 
GOFc 1.044 1.048 1.032 1.058 

a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = {Σ[w(Fo
2 − Fc

2)2]/Σ[w(Fo
2)2]}1/2. c GOF = {Σ[w(Fo

2 − Fc
2)2]/(n − p)}1/2, 

where n is the number of reflections and p is the total number of parameters refined. 

Computational Details. The quantum chemical calculations were performed using Gaussian 09 

program package.30 The optimal geometries of the studied molecules were calculated in the gas-

phase by DFT method with B3LYP (Becke’s three parameter Lee–Yang–Parr) functional31,32 

without any constraints (energy cut-off of 10−5 kJ mol−1, final RMS energy gradient under 0.01 kJ 

mol−1 A−1). For all calculations, the SVP/FitSVP basis set was employed.33,34 The optimised 

structures were confirmed to be real minima by frequency analysis (no imaginary frequencies). The 
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enthalpies and Gibbs free energies were evaluated 298.15 K. Visualisation of the obtained 

theoretical results was done by Molekel program package.35  

 

Conclusion 

The formation of N,N'
-diacylhydrazines from hydrazides in the presence of [RuCl2(η6-p-cymene)]2, 

isolated as dinuclear ruthenium(II) complexes was confirmed by spectroscopic and X-ray 

diffraction methods. A tentative mechanism of these reactions is proposed. The carbon atom of 

carbonyl group of butyric- or pentanoic acid hydrazide undergoes nucleophilic attack by NH2 group 

of another substituted hydrazine, followed by a loss of hydrazine and formation of N,N'
-

diacylhydrazine capable to link two ruthenium ions. X-ray crystallography of dinuclear complexes 

confirmed their pseudo-tetrahedral geometry which is characteristic for all η6-arene ruthenium 

complexes. The preparation of these dinuclear ruthenium complexes emphasize the usefulness of in 

situ formation of ligands in preparation of new compounds. The further effort will be directed 

towards synthesis of higher nuclearity discrete metalla-assemblies. 
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Formation of new tetradentate bridging  ligands was triggered by the presence of starting diruthenium complexe 

resulting in the formation of new diruthenium assemblies.  
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