Supplementary material for the article:

Bihelovic, F.; Stichnoth, D.; Surup, F.; Müller, R.; Trauner, D. Total Synthesis of Crocagin A. Angewandte Chemie - International Edition 2017, 56 (42), 12848-12851.
https://doi.org/10.1002/anie. 201612641

Angewandte manne

Supporting Information

Total Synthesis of Crocagin A

Filip Bihelovic, Desiree Stichnoth, Frank Surup, Rolf Müller, and Dirk Trauner*
anie_201612641_sm_miscellaneous_information.pdf

Table of Contents

1 General Experimental S3
2 Experimental Procedures S4
2.1 (R)-Methyl 2-(3-(4-(benzyloxy)phenyl)-3-oxopropanamido)-3-(1H-indol-3-yl)propanoate (9) S4$2.2(2 R, 2 \mathrm{a} 1 R, 9 \mathrm{~b} R)$-Methyl 5 -(4-(benzyloxy)phenyl)-3-oxo-2,2a1,3,9b-tetrahydro-1H-2a,5a-
diazacyclopenta[jk]fluorene-2-carboxylate (10)diazacyclopenta[jk]fluorene-2-carboxylate (10)S5
$2.3\left(2 R, 2 \mathrm{a}^{1} R, 9 \mathrm{~b} R\right)$-methyl 5-(4-((4-nitrobenzoyl)oxy)phenyl)-3-oxo-2,2a ${ }^{1}, 3,9 \mathrm{~b}$-tetrahydro- $1 H$ -2a,5a-diazacyclopenta[jk]fluorene-2-carboxylate (15)S6
2.4 (2a $\left.{ }^{1} R, 9 \mathrm{~b} R\right)$-Methyl 5-(4-(benzyloxy)phenyl)-3-oxo-3,9b-dihydro-2a ${ }^{1} \mathrm{H}-2 \mathrm{a}, 5 \mathrm{a}$ diazacyclopenta[jk] fluorene-2-carboxylate (11) S7
2.5 (1S,2R,2a ${ }^{1} R, 9 b R$)-Methyl 5-(4-(benzyloxy)phenyl)-1-hydroxy-3-oxo-2,2a ${ }^{1}, 3,9 \mathrm{~b}$-tetrahydro- 1H-2a,5a-diazacyclopenta[jk]fluorene-2-carboxylate (12) S8
2.6 (1S, $2 S, 2 a^{1} R, 9 \mathrm{~b} R$)-Methyl 5-(4-(benzyloxy)phenyl)-1-hydroxy-3-oxo-2,2a ${ }^{1}, 3,9 \mathrm{~b}$-tetrahydro- 1H-2a,5a-diazacyclopenta[jk]fluorene-2-carboxylate (13) S9
2.7 (1S, $\left.2 S, 2 \mathrm{a}^{1} R, 9 \mathrm{~b} R\right)$-Methyl 5-(4-(benzyloxy)phenyl)-1-((tert-butyldimethylsilyl)oxy)-3-oxo- 2,2a ${ }^{1}$,3,9b-tetrahydro-1H-2a,5a-diazacyclopenta[jk]fluorene-2-carboxylate (14) S10
2.8 (1S,2S,2a $\left.{ }^{1} R, 9 \mathrm{~b} R\right)$-Methyl 4 -amino-1-((tert-butyldimethylsilyl)oxy)-5-(4-hydroxyphenyl)-3 oxo-2,2a ${ }^{1}, 3,9 \mathrm{~b}$-tetrahydro-1H-2a,5a-diazacyclopenta[jk]fluorene-2-carboxylate (18) S11
2.9 (2R,2a $\left.{ }^{1} R, 9 \mathrm{~b} R\right)-$ Methyl $4-\mathrm{amino-1-((tert-butyldimethylsilyl)oxy)} \mathrm{5-(4-((4-}$nitrobenzoyl)oxy)phenyl)-3-oxo-2,2a ${ }^{1}, 3,9 b-t e t r a h y d r o-1 H-2 a, 5 a-d i a z a c y c l o p e n t a[j k] f l u o r e n e-2-~$carboxylate (23)S12
2.10 (1S, $\left.2 S, 2 \mathrm{a}^{1} R, 9 \mathrm{~b} R\right)$-Methyl $4-\mathrm{amino}$-5-(4-(benzyloxy)phenyl)-1-((tert-butyldimethylsilyl)oxy)-
2.11 (1S, $\left.2 S, 2 \mathrm{a}^{1} R, 4 S, 5 R, 9 \mathrm{~b} R\right)$-Methyl 4-amino-5-(4-(benzyloxy)phenyl)-1-((tert butyldimethylsilyl)oxy)-3-oxo-2,2a ${ }^{1}, 3,4,5,9 b-h e x a h y d r o-1 H-2 a, 5 a-d i a z a c y c l o p e n t a[j k] f l u o r e n e-2-~$ carboxylate (19) S14
2.12 (1S,2S,2a $\left.{ }^{1} R, 4 S, 5 R, 9 \mathrm{~b} R\right)$-Methyl 4-((2S,3S)-2-(((benzyloxy)carbonyl)(methyl)amino)-3-methylpentan amido)-5-(4-(benzyloxy)phenyl)-1-((tert-butyldimethylsilyl)oxy)-3-oxo-$2,2 a^{1}, 3,4,5,9 b-h e x a h y d r o-1 H-2 a, 5 a-d i a z a c y c l o p e n t a[j k] f l u o r e n e-2$-carboxylate (20)S152.13 ($\left.1 S, 2 S, 2 \mathrm{a}^{1} R, 4 S, 5 R, 9 \mathrm{~b} R\right)$-Methyl 4-((2S,3S)-2-(((benzyloxy)carbonyl)(methyl)amino)-3-methylpentan amido)-5-(4-(benzyloxy)phenyl)-1-hydroxy-3-oxo-2, $2 \mathrm{a}^{1}, 3,4,5,9 \mathrm{~b}$-hexahydro-1H-2a,5a-diazacyclopenta[jk]fluorene-2-carboxylate (21)S16
2.14 (1S,2S,2a $\left.{ }^{1} R, 4 S, 5 R, 9 \mathrm{bR}\right)-4-((2 S, 3 S)-2-((($ Benzyloxy)carbonyl)(methyl)amino)-3-methylpentanamido)-5-(4-(benzyloxy)phenyl)-1-(carbamoyloxy)-3-oxo-2, $2 \mathrm{a}^{1}, 3,4,5,9 \mathrm{~b}$-hexahydro-1H-2a,5a-diazacyclopenta[jk]fluorene-2-carboxylic acid (22)S17
2.15 ($\left.1 S, 2 S, 2 \mathrm{a}^{1} R, 4 S, 5 R, 9 \mathrm{~b} R\right)$-1-(Carbamoyloxy)-5-(4-hydroxyphenyl)-4-((2S,3S)-3-methyl-2- (methylamino)pentanamido)-3-oxo-2,2a ${ }^{1}, 3,4,5,9 b-h e x a h y d r o-1 H-2 a, 5 a-d i a z a c y c l o p e n t a ~$ [jk]fluorene-2-carboxylic acid (Crocagin A, 1) S18
3 NMR Spectra S20
4 X-ray Crystallographic Data S38
5 Literature S42

1 General Experimental

Unless otherwise specified, all reactions were carried out under Ar atmosphere in oven-dried glassware.

Tetrahydrofuran (THF) and diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) were distilled over sodium and benzophenone, triethylamine (NEt_{3}) and N, N-diisopropylamine (DIPA) over calcium hydride. All other solvents as well as starting materials and reagents were obtained from commercial sources and used without further purification.

Flash column chromatography was performed using the analytical grade solvents indicated and Merck silica gel ($40-63 \mu \mathrm{~m}, 60 \AA$) as the stationary phase. Reactions and chromatography fractions were monitored with Merck silica gel 60 F254 glass plates and visualized using a 254 nm UV lamp and/or by treatment with a suitable dip (potassium permanganate, ceric ammonium molybdate or anisaldehyde) followed by heating.

Proton (${ }^{1} \mathrm{H}$) and carbon $\left({ }^{13} \mathrm{C}\right)$ NMR spectra were recorded at $23^{\circ} \mathrm{C}$ (unless otherwise stated) on Bruker 400 or Bruker Avance III 500 or Varian 600 instrument. The spectral analysis of crocagin A (1) and the mixed NMR experiments were performed with Bruker Avance III 700 spectrometer with a 5 mm TCI cryoprobe ($1 \mathrm{H} 700 \mathrm{MHz}, 13 \mathrm{C} 175 \mathrm{MHz}$). Chemical shifts (δ) are expressed in parts per million (ppm) and are calibrated using residual protic solvent as an internal reference for proton ($\mathrm{CHCl}_{3}: \delta=7.26$ $\left.\mathrm{ppm}, \mathrm{CH}_{3} \mathrm{OH}: \delta=3.31 \mathrm{ppm}, \mathrm{DMSO}-d_{6}: \delta=2.50 \mathrm{ppm}\right)$, and for carbon the central carbon resonance of the solvent ($\mathrm{CDCl}_{3}: \delta=77.16 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{OD}: \delta=49.00 \mathrm{ppm}$, $\mathrm{DMSO}_{6} \mathrm{~d}_{6}: \delta=39.52 \mathrm{ppm}$). Multiplicity is defined as: $s=$ singlet; $d=$ doublet; $t=$ triplet; $q=$ quartet; $m=$ multiplet, $b r=$ broad or combinations of the above. To assign proton and carbon spectra, a range of 2D-NMR experiments (COSY, HSQC, HMBC, NOESY) were used. The numbering of atoms in the molecules does not correspond to the IUPAC nomenclature.

Infrared spectra were recorded on a Perkin-Elmer BXII-FTIR spectrometer. Samples were analyzed as neat materials.

Mass spectrometry experiments were performed on a Thermo Finnigan MAT 95 (Electron Ionisation, EI) and on a Thermo Finnigan LTQ FT (Electrospray Ionisation, ESI) instrument.

Melting points were measured on a Büchi melting point $\mathrm{B}-540$ system and are uncorrected.
Optical rotations were measured at the given temperature (T in [${ }^{\circ} \mathrm{C}$]) on a Perkin-Elmer 241 or Krüss P8000-T polarimeter using a sodium lamp (Na D-line, 589 nm). Measurements were carried out in a cell with path length (I) of 0.5 dm . Concentrations are given in $\mathrm{g} / 100 \mathrm{~mL}$

2 Experimental Procedures

2.1 (R)-Methyl 2-(3-(4-(benzyloxy)phenyl)-3-oxopropanamido)-3-(1H-indol-3yl)propanoate (9)

Diisopropylcarbodiimide ($4.90 \mathrm{~mL}, 31.5 \mathrm{mmol}$; 1.5 eq) was added portionwise to a suspension of amine $\mathbf{7}$ ($5.35 \mathrm{~g} ; 21.0 \mathrm{mmol}$), β-ketoacid $\mathbf{8}^{[1]}$ (6.24 g ; $23.1 \mathrm{mmol} ; 1.1 \mathrm{eq}$), HOBt ($4.54 \mathrm{~g} ; 33.6 \mathrm{mmol} ; 1.6$ eq) and triethylamine (6.50 mL ; $46.2 \mathrm{mmol} ; 2.2 \mathrm{eq}$) in dry dichloromethane (135 mL). After stirring for 40 h , the reaction mixture was diluted with dichloromethane and washed with 1 M HCl , saturated NaHCO_{3} and brine. The extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and purified by flash chromatography (50% EtOAc/hexanes $\rightarrow 70 \%$ EtOAc/hexanes), to afford 7.83 g (79%) of the pure β-ketoamide 9 , as a yellowish foam.
$\mathbf{R}_{f}=0.20$ (40% EtOAc in hexanes).
$[\alpha]_{\mathrm{D}}{ }^{26}=-49.3^{\circ}\left(\mathrm{c}=0.75, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=9.0,2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.6$, $1 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.9,1 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=2.4$, 1 H), $7.00(\mathrm{~d}, \mathrm{~J}=9.0,2 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 4.94\left(\mathrm{dt}, J_{1}=5.7, J_{2}=7.7,1 \mathrm{H}\right), 3.84\left(\mathrm{dd}, J_{1}=16.3, J_{2}=34.8 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~d}, \mathrm{~J}=5.7,2 \mathrm{H})$.
${ }^{13}$ C NMR (150 MHz, CDCl_{3}): $\delta 193.7,172.2,165.9,163.4,136.2,136.1,131.2,129.5,128.9,128.5$, $127.6,127.6,123.1,122.3,119.7,118.7,115.0,111.3,110.1,70.4,53.2,52.5,45.4,27.8$.

IR ($\left.\tilde{V} / \mathrm{cm}^{-1}\right): 3318,2950,1737,1646,1597,1573,1509,1455,1421,1321,1254,1211,1167,1115$, 999, 910, 829.

HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}$471.1914; found: 471.1917.

2.2 (2R,2a1R,9bR)-Methyl 5-(4-(benzyloxy)phenyl)-3-oxo-2,2a1,3,9b-tetrahydro-1H-2a,5a-diazacyclopenta[jk]fluorene-2-carboxylate (10)

Phosphorus oxychloride (10.2 mL ; $108 \mathrm{mmol} ; 15 \mathrm{eq}$) was added dropwise to a solution of β ketoamide 9 ($3.40 \mathrm{~g} ; 7.27 \mathrm{mmol}$) in dry dichloromethane (66 mL) and the mixture was stirred at room temperature for 22 h . The reaction mixture was diluted with dichloromethane and carefully quenched with 5% ammonia solution (300 mL), while cooling in an ice bath. The extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. After flash chromatography (80 \% EtOAc in hexanes $\rightarrow 100 \%$ EtOAc), 2.45 g (75%) of the pure product 10 was isolated, in form of a yellow foam.
$\mathbf{R}_{f}=0.70$ (80% EtOAc in hexanes).
$[\alpha]_{D}{ }^{26}=-248.7^{\circ}\left(c=0.79, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63(\mathrm{~d}, J=8.8,2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.3,2 \mathrm{H}), 7.42(\mathrm{t}, \mathrm{J}=7.5,2 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=$ $7.3,1 \mathrm{H}), 7.19(\mathrm{~d}, J=6.3,1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.8,2 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.02(\mathrm{~d}, J=7.4,1 \mathrm{H}), 5.93(\mathrm{~d}, J=$ $7.2,1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 4.48\left(\mathrm{dd}, J_{1}=5.8, J_{2}=8.7,1 \mathrm{H}\right), 4.20\left(\mathrm{td}, J_{1}=3.6, J_{2}=8.1,1 \mathrm{H}\right), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 2.64\left(\mathrm{ddd}, \mathrm{J}_{1}=5.7, J_{2}=8.7, J_{3}=14.3,1 \mathrm{H}\right), 2.58-2.52(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.5,162.6,161.4,152.1,145.9,136.5,133.3,130.1,128.8,128.5$, $128.4,127.7,126.8,124.9,122.2,115.4,112.8,105.8,80.2,70.4,56.8,52.7,44.8,35.5$.

IR ($\left.\tilde{V} / \mathrm{cm}^{-1}\right): 3008,2952,1738,1642,1506,1477,1427,1369,1296,1240,1218,1202,1171,1113$, 1023, 1007, 826.

HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$453.1809; found: 453.1814.

2.3 (2R,2a $\left.{ }^{1} R, 9 \mathrm{~b} R\right)$-methyl 5-(4-((4-nitrobenzoyl)oxy)phenyl)-3-oxo-2,2a ${ }^{1}, 3,9 \mathrm{~b}-$ tetrahydro-1H-2a,5a-diazacyclopenta[jk]fluorene-2-carboxylate (15)

10% Palladium on charcoal (20.0 mg) was added to a solution of tetracyclic compound $\mathbf{1 0}$ (100 mg ; $0.220 \mathrm{mmol})$ in methanol (3 mL), and the mixture was stirred for 2 h under 1 atm of hydrogen. The mixture was filtered through a plug of celite and the solvent was removed in vacuo, to yield 78.0 mg (94%) of the virtually pure phenol, as a colorless oil.
p-Nitrobenzoyl chloride (42.0 mg ; $0.228 \mathrm{mmol} ; 1.1 \mathrm{eq}$) was added to a solution of phenol (75.0 mg ; 0.207 mmol) and triethylamine ($38.0 \mu \mathrm{~L}$; $0.269 \mathrm{mmol} ; 1.3 \mathrm{eq}$) in dichloromethane (3 mL), and the solution was stirred for 5 minutes. The reaction mixture was diluted with dichloromethane, washed with 1 M HCl and brine and the organic extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the filtrate was concentrated in vacuo, to give a yellowish-white solid (59.0 mg ; 79%). The crude ester 15 was recrystallized from methanol and crystals suitable for X-ray analysis were obtained.
$\mathbf{R}_{f}=0.20$ (60% EtOAc in hexanes).
$[\alpha]_{\mathrm{D}}{ }^{22}=-320.9^{\circ}\left(c=0.24, \mathrm{CHCl}_{3}\right)$.
m.p.: $192-194^{\circ} \mathrm{C}(\mathrm{MeOH})$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.40(\mathrm{~d}, J=1.9,4 \mathrm{H}), 7.80(\mathrm{~d}, J=8.7,2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.7,2 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $6.6,1 \mathrm{H}), 7.00-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.07-6.01(\mathrm{~m}, 1 \mathrm{H}), 6.00-5.94(\mathrm{~m}, 2 \mathrm{H}), 4.51\left(\mathrm{dd}, \mathrm{J}_{1}=8.7, \mathrm{~J}_{2}=5.8,1 \mathrm{H}\right)$, $4.23(\mathrm{t}, \mathrm{J}=5.9,1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.73-2.51(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.4,163.1,162.2,152.7,151.2,151.2,145.6,134.6,133.3,132.3$, 131.5, 129.9, 128.7, 125.1, 124.0, 122.5, 122.4, 112.7, 107.8, 80.3, 56.8, 52.8, 44.8, 35.5 .

IR ($\left.\tilde{V} / \mathrm{cm}^{-1}\right): 2948,2357,1736,1723,1652,1600,1524,1504,1477,1460,1423,1406,1345,1321$, 1292, 1266, 1209, 1166, 1108, 1083, 1027.

HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{O}_{7} \mathrm{~N}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 534.1272$; found 534.1272.

2.4 ($2 \mathrm{a}^{1} R, 9 b R$)-Methyl 5-(4-(benzyloxy)phenyl)-3-oxo-3,9b-dihydro-2a ${ }^{1} \mathrm{H}-2 \mathrm{a}, 5 \mathrm{a}$ diazacyclopenta[jk] fluorene-2-carboxylate (11)

1. LiHMDS, THF then PhSeBr 2. $m \mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
(62\%)

11
n-Butyl lithium (1.6 M ; 11.0 mL ; $17.7 \mathrm{mmol} ; 2 \mathrm{eq}$) was added to a cold $\left(-30{ }^{\circ} \mathrm{C}\right)$ solution of hexamethyldisilazane (3.9 mL ; $18.6 \mathrm{mmol} ; 2.2 \mathrm{eq}$) in dry THF (50 mL) and the mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 30 minutes. The resulting solution of LiHMDS was added to a cold $\left(-60^{\circ} \mathrm{C}\right)$ solution of ester 10 $(4.00 \mathrm{~g} ; 8.85 \mathrm{mmol})$ in dry THF (100 mL). After 20 minutes of stirring, a solution of $\mathrm{PhSeBr}(4.59 \mathrm{~g}$; $19.5 \mathrm{mmol} ; 2.2 \mathrm{eq}$) in THF (50 mL) was added and the mixture was stirred for additional 20 minutes. The reaction mixture was diluted with ethyl acetate and washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. The crude mixture was dissolved in dichloromethane (50 mL), and treated with m CPBA (77%; $2.58 \mathrm{~g} ; 11.5 \mathrm{mmol} ; 1.3 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$. After 15 minutes, the mixture was washed with 5% sodium thiosulfate, saturated NaHCO_{3} and brine, the organic extract was dried over anhydrous MgSO_{4} and filtered. The solvent was removed in vacuo, and the residue was purified by flash chromatography (50% EtOAc in hexanes) to yield 2.45 g (62\%) of the unsaturated ester 11, as a yellow foam.
$\mathbf{R}_{f}=0.30\left(20 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in DCM).
$[\alpha]_{D}{ }^{24}=-397.8^{\circ}\left(\mathrm{c}=0.45, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64(\mathrm{~d}, \mathrm{~J}=8.9,2 \mathrm{H}), 7.47-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.36$ $(\mathrm{m}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.9,2 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.15-6.10(\mathrm{~m}, 1 \mathrm{H}), 6.00(\mathrm{~d}, \mathrm{~J}=$ $3.6,1 \mathrm{H}), 5.94(\mathrm{~d}, \mathrm{~J}=9.8,1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 4.61\left(\mathrm{dd}, J_{1}=9.8, J_{1}=3.6,1 \mathrm{H}\right), 3.88(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.3,161.6,160.1,151.8,145.2,137.1,136.4,130.3,128.8,128.5$, $128.4,127.7,127.2,126.4,125.2,122.6,116.1,115.6,112.5,105.8,80.2,70.4,52.9,48.4$.

IR ($\left.\tilde{V} / \mathrm{cm}^{-1}\right): 2922,1736,1649,1600,1505,1476,1459,1423,1409,1360,1287,1244,1227,1171$, 1120, 1020, 1000, 907, 819.

HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$451.1652; found: 451.1661.

2.5 ($1 S, 2 R, 2 \mathrm{a}^{1} \mathrm{R}, 9 \mathrm{~b} R$)-Methyl 5-(4-(benzyloxy)phenyl)-1-hydroxy-3-oxo-2,2a ${ }^{1}, 3,9 \mathrm{~b}$ -tetrahydro-1H-2a,5a-diazacyclopenta[jk]fluorene-2-carboxylate (12)

Bis(pinacolato)diboron ($1.40 \mathrm{~g} ; 5.52 \mathrm{mmol} ; 1.2 \mathrm{eq}$) was added to a solution of chloro[1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene]copper(I) ($223 \mathrm{mg} ; 12 \mathrm{~mol} \%$) and t-BuONa (79.6 mg ; $18 \mathrm{~mol} \%$) in dry THF (10 mL), under nitrogen. After 5 minutes, a solution of unsaturated ester $11(2.07 \mathrm{~g} ; 4.60$ mmol) in dry THF (32 mL) was added, followed by methanol ($240 \mu \mathrm{~L} ; 5.98 \mathrm{mmol} ; 1.3 \mathrm{eq}$). After 40 minutes, a solution of sodium perborate tetrahydrate ($1.42 \mathrm{~g} ; 9.20 \mathrm{mmol} ; 2 \mathrm{eq}$) in water (20 mL) was added and stirring was continued for 30 minutes. The reaction mixture was partitioned between ether and brine, and the organic extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed in vacuo and the residue was purified by flash chromatography ($80 \% \mathrm{EtOAc}$ in hexanes), to afford $1.57 \mathrm{~g}(73 \%)$ of the pure alcohol 12, as a pale yellow foam.
$\mathbf{R}_{f}=0.30$ (80% EtOAc in hexanes).
$[\alpha]_{D}^{24}=-209.7^{\circ}\left(c=0.33, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.61(\mathrm{~d}, \mathrm{~J}=8.8,2 \mathrm{H}), 7.51-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=8.8,2 \mathrm{H}), 6.98-6.83$ $(\mathrm{m}, 2 \mathrm{H}), 6.11(\mathrm{~d}, J=7.2,1 \mathrm{H}), 6.02(\mathrm{~d}, J=8.5,1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 4.74\left(\mathrm{dd}, J_{1}=6.8, J_{2}=2.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, \mathrm{~J}=6.8,1 \mathrm{H}), 4.12(\mathrm{~d}, \mathrm{~J}=7.2,1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl $_{3}$): $\delta 169.7,163.2,161.4,152.5,145.9,136.4,130.7,130.1,128.8,128.8$, $128.4,127.7,126.4,125.2,122.2,115.4,112.9,105.4,79.2,77.5,70.3,62.8,54.5,52.6$.

IR ($\left.\tilde{V} / \mathrm{cm}^{-1}\right): 3339,2975,1741,1626,1601,1506,1477,1433,1368,1299,1248,1170,1114,1076$, 1005.

HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$469.1758; found: 469.1758.

2.6 (1S, $2 S, 2 a^{1} R, 9 b R$)-Methyl 5-(4-(benzyloxy)phenyl)-1-hydroxy-3-oxo-2,2a ${ }^{1}, 3,9 \mathrm{~b}-$ tetrahydro-1H-2a,5a-diazacyclopenta[jk]fluorene-2-carboxylate (13)

A solution of ester 12 ($2.00 \mathrm{~g} ; 4.27 \mathrm{mmol}$) and DBU ($3.2 \mathrm{~mL} ; 21.4 \mathrm{mmol} ; 5 \mathrm{eq}$) in dry methanol (20 mL) was heated at $70{ }^{\circ} \mathrm{C}$ for 2 h , under nitrogen. The reaction mixture was cooled to room temperature and quenched by addition of $1 \mathrm{M} \mathrm{HCl}($ to $\mathrm{pH}=5)$. The reaction mixture was extracted with ethyl acetate, the organic layer was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. The residual mixture of diastereomeric esters (ca. 1:1) was purified by flash chromatography ($100 \% \mathrm{EtOAc}$), to afford separated diastereomeric esters. The total of 1.46 g (73\%) of ester 13 was obtained through two isomerisation cycles as a colorless foam.
$\mathbf{R}_{f}=0.30$ ($100 \% \mathrm{EtOAc}$).
$[\alpha]_{D}^{24}=-86.7^{\circ}(c=0.24, \mathrm{MeOH})$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.70(\mathrm{~d}, \mathrm{~J}=8.8,2 \mathrm{H}), 7.47-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=7.4,1 \mathrm{H}), 7.07(\mathrm{~d}, J=$ $8.8,2 \mathrm{H}), 6.91(\mathrm{t}, J=7.7,1 \mathrm{H}), 6.82(\mathrm{t}, J=7.4,1 \mathrm{H}), 6.08(\mathrm{~d}, J=8.0,1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=6.7,1 \mathrm{H})$, $5.15(\mathrm{~s}, 2 \mathrm{H}), 4.86(\mathrm{~d}, J=4.3,1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{~d}, \mathrm{~J}=6.7,1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~d}, J=4.6,1 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}): $\delta 168.7,164.9,161.6,153.6,147.4,136.5,130.4,129.4,129.1,128.8$, $128.4,127.7,126.6,125.1,121.9,115.5,112.8,106.4,80.5,80.1,70.4,68.6,53.6,52.4$.

IR ($\left.\tilde{v} / \mathrm{cm}^{-1}\right): 3262,2933,1733,1625,1600,1504,1475,1428,1333,1300,1247,1171,1009,821$.
HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 469.1758$; found: 469.1758.

2.7 (1S,2S, $2 \mathrm{a}^{1} R, 9 \mathrm{~b} R$)-Methyl 5-(4-(benzyloxy)phenyl)-1-((tert-butyldimethylsilyl)oxy)-3-oxo-2,2a ${ }^{1}$,3,9b-tetrahydro-1H-2a,5a-diazacyclopenta[jk]fluorene-2-carboxylate (14)

TBDMSOTf ($668 \mu \mathrm{~L}$; $2.91 \mathrm{mmol} ; 1.5 \mathrm{eq}$) was added dropwise to a solution of alcohol 13 ($0.910 \mathrm{~g} ; 1.94$ mmol) and 2,6-lutidine ($550 \mu \mathrm{~L}$; 4.85 mmol ; 2.5 eq) in dry dichloromethane (3 mL). After 45 minutes of stirring, the reaction mixture was diluted with dichloromethane, washed with saturated NaHCO_{3} and brine, dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by flash chromatography ($100 \% \mathrm{EtOAc}$) to yield $1.10 \mathrm{~g}(97 \%)$ of the TBDMS-protected product 14, as a colorless oil.
$R_{f}=0.30$ (50% EtOAc in hexanes).
$[\alpha]_{D}{ }^{24}=-185.8^{\circ}\left(\mathrm{c}=0.30, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69(\mathrm{~d}, \mathrm{~J}=8.9,2 \mathrm{H}), 7.48-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=7.4,1 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=$ $8.9,2 \mathrm{H}), 6.91(\mathrm{t}, J=7.7,1 \mathrm{H}), 6.81(\mathrm{t}, J=7.4,1 \mathrm{H}), 6.08(\mathrm{~d}, J=8.0,1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=6.7,1 \mathrm{H})$, $5.15(\mathrm{~s}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~d}, \mathrm{~J}=6.7,1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.26(\mathrm{~s}, 3 \mathrm{H}), 0.24$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (100 MHz, CDCl_{3}): $\delta 168.9,164.4,161.5,153.1,147.4,136.5,130.3,129.6,129.0,128.8$, $128.4,127.7,126.8,124.8,121.7,115.4,112.8,106.7,81.0,80.6,70.4,68.7,54.8,52.2,25.9,18.3,-$ 4.6, -4.8.

IR ($\left.\tilde{V} / \mathrm{cm}^{-1}\right)$: 2951, 2927, 2360, 1757, 1736, 1644, 1602, 1505, 1476, 1460, 1423, 1409, 1300, 1250, 1171, 1081.

HRMS (ESI): calcd. for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 583.2623$; found: 583.2620.

2.8 ($\left.1 S, 2 S, 2 \mathrm{a}^{1} R, 9 \mathrm{~b} R\right)$-Methyl 4-amino-1-((tert-butyldimethylsilyl)oxy)-5-(4-hydroxyphenyl)-3-oxo-2,2a ${ }^{1}$,3,9b-tetrahydro-1H-2a,5a-diazacyclopenta[jk]fluorene-2-carboxylate (18)

18

Copper(II) trifluoromethanesulfonate (342 mg ; $50 \mathrm{~mol} \%$) was added to a solution of tetracycle 14 ($1.10 \mathrm{~g} ; 1.89 \mathrm{mmol}$) and dibenzyl azodicarboxylate ($880 \mathrm{mg} ; 2.83 \mathrm{mmol} ; 1.5 \mathrm{eq}$) in dry dichloromethane (25 mL). The reaction mixture was stirred at room temperature for 4 h and the mixture was partitioned between ether and water and the organic layer was washed with 5% ammonia solution and brine. The organic extract was dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (30\% EtOAc/hexanes), to afford 1.42 g (86%) of the pure product, as a yellowish foam.
10% palladium on charcoal (450 mg) was added to a solution of hydrazine $16(1.05 \mathrm{~g} ; 1.19 \mathrm{mmol})$ in methanol (35 mL) and the reaction mixture was stirred under hydrogen (balloon pressure) for 1 h . The reaction mixture was filtered through a pad of celite, the celite was washed with methanol and the filtrate was concentrated. The residue was purified by flash chromatography ($60 \% \mathrm{EtOAc}$ in hexanes), to afford 545 mg (90\%) of the pure amine 18, as a yellowish oil.
$\mathbf{R}_{f}=0.50$ (80% EtOAc in hexane).
$[\alpha]_{\mathrm{D}}{ }^{24}=-246.7^{\circ}(\mathrm{c}=0.33, \mathrm{MeOH})$.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.65(\mathrm{~d}, J=8.8,2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.4,1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.8,2 \mathrm{H}), 6.86(\mathrm{t}, J=$ $7.7,1 \mathrm{H}), 6.74(\mathrm{t}, J=7.9,1 \mathrm{H}), 5.90(\mathrm{~d}, J=8.0,1 \mathrm{H}), 5.80(\mathrm{~d}, J=6.2,1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 3.99$ (d, J = 6.2, 1H), $3.70(\mathrm{~s}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.30(\mathrm{~s}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CD ${ }_{3}$ OD): $\delta 169.5,164.1,159.5,150.3,131.6,129.8,129.8,128.2,126.6,125.5$, $125.3,121.9,117.0,113.3,81.9,80.9,70.0,55.7,52.7,26.2,19.0,-4.7,-4.8$.

IR ($\left.\tilde{v} / \mathrm{cm}^{-1}\right): 3301,2949,2855,1736,1639,1602,1511,1476,1459,1434,1360,1300,1260,1168$, 1088.

HRMS (ESI): calcd. for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$508.2262; found: 508.2260.

2.9 ($\left.2 R, 2 \mathrm{a}^{1} R, 9 \mathrm{~b} R\right)$-Methyl 4 -amino-1-((tert-butyldimethylsilyl)oxy) 5-(4-((4-nitrobenzoyl)oxy)phenyl)-3-oxo-2,2a ${ }^{1}, 3,9 \mathrm{~b}$-tetrahydro-1H-2a,5a-diazacyclopenta[jk]fluorene-2-carboxylate (23)

p-Nitrobenzoyl chloride (18.2 mg ; 0.098 mmol ; 1.1 eq) was added to a solution of phenol 18 (45 mg ; 0.0891 mmol) and triethylamine ($16.0 \mu \mathrm{~L} ; 0.116 \mathrm{mmol} ; 1.3 \mathrm{eq}$) in dichloromethane (2 mL), and the solution was stirred for 5 minutes. The reaction mixture was diluted with dichloromethane, washed with brine, and the organic extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the filtrate was concentrated in vacuo, to give a red solid ($33.0 \mathrm{mg} ; 56 \%$). The crude ester $\mathbf{2 3}$ was recrystallized from methanol and red crystals suitable for X-ray analysis were obtained.
$\mathbf{R}_{f}=0.20$ (30\% EtOAc in hexanes).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 8.14-8.12(\mathrm{~m}, 2 \mathrm{H}), 8.03(\mathrm{~d}, \mathrm{~J}=8.9,1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.7,2 \mathrm{H}), 7.46(\mathrm{dd}, J$ $=12.9,8.7,1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.8,2 \mathrm{H}), 6.93(\mathrm{~d}, J=7.4,1 \mathrm{H}), 6.69(\mathrm{t}, \mathrm{J}=7.2,1 \mathrm{H}), 6.57(\mathrm{t}, J=7.2,1 \mathrm{H}), 5.76$ $(\mathrm{d}, J=7.9,1 \mathrm{H}), 5.66(\mathrm{~d}, J=6.1,1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=6.1,1 \mathrm{H}), 3.76(\mathrm{~s}, 1 \mathrm{H}), 2.99(\mathrm{~s}$, $3 H), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CD $\mathbf{3}^{2} \mathrm{OD}$): $\delta 167.46,165.54$ (HMBC), 163.80 (HMBC), 160.95 (HMBC), 157.53, 149.92, 148.33, 135.79 (HMBC), 133.45, 133.27 (HMBC), 130.45, 129.79, 129.66, 127.99, 122.90, $122.69,119.91,115.05,111.35,79.90,78.87,68.05,53.70,50.70,24.24,17.00,-6.72,-6.80$.

IR ($\left.\tilde{V} / \mathrm{cm}^{-1}\right): 2948,2929,1729,1650,1599,1523,1457,1429,1347,1260,1194,1157,1081,1011$.
HRMS (ESI): calcd. for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+657.2375$; found 657.2373.

2.10 ($1 S, 2 S, 2 \mathrm{a}^{1} R, 9 \mathrm{~b} R$)-Methyl 4-amino-5-(4-(benzyloxy)phenyl)-1-((tert-butyldimethylsilyl)oxy)-3-oxo-2,2a ${ }^{1}$,3,9b-tetrahydro-1H-2a,5a-diazacyclopenta[jk]fluorene-2-carboxylate (18)

To a solution of phenol 17 ($545 \mathrm{mg} ; 1.07 \mathrm{mmol}$) in dry DMF were added $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($523 \mathrm{mg} ; 1.60 \mathrm{mmol}$; 1.5 eq), benzyl bromide ($140 \mu \mathrm{~L} ; 1.18 \mathrm{mmol} ; 1.1 \mathrm{eq}$) and TBAI ($80.0 \mathrm{mg} ; 20 \mathrm{~mol} \%$). The reaction mixture was stirred at room temperature for 30 minutes. The mixture was diluted with ether, washed with water and brine, dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash chromatography, to yield (428 mg ; 67%) of benzyl ether 18, as a yellowish foam.
$\mathbf{R}_{f}=0.30$ (30% EtOAc in hexanes).
$[\alpha]_{0}^{23}=-166.9^{\circ}(c=0.35, \mathrm{MeOH})$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.75(\mathrm{~d}, \mathrm{~J}=8.9,2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.5,2 \mathrm{H}), 7.39(\mathrm{t}, J=7.9,2 \mathrm{H}), 7.35-$ $7.30(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{t}, J=7.7,1 \mathrm{H}), 6.75(\mathrm{t}, J=7.8,1 \mathrm{H}), 5.88(\mathrm{~d}, J=7.9,1 \mathrm{H}), 5.81(\mathrm{~d}$, $J=6.2,1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~d}, \mathrm{~J}=6.2,1 \mathrm{H}), 3.66(\mathrm{~s}, 1 \mathrm{H}) 3.17(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}$, $9 \mathrm{H}), 0.30(\mathrm{~s}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 169.4,164.0,160.6,150.3,138.4,131.5,129.8,129.7,129.6,129.0$, $128.7,128.3,127.2,126.1,125.5,121.9,116.6,113.2,81.9,80.9,71.1,70.0,55.7,52.7,26.2,19.0,-$ 4.7,-4.8.

IR ($\left.\tilde{V} / \mathrm{cm}^{-1}\right)$: 3357, 2950, 2925, 2853, 1758, 1731, 1656, 1601, 1573, 1507, 1475, 1459, 1432, 1361, 1299, 1245, 1222, 1169, 1086, 1005.

HRMS (ESI): calcd. for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+598.2732$; found 598.2726 .

2.11 ($1 S, 2 S, 2 \mathrm{a}^{1} R, 4 S, 5 R, 9 \mathrm{~b} R$)-Methyl 4-amino-5-(4-(benzyloxy)phenyl)-1-((tert-butyldimethylsilyl)oxy)-3-oxo-2,2a ${ }^{1}, 3,4,5,9 b-h e x a h y d r o-1 H-2 a, 5 a-$ diazacyclopenta[jk]fluorene-2-carboxylate (19)

18

19

A solution of enamine 18 ($100 \mathrm{mg} ; 0.168 \mathrm{mmol}$) in trifluoroethanol (5 mL) was degassed with argon and (\pm)-1,2-bis(2,5-diethylphospholano)benzene)1,5-cyclooctadiene)rhodium(I) tetrafluoroborate ($11.1 \mathrm{mg} ; 10 \mathrm{~mol} \%$) was added. After additional 5 minutes of argon bubbling, the mixture was transferred in a high pressure autoclave. The reaction mixture was stirred for 10 h under hydrogen (125 bar), at $50^{\circ} \mathrm{C}$. The solvent was removed on rotovap and the residue was purified by column chromatography ($100 \% \mathrm{EtOAc} \rightarrow 5 \% \mathrm{MeOH}$ in EtOAc), to give 98.0 mg (97%) of amine 19, as a colorless oil.
$\mathbf{R}_{f}=0.10$ ($100 \% \mathrm{EtOAc}$).
$[\alpha]_{\mathrm{D}}{ }^{23}=79.0^{\circ}(\mathrm{c}=0.20, \mathrm{MeOH})$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.42(\mathrm{~d}, \mathrm{~J}=8.8,2 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=7.8,2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=$ $7.4,1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.8,2 \mathrm{H}), 6.71(\mathrm{t}, J=7.5,1 \mathrm{H}), 6.57(\mathrm{t}, J=7.8,1 \mathrm{H}), 5.90(\mathrm{~d}, J=8.3,1 \mathrm{H}), 5.47(\mathrm{~d}, J=$ $8.0,1 \mathrm{H}), 5.11(\mathrm{~d}, J=7.4,1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 4.76-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~d}, \mathrm{~J}=4.3,1 \mathrm{H}), 4.23(\mathrm{~d}, J=7.4$, $1 \mathrm{H}), 3.82\left(\mathrm{dd}, J_{1}=8.2, J_{2}=3.3,1 \mathrm{H}\right), 3.66(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (125 MHz, CD ${ }_{3}$ OD): $\delta 171.5,170.5,160.4,149.1,138.6,129.6,129.5,129.0,128.9,128.6$, 128.0, 127.6, 125.1, 118.9, 115.8, 112.2, 84.5, 78.1, 71.0, 68.4, 63.3, 56.5, 55.9, 53.0, 26.2, 18.8, -4.5, -4.6.
$\operatorname{IR}\left(\tilde{v} / \mathrm{cm}^{-1}\right): 3360,3033,2953,2930,2857,1746,1687,1606,1510,1481,1463,1431,1363,1251$, 1174, 1090, 1022.

HRMS (ESI): calcd. for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+600.2888$; found 600.2889 .

2.12 ($\left.1 S, 2 S, 2 \mathrm{a}^{1} R, 4 S, 5 R, 9 \mathrm{~b} R\right)$-Methyl 4-((2S,3S)-2-
 ((benzyloxy)carbonyl)(methyl)amino)-3-methylpentan amido)-5-(4-(benzyloxy)phenyl)-1-((tert-butyldimethylsilyl)oxy)-3-oxo-2,2a ${ }^{1}, 3,4,5,9 b-$ hexahydro-1H-2a,5a-diazacyclopenta[jk]fluorene-2-carboxylate (20)

20
N-methymorpholine ($150 \mu \mathrm{~L} ; 1.33 \mathrm{mmol} ; 3 \mathrm{eq}$) was added to a solution of amine 19 ($267 \mathrm{mg} ; 0.445$ mmol), Cbz-N-Me-Ile-OH ($162 \mathrm{mg} ; 0.579 \mathrm{mmol} ; 1.3 \mathrm{eq}$) and BOP ($315 \mathrm{mg} ; 0.712 \mathrm{mmol} ; 1.6 \mathrm{eq}$) in dry dichloromethane (5 mL) and the mixture was stirred at room temperature for 3 h . The mixture was diluted with ether, washed with 1 M HCl , saturated NaHCO_{3} and brine. The organic layer was dried over anhydrous MgSO_{4}, filtered and concentrated. The residue was purified by column chromatography (20% EtOAc in hexanes), to afford $379 \mathbf{m g}(99 \%$) of the peptide $\mathbf{2 0}$, as a colorless viscous oil.
$\mathbf{R}_{f}=0.30$ (40% EtOAc in hexanes).
$[\alpha]_{0}{ }^{23}=113.3^{\circ}(c=0.10, \mathrm{MeOH})$.
${ }^{1}$ H NMR (500 MHz, DMSO- $_{6}, 333 \mathrm{~K}$): $\delta 7.44-7.18(\mathrm{~m}, 10 \mathrm{H}), 7.11(\mathrm{~d}, J=7.4,1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.8,2 \mathrm{H})$, $6.81(\mathrm{~d}, J=8.7,2 \mathrm{H}), 6.73(\mathrm{t}, J=7.6,1 \mathrm{H}), 6.61-6.49(\mathrm{~m}, 2 \mathrm{H}), 6.01(\mathrm{~d}, J=8.6,1 \mathrm{H}), 5.47(\mathrm{~d}, J=7.9,1 \mathrm{H})$, $5.31(\mathrm{~d}, J=7.5,1 \mathrm{H}), 5.23(\mathrm{t}, J=7.0,1 \mathrm{H}), 5.10-4.89(\mathrm{~m}, 4 \mathrm{H}), 4.68-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=5.0,1 \mathrm{H})$, $4.16(\mathrm{~d}, \mathrm{~J}=10.9,1 \mathrm{H}), 3.83\left(\mathrm{dd}, J_{1}=8.5, J_{2}=3.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.90(\mathrm{~m}, 1 \mathrm{H})$, $1.38-1.14(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.84-0.73(\mathrm{~m}, 6 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 2 5}$ MHz, DMSO-d d $_{6}$, 333 K): δ 168.8, 168.4, 164.6, 158.0, 155.6, 147.2, 136.8, 136.5, 130.1, 128.0, 127.5, 127.4, 127.3, 127.2, 126.8, 126.8, 126.4, 123.7, 117.2, 114.1, 109.9, 83.0, 75.8, 69.1, $66.2,66.2,61.8,58.0,53.6,53.0,51.9,31.4,29.4,25.3,23.9,17.3,14.9,9.7,-5.0,-5.2$.

IR ($\left.\tilde{V} / \mathrm{cm}^{-1}\right)$: 3398, 3060, 3033, 2956, 2931, 2892, 2858, 1748, 1698, 1607, 1511, 1481, 1435, 1366, 1306, 1250.

HRMS (ESI): calcd. for $\mathrm{C}_{49} \mathrm{H}_{61} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 861.4253$; found 861.4261.

2.13 ($\left.1 S, 2 S, 2 \mathrm{a}^{1} R, 4 S, 5 R, 9 \mathrm{~b} R\right)$-Methyl 4-((2S,3S)-2-
 ((benzyloxy)carbonyl)(methyl)amino)-3-methylpentan amido)-5-(4-
 (benzyloxy)phenyl)-1-hydroxy-3-oxo-2,2a ${ }^{1}, 3,4,5,9 b-h e x a h y d r o-1 H-2 a, 5 a-$
 diazacyclopenta[jk]fluorene-2-carboxylate (21)

$50 \% \mathrm{HF}(1.5 \mathrm{~mL})$ was added to a solution of peptide $20(380 \mathrm{mg} ; 0.441 \mathrm{mmol})$ in $\mathrm{MeCN}(4 \mathrm{~mL})$ in a polyethylene vessel, and the reaction mixture was stirred 1 h at $45^{\circ} \mathrm{C}$. The reaction mixture was diluted with ether, washed with saturated NaHCO_{3} and brine, dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by column chromatography (50\% EtOAc in hexanes), to afford 292 mg (87%) of alcohol 21, as a colorless oil.
$\mathbf{R}_{f}=0.30$ (50% EtOAc in hexanes).
$[\alpha]_{\mathrm{D}}{ }^{23}=149.2^{\circ}(\mathrm{c}=0.50, \mathrm{MeOH})$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $_{6}, 333 \mathrm{~K}$): $\delta 7.44-7.23(\mathrm{~m}, 10 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=7.2,1 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=8.6,2 \mathrm{H})$, $6.80(\mathrm{~d}, J=8.5,2 \mathrm{H}), 6.71(\mathrm{t}, J=7.6,1 \mathrm{H}), 6.54(\mathrm{t}, J=7.3,2 \mathrm{H}), 6.20(\mathrm{~d}, J=5.3,1 \mathrm{H}), 5.97(\mathrm{~d}, J=8.6,1 \mathrm{H})$, $5.47(d, J=7.5,1 H), 5.32(d, J=7.3,1 H), 5.21(t, J=6.8,1 H), 4.99(s, 3 H), 4.50(d, J=4.7,1 H), 4.16(d$, $J=5.5,2 \mathrm{H}), 3.78\left(\mathrm{dd}, J_{1}=8.4, J_{2}=4.3,1 \mathrm{H}\right), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.35-1.27(\mathrm{~m}$, $1 \mathrm{H}), 1.00-0.91(\mathrm{~m}, 1 \mathrm{H}), 0.86-0.75(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- $_{6}, 333 \mathrm{~K}$): $\delta 168.9,168.6,164.5,157.9$, 155.4 (detected by HMBC), 146.9, 136.8, 136.5, 130.1, 128.0 (2 signals), $127.8,127.4,127.3,127.2,126.8$ (2 signals), $126.5,123.8$, 117.1, 114.0, 109.6, 82.0, 75.7, 69.1, 66.2, 65.5, 61.8, 58.0, 53.0, 52.9, 51.8, 31.5, 29.4, 23.9, 14.9, 9.7.

IR ($\left.\tilde{v} / \mathrm{cm}^{-1}\right): 3395,2962,1748,1692,1671,1607,1512,1480,1439,1401,1370,1308,1242,1175$, 1114.

HRMS (ESI): calcd. for $\mathrm{C}_{43} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$769.3208; found 769.3189.

2.14 (1S, $\left.2 S, 2 \mathrm{a}^{1} R, 4 S, 5 R, 9 \mathrm{~b} R\right)-4-((2 S, 3 S)-2-(($ (Benzyloxy)carbonyl)(methyl)amino)-3-methylpentanamido)-5-(4-(benzyloxy)phenyl)-1-(carbamoyloxy)-3-oxo2,2a ${ }^{1}, 3,4,5,9 b-h e x a h y d r o-1 H-2 a, 5 a-d i a z a c y c l o p e n t a[j k] f l u o r e n e-2-c a r b o x y l i c ~$ acid (22)

A solution of $\mathrm{NaOH}(13.4 \mathrm{mg} / 1 \mathrm{~mL} \mathrm{H} \mathrm{O} ; 0.335 \mathrm{mmol} ; 2.5 \mathrm{eq}$) was added to methylester 21 (100 mg ; 0.134 mmol), dissolved in CaCl_{2} solution (0.8 m CaCl 2 in $i-\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O} 7: 3 ; 10 \mathrm{~mL}$). The mixture was stirred for 4 h , before it was acidified with 1 M HCl solution and extracted with EtOAc (50 mL). The organic layer was washed with brine, dried over MgSO_{4} and concentrated, to give free acid as a colorless solid (90.5 mg ; 92\%). The crude acid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6 mL), chlorosulfonylisocyanate ($21.5 \mu \mathrm{~L} ; 0.250 \mathrm{mmol}$) was added and the mixture was stirred for 15 min at room temperature. THF (10 mL) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ were added and the mixture was stirred for 10 min at room temperature. The product was extracted with $\mathrm{EtOAc}(10 \mathrm{~mL})$, washed with brine, dried over MgSO_{4} and concentrated. The residue was purified by three column chromatographies (1. 0.4% formic acid in EtOAc; 2.100 \% EtOAc $\rightarrow 0.4$ \% formic acid in EtOAc; 3. 50\% EtOAc in hexanes $\rightarrow 0.4$ \% formic acid in EtOAc), to yield 62 mg (65%) of carbamate 22, as a white solid.
$[\alpha]_{\mathrm{D}}{ }^{23}=95.6^{\circ}(\mathrm{c}=0.52, \mathrm{MeOH})$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $_{6}, 333 \mathrm{~K}$): $\delta 7.41-7.22(\mathrm{~m}, 10 \mathrm{H}), 7.24(\mathrm{~d}, J=7.2,1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.5,2 \mathrm{H})$, $6.75(\mathrm{~d}, J=7.4,2 \mathrm{H}), 6.68(\mathrm{t}, \mathrm{J}=7.7,1 \mathrm{H}), 6.55(\mathrm{t}, \mathrm{J}=7.2,1 \mathrm{H}), 6.48(\mathrm{~d}, \mathrm{~J}=5.8,1 \mathrm{H}), 5.99(\mathrm{~d}, \mathrm{~J}=8.5,1 \mathrm{H})$, $5.46-5.32(\mathrm{~m}, 3 \mathrm{H}), 5.27(\mathrm{t}, \mathrm{J}=6.9,1 \mathrm{H}), 5.01-4.96(\mathrm{~m}, 4 \mathrm{H}), 4.28(\mathrm{~d}, \mathrm{~J}=3.9,1 \mathrm{H}), 4.14(\mathrm{~d}, \mathrm{~J}=10.3,1 \mathrm{H})$, $3.98(\mathrm{~d}, \mathrm{~J}=8.3,1 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.26(\mathrm{~m}, 1 \mathrm{H}), 0.96-0.92(\mathrm{~m}, 1 \mathrm{H}), 0.82-$ 0.76 (m, 6H).
${ }^{13}$ C NMR (125 MHz, DMSO, 333 K): $\delta 168.9,168.8,164.8,157.9,156.8,155.2,147.6,136.8,136.5$, $130.6,128.0,128.0,127.4,127.4,127.2,127.2,126.8,126.2,126.0,124.5,117.5,113.9,110.5,81.8$, $75.8,69.1,66.2,64.1,61.9,58.6,53.2,51.7,31.4,29.4,23.9,14.9,9.7$.

IR ($\left.\tilde{v} / \mathrm{cm}^{-1}\right): 3394,3193,3063,3034,2964,2931,2878,2502,2257,2127,1736,1693,1607,1512$, 1480, 1441, 1390, 1311, 1244, 1180, 1154.

HRMS (ESI): calcd. for $\mathrm{C}_{43} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$798.3109; found 798.3093.

2.15 ($1 S, 2 S, 2 \mathrm{a}^{1} R, 4 S, 5 R, 9 \mathrm{~b} R$)-1-(Carbamoyloxy)-5-(4-hydroxyphenyl)-4-((2S,3S)-3-methyl-2-(methylamino)pentanamido)-3-oxo-2,2a ${ }^{1}, 3,4,5,9 b-h e x a h y d r o-1 H-$ 2a,5a-diazacyclopenta [jk]fluorene-2-carboxylic acid (Crocagin A, 1)

10% palladium on charcoal (16.5 mg) was added to a solution of benzylether 22 (30.0 mg ; 0.0387 mmol) in methanol (3 mL) and the mixture was stirred for 1.5 h under 1 atm of hydrogen. The mixture was diluted with EtOAc (15 mL) and filtered through a pad of celite. The filtrate was evaporated to dryness, to afford 18.2 mg (87%) of crocagin $\mathrm{A}(1)$ in a virtually pure form (white amorphous solid).
$[\alpha]_{D}{ }^{24}=+93.6^{\circ}(c=0.16, \mathrm{MeOH}) .{ }^{1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{7 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) ${ }^{*}: \delta 9.30$ (br s, 1 H , phenolic OH), 8.04 (br s, 1H, NHMe), 7.24 (d, J=6.7, 1H, NHCO), 7.18 ($d, J=7.3,1 \mathrm{H}, \mathrm{H}-$ 7), 6.96 (br s, 2H, CONH_{2}), 6.58 (br s, 2H, H-18/20), 6.56 (t, J = 7.3, 1H, H-9), 6.46 (br s, 2H, H-17/21), 6.44 (t, J = 7.5, 1H, H-8), 5.82 (d, J $=8.3,1 \mathrm{H}, \mathrm{H}-5), 5.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 5.23(\mathrm{~d}, \mathrm{~J}=8.1,1 \mathrm{H}, \mathrm{H}-10), 5.09(\mathrm{~d}, \mathrm{~J}$

[^0]$=7.8,1 \mathrm{H}, \mathrm{H}-15), 5.06(\mathrm{t}, \mathrm{J}=6.9,1 \mathrm{H}, \mathrm{H}-14), 4.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 3.7(\mathrm{~d}, \mathrm{~J}=7.7,1 \mathrm{H}, \mathrm{H}-4), 2.59(\mathrm{~d}, J=5.0$, $1 \mathrm{H}, \mathrm{H}-23), 2.13(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-28), 1.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-24), 1.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-25), 0.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-25), 0.77(\mathrm{t}, \mathrm{J}=$ $7.7,3 \mathrm{H}, \mathrm{H}-26), 0.71$ ($\mathrm{d}, \mathrm{J}=6.9,3 \mathrm{H}, \mathrm{H}-27$).
${ }^{13} \mathrm{C}$ NMR (175 MHz, DMSO-d ${ }_{6}$)*: $\delta 172.4$ (C-1), 169.0 (C-22), 164.7 (C-13), 156.7 (C-19), 156.2 (C-12), 148.6 (C-11), 132.1 (C-17/21), 126.8 (C-9), 126.7 (C-6), 124.9 (C-7), 124.6 (C-16), 116.9 (C-8), 115.7 (C18/21), 110.5 (C-10), 83.7 (C-3), 75.9 (C-5), 69.6 (C-23), 67.9 (C-2), 60.4 (C-15), 53.1 (C-14), 52.3 (C-4), 37.5 (C-24), 35.5 (C-28), 24.3 (C-25), 15.6 (C-27), 11.8 (C-26).
*Some chemical shifts in both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the synthesized (see spectra on the page S34) and natural crocagin A(1) are not exactly the same (see the superposed spectra of the synthesized and natural product on the page S35), most probably due to slightly different pH values of the two samples (see the superposed spectra of the synthesized crocagin A in neutral, acidic and basic conditions on the page S36). However, no new signals (or signal duplication) appear after mixing the synthetic sample with natural crocagin A (1) (in 2:1 ratio), proofing that these two samples have the identical chemical structures (see the mixed NMR spectra on the page S37).

IR ($\left.\tilde{v} / \mathrm{cm}^{-1}\right): 3276,3179,2962,2361,1717,1664,1597,1516,1477,1461,1386,1366,1331,1270$, 1242, 1180, 1050.

HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]+552.2453$; found 552.2441.

3 NMR Spectra

de5588.4.fid

Inseparable from EtOAc, even after 2 days under vacuum of $10^{-3} \mathrm{mbar}$ and coevaporation with toluene.

	1	1	1	1	1	1	1	1	1	,	,	,	,	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

> Superposed ${ }^{13} \mathrm{C}$ NMR spectra of natural (blue) and synthesized (red) crocagin A (1)

												50				
170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10

$\left.\begin{array}{lllllllllllllll}175 & 170 & 165 & 160 & 155 & 150 & 145 & \begin{array}{l}140 \\ \end{array} & & & 135 & 130 & 125 & 120 & 115\end{array}\right)$

${ }^{1}$ H NMR spectrum of the mixture
of the synthetic crocagin A (1)
and natural product
(synthesized:natural=2:1)

${ }^{13} \mathrm{C}$ NMR spectrum of the mixture
of the synthetic crocagin $\mathrm{A}(\mathbf{1})$ and
natural product
(synthesized:natural=2:1)

	1		1		1		1	1	1 ,	1	1	1	1	1	1	1	1	
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

4 X-ray Crystallographic Data

Single-Crystal X-ray Analysis of tetracyclic compound 15

Crystallographic data for compound 15 are deposited at the Cambridge Crystallographic Data Centre, the deposition number: CCDC 1524710

Figure 1 Molecular structure of $\mathbf{1 5}$ (one molecule out of asymmetric unit).

Table 1 Crystallographic data for 15.

15
net formula
$\mathrm{Mr}_{\mathrm{r}} / \mathrm{g} \mathrm{mol}^{-1}$
crystal size/mm
T/K
radiation
diffractometer
crystal system
space group
a/Å
b/Å
c/Å
$\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{7}$
511.482
$0.120 \times 0.100 \times 0.080$
173(2)
'Mo K α
'Bruker D8Venture'
orthorhombic
$P 2{ }_{1} 2_{1} 2_{1}$
4.7688(2)
20.4417(11)
24.2942(11)

$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
V / \AA^{3}	$2368.26(19)$
Z	4
calc. density $/ \mathrm{g} \mathrm{cm}^{-3}$	$1.43455(12)$
μ / mm^{-1}	0.105
absorption correction	multi-scan
transmission factor range	$0.9231-0.9580$
refls. measured	12832
$R_{\text {int }}$	0.0307
mean $\sigma(I) / I$	0.0367
θ range	$3.10-25.38$
observed refls.	3658
x, y (weighting scheme)	$0.0371,0.4195$
hydrogen refinement	constr
Flack parameter	$0.7(9)$
refls in refinement	4290
parameters	344
restraints	0
$R\left(F_{\text {obs }}\right)$	0.0342
$R_{\mathrm{w}}\left(F^{2}\right)$	0.0792
S	1.021
shift/error	0.001
max electron density/e \AA^{-3}	0.188
min electron density/e \AA^{-3}	-0.127

Single-Crystal X-ray Analysis of tetracyclic compound 23

Crystallographic data for compound $\mathbf{2 3}$ are deposited at the Cambridge Crystallographic Data Centre, the deposition number: CCDC 1524711

Figure $\mathbf{2}$ Molecular structure of $\mathbf{2 3}$ (two molecules out of assymetric unit).

Table 2 Crystallographic data for 23.

	$\mathbf{2 3}$
net formula	$\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Si}$
$\mathrm{M}_{\mathrm{r}} / \mathrm{g} \mathrm{mol}^{-1}$	656.757
crystal size $/ \mathrm{mm}$	$0.200 \times 0.050 \times 0.020$
$\mathrm{~T} / \mathrm{K}$	$100(2)$
radiation	'Mo Ka
diffractometer	'Bruker D8Venture'
crystal system	triclinic
space group	$P 1$
a / \AA	$7.0977(6)$
b / \AA	$12.5914(11)$
c / \AA	$19.2902(16)$
$\alpha /{ }^{\circ}$	$76.810(2)$
$\beta /{ }^{\circ}$	$86.395(2)$
$\gamma /{ }^{\circ}$	$75.068(2)$
V / \AA^{3}	$1621.8(2)$

Z
calc. density/ $\mathrm{g} \mathrm{cm}^{-3}$
μ / mm^{-1}
absorption correction
transmission factor range
refls. measured
$R_{\text {int }}$
mean $\sigma(I) / I$
θ range
observed refls.
x, y (weighting scheme)
hydrogen refinement
Flack parameter
refls in refinement
parameters
restraints
$R\left(F_{\text {obs }}\right)$
$R_{w}\left(F^{2}\right)$
S
shift/error ${ }_{\text {max }}$
max electron density/e \AA^{-3}
min electron density/e \AA^{-3}

2
1.34491(17)
0.131
multi-scan
0.8145-0.9585

59648
0.0717
0.0687
3.04-26.37

10470
0.0407, 0.4337
mixed
0.07(9)

13003
885
7
0.0450
0.0972
1.032
0.001
0.492
-0.268

5 Literature

[1] J. Zeng, Y. Tan, J. Ma, M. Leow, D. Tirtorahardjo, X. Liu Chemistry - A European Journal 2014, 20, 405-409.

[^0]: ${ }^{1}$ The previously reported optical rotation value of the isolated crocagin A (K. Viehrig, F. Surup, C. Volz, J. Herrmann, A. A. Fayad, S. Adam, J. Köhnke, D. Trauner, R. Müller, Angew. Chem. Int. Ed. 2017, 56, 7407-7410.) turned out to be incorrect, due to minor impurities present in the isolated material. After thorough purification of the natural sample, $[\alpha]_{D}{ }^{24}$ is $+92.3^{\circ}(c=0.27, \mathrm{MeOH})$.

