
�������� ��	
�����

Chemical speciation of metals in unpolluted soils of different types: Correla-
tion with soil characteristics and an ANN modelling approach
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ABSTRACT 

The distribution of elements in soil fractions affects their mobility and availability and thus 

their potential beneficial or harmful impact on ecosystems, biota and humans. Different 

mineralogical and chemical characteristics of soil influence elemental distribution. In the 

present study, chemical speciation of macro and micro elements (Al, Fe, Mn, K, Cd, Cr, Cu, 

Li, Ba, Ni, Pb and Zn) in unpolluted soils of different types, collected from the territory of the 

Republic of Serbia, were analysed by sequential extraction procedure. The impact of the 

physicochemical soil properties on the content, distribution, mobility and availability of 

elements was investigated. Principal component analysis was employed for the evaluation 

and characterization of the experimental data, understand of the relationships between soil 

properties and the distribution, affiliation and connection of the elements. Finally, an artificial 

neural network (ANN) model was developed to explore the applicability of this approach for 

the prediction of the elemental distribution based on soil properties. Good agreement between 

the model and the experimental results implied that the ANN could be considered as a useful 

tool for control and prediction purposes. 
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1. Introduction 

 

Elements in soil are present in different levels, which reflect natural differences 

between soil types and consequences of soil use and pollution. The effects and functions that 

certain soil elements exert on living organisms range from essential to toxic. An essential 

element may also be a risk factor if present in inadequate amounts, i.e., concentrations higher 

than optimal are associated with toxicity while lower ones with nutritional deficiencies. It is 

generally accepted that the total content of an element in soil is not necessarily related to 

potential risks (Kelepertzis et al., 2015) and that the total element concentrations cannot 

provide necessary information on an bioavailability of element (Abollino et al., 2011; Sungur 

et al., 2014). Mobility and availability depend on the reactivity and binding behaviour of an 

element with the components of the soil matrix (Abollino et al., 2011). Several studies have 

investigated the relationship between soil properties and metals distribution (e.g., de Matos et 

al., 2001; Luz et al., 2014; Sungur et al., 2014), but mixed results were found mainly due to 

the different mineralogical and chemical characteristics of soils.  

The sequential extraction method is a useful instrument to gain information on the 

bioavailability of elements. One of the most accepted and commonly used is the Tessier 

extraction scheme (Tessier et al., 1979). To date, numerous modifications of the basic 

procedure have been developed (Alvarez et al., 2006; Arcega-Cabrera et al., 2009; Lucho-

Constantino et al., 2005; Riba et al., 2002; Torres and Auleda, 2013; Yu et al., 2000), 

whereby all of them presume a decrease in element mobility and availability along the 

extraction sequence. The modified Tessier methods, including the one adopted in this study, 

usually include alteration of the experimental conditions used for the fifth extraction phase. 

Namely, instead of total mineralization, which involves the use of HClO4 and HF, extraction 

by other strong acids and their mixtures are applied. Consequently, the residual fraction 
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becomes ―pseudo-residual‖. Furthermore, one additional stage has frequently been added to 

the Tessier scheme, to enable the determination of a water-soluble fraction of elements 

(Adhikari et al., 2005; Kabata-Pendias, 2001; Lucho-Constantino et al., 2005; Smičiklas et 

al., 2015). Using a sequential extraction method, comprehensive information can be obtained 

on the origin, mode of occurrence, biological and physicochemical availability, mobilization 

and transportation of elements (Sungur et al., 2014). In environmental impact studies, it is 

more important to determine element speciation patterns in soil than to assess their total 

pedogenic concentrations (Sungur et al., 2014). 

The sequential extraction method results in a large amount of experimental data, 

especially when coupled to multi-element analytical techniques, such as ICP OES, which 

enable the simultaneous elemental analysis of a large number of samples. Moreover, the 

physicochemical properties of the considered soil matrix (such as particle size distribution, 

pH value, total carbon content, inorganic carbon content, total organic carbon, cation 

exchange capacity, etc.) significantly contribute to increasing the data set. Accordingly, due 

to simultaneous consideration of many parameters, multivariate chemometric techniques are 

very helpful in the visualization and interpretation of sequential extraction results (Giacomino 

et al., 2011).  

Various multivariate statistical techniques have been employed for the evaluation and 

characterization of environmental data (e.g., Amiri, 2014; Giacomino et al., 2011). Principal 

component analysis (PCA) is a commonly used multivariate method for data reduction (the 

number of explanatory variables is lowered by using specific factors), but it is also used for 

classification and discrimination of the samples. These factors explain the major variation 

within the data in order to make the components more interpretable. In the last decade, PCA 

became accepted and used by a large number of research groups engaged in the analyses of 

uncontaminated, contaminated and agricultural soils (Abollino et al., 2006; Abollino et al., 
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2002a; Abollino et al., 2002b; Pérez and Valiente, 2005; Tokalioğlu and Kartal, 2003; 

Tokalioğlu et al., 2004). 

The basic idea of the present research was to establish the correlations between soil 

physicochemical properties of soils and the distribution of a large set of elements in order to 

explore the predictability of their distribution based on available soil properties. In such 

cases, nonlinear models are more suitable due to complexity of the matrix. Artificial neural 

network (ANN) models are recognized as good modelling tools since they provide the 

solution to the problems from a set of experimental data, and are capable of handling 

complex systems with nonlinearities and interactions between decision variables (e.g., 

Almeida, 2002; Kashani et al., 2014). The developed empirical models should provide a 

reasonable fit to experimental data and successfully predict element mobility in different soil 

types.  

The specific objectives of the study were: (i) to determine the distribution of twelve 

elements (minor Cd, Cr, Cu, Li, Ba, Ni, Pb and Zn, and major Al, Fe, Mn and K) in samples 

of different soil types having considerably different physicochemical properties (i.e., the 

content of sand, silt and clay fraction, pH, cation exchange capacity (CEC), total organic 

carbon (TOC), content of CaCO3, P2O5 and K2O); (ii) to estimate the influence of soil 

properties on the content, distribution, mobility and availability of the elements; (iii) to apply 

a pattern recognition technique (PCA) on the data (used as descriptors) to characterize and 

differentiate among the observed samples; (iv) to test the applicability of an ANN for the 

development of a mathematical model which would provide a reasonable fit of experimental 

data on the distribution of the elements based on the available soil properties, for control and 

prediction purposes. 

 

2. Materials and methods 
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2.1. Soil Sampling and characterization 

 

As the study aimed to establish correlations between soil physicochemical properties 

and distribution of elements, samples were selected based on their diversity in terms of their 

essential characteristics. The investigated samples (S1–S8), representing eight different soil 

types, were collected from various localities in the Republic of Serbia, from a depth 0–25 cm. 

A composite sample of each soil was prepared from five subsamples. The soils used in this 

study were characterized as described in detail in a previously published article (Smičiklas et 

al., 2015). The soil types were determined and denoted according to the World reference base 

for soil resources (FAO, 2006): S1 - Humic Fluvisol, S2 - Fluvisol, S3 - Eutric Cambisol, S4 - 

Mollic Leptosol, S5 - Stagnosol, S6 - Leptosol, S7 - Dystric Cambisol and S8 - Rendzic 

Leptosols. The descriptive statistics of physicochemical properties of examined soil types 

(Table 1) show wide ranges of soil pH, CEC, TOC, texture and nutrient content.  

 

2.2. Sequential extraction 

 

Soil samples were subjected to sequential extraction following a modified Tessier 

procedure (Tessier et al., 1979). Whereby, the examined elements were partitioned into six 

operationally defined fractions: water soluble (F0), exchangeable (F1), bound to carbonates 

(F2), bound to Fe-, Mn-oxides (F3), bound to organic matter (F4) and residual (F5). The 

sequential extraction procedure applied in this study, which was previously described in 

detail by Smičiklas et al. (2015), was conducted in triplicate for each sample, and the mean of 

the three concentration values determined for the investigated elements in each fraction were 

reported. 
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2.3. Analytical technique for the determination of the elements  

 

The contents of the elements were determined using an inductively coupled plasma optical 

emission spectrometer (ICP-OES) model iCAP 6500 Duo (Thermo Scientific, United 

Kingdom). Radial view measurements were applied for Al, Fe and K, and axial for Zn, Ba, 

Cd, Cr, Cu, Li, Mn, Ni and Pb. The axial view provides better LODs (limit of detections) 

while the radial view is preferred for higher element concentrations. This instrument is an 

Echelle-type spectrometer covering the 166–847 nm range equipped with an RACID86 

charge injection detector.  

Determination was realized using external calibrations with matrix matched standards 

prepared from single stock solutions of 1000 ppm (Merck, Germany). Stock solutions were 

mixed into multi-standard working solutions according to their concentrations in the soil 

samples. Working standard solutions were matrix matched according to each extraction 

solution that was applied. Correlation coefficients for calibration curves were greater than 

0.9999. For quality assurance, ICP multi-element standard solution VI (Merck, Germany) 

was used. Quality control (QC) was performed using the ACCU standard MES 21-1 as a QC 

standard, blank samples, standard reference material (SRM 2711) and triplicate analyses of 

each sample. The QC standard was measured at a frequency of every 10 analytical samples 

with recovery limits ±10 %. Three replicates of the SRM 2711 – Montana Soil (National 

Institute of Standards & Technology) were digested in a microwave accelerated reaction 

system model MARS 5 (CEM Corporation, USA) according to the US EPA method 3051A 

(US EPA, 2007) and the digestate was diluted with Milli-Q deionized water (18 MΩ). 

Recovery ratios between the certified and the analytical values for SRM 2711 ranged from 

87.2 to 112.8 % for the investigated elements. 
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2.4. Statistical methods 

 

To classify the different soil samples, PCA was applied by Eigenvalue decomposition 

of the correlation matrix of the obtained experimental data set in such a way that the first 

component contained the largest possible variance. In this manner, maximum separation 

between the clusters of parameters was achieved. PCA was applied in order to comprehend 

the relations of the obtained results, specifically the correlation between the content of the 

elements and the soil fractions, as well as between the soil properties and the total content of 

the investigated elements. In addition, linear correlation coefficients were calculated to 

understand the relationships between the inter-element fractions and the element–soil 

properties.  

Data were analysed by Statistica software (Data Analysis Software System, v.10.0, 

StatSoft, Inc, Tulsa, OK, USA). According to the recommendation of StatSoft Statistica, the 

experimental database was randomly divided into three groups for the development of the 

ANN model: training data – 60 %, cross-validation – 20 % (used to test the performance of 

the network while training) and testing data – 20 % (used to examine the network 

generalization capability). A multi-layer perceptron model (MLP) consisting of three layers 

(input, hidden and output) was used in this study because it is the most common, flexible and 

general-purpose kind of ANN (Arsenović et al., 2013). The MLP neural network learns using 

an algorithm called "backpropagation". The Levenberg–Marquardt algorithm has been 

proved to be the fastest and particularly adapted for networks of moderate size. During this 

iterative process, the input data are repeatedly presented to the network (Grieu et al., 2011).  

 

3. Results and discussion 
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3.1. Relations between pseudo-total metal concentrations and soil physicochemical 

properties 

 

The pseudo-total amounts, the sum of the individual fractions, 

∑=F0+F1+F2+F3+F4+F5, of each investigated element in the eight soil samples are given in 

Table 2. Of the investigated metals, concentrations of Fe and Al were commonly the highest, 

followed by K and Mn. Heavy metals (Cd, Cr, Cu, Ni, Pb, Zn, Ba), as well as Li were 

detected in a wide range of concentrations (0.0750–529 µg/g). 

The PCA of pseudo-total element contents and physicochemical properties of the soil 

samples showed that the first two principal components (PCs) explained 57.00 % of the total 

variance in the original data (Fig. 1). The PC1 contributed 29.17 %, and the PC2 27.83 % to 

the total variance. The contents of Cr (which contributed 7.9 % of total variance), Cu (7.9 %), 

Fe (16.9 %) and Ni (11.7 %) exhibited positive scores according to PC1, while the clay 

content (11.5 %) and K2O content (9.7 %) exhibited negative influences on PC1. The contents 

of Cd (8.3 %), Li (7.4 %), Zn (9.4 %) and silt fraction (9.0 %), together with pHKCl (10.0 %) 

and pHH2O (12.8 %), exhibited positive influences on PC2, whereas Al (7.0 %) and the sand 

fraction content (10.1 %) exhibited negative influences on PC2. The Pearson's coefficients (r) 

were calculated and the obtained correlations, statistically significant at the p<0.01, p<0.05 

and p<0.10 levels, are given in Table 3. 

Soil sample of Leptosol (S6) stands out with the highest pseudo-total concentrations of 

Cr, Cu, Fe and Ni, and with the lowest for Ba and K (Table 2, Fig. 1). This soil type is also 

characterized by the highest values of TOC (4.75 %) and the lowest values of P2O5 (0.01 mg 

100g
–1

), K2O (8.8 mg 100g
–1

) and clay content (22.7 %) in relation to the other observed soil 

types (Smičiklas et al., 2015). S6 distinguished itself by having both the highest and the 
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lowest deviations in terms of the obtained concentration variations (Cr, Cu, Fe, K and Ni) in 

the examined soil samples (Table 2). The sample of Eutric Cambisol (S3) is characterized by 

a low content of CaCO3 and the highest pseudo-total concentrations of Ba, K, Li and Pb. The 

highest pseudo-total concentrations of Al and Mn were found in soil S5 (Stagnosol) which 

exhibited the smallest content of Fe in relation to the other investigated soils, and also a low 

content of CaCO3. Dystric Cambisol (S7) was the soil with the highest content of sand (48.8 

%) and the lowest content of Cd, Cr, Li, Ni, Pb, Zn, silt, pH, TOC and CaCO3. Soil sample S1 

(Humic Fluvisol) is characterized by the highest pseudo-total concentrations of Zn, pH value, 

P2O5 and K2O contents, and the lowest content of Al and Mn; S2 (Fluvisol) by the highest silt 

content and pH value, and the lowest CEC; and S4 (Mollic Leptosol) by the highest content of 

Cd and the lowest values for Cu and CaCO3. 

The significant correlations between Cu–Cr, Ni–Cr and Ni–Cu (0.98, 1.00, 0.98, at 

p<0.01, respectively; Table 3) indicate that these metals have a common origin in the natural 

soils and appear together independently of soil type. The high correlation, but at a lower level 

of significance (p<0.05), was also obtained for the Fe–Cr pair (Table 3). The positive 

correlation between Li and Ba (0.81, p˂0.05) suggests their natural origin and 

interrelationship in different types of soil. A similar conclusion could be made for the pair 

Al–Mn, based on the obtained significant correlation at the p<0.05 level (Table 3). 

Considering the textural properties of soil, a negative correlation (–0.72 at p<0.05) 

was found between the sand content and the pseudo-total concentration of Cd in all soil 

samples. This indicates that an increased sand content is accompanied by reduced Cd 

concentrations, regardless of the other soil characteristics. A negative relation between total 

Cd and sand content was also determined for 69 sites in New Zealand (Reiser et al., 2014). 

The statistically significant correlations obtained in this study also indicated that an increased 
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content of the clay fraction was associated with decreased contents of Cr and Ni (–0.72 and –

0.73 at p<0.05, respectively) and an increased K concentration (0.78 at p<0.05).  

Among the other relations, it was found that the soil pH decreased with increasing 

concentrations Al and sand contents, while the content of K2O was negatively correlated with 

the concentrations of Cr and Fe (Table 3). Pearson's correlation analysis also indicated that 

the soil TOC was positively correlated with the amounts of Cr, Cu and Ni (0.76, 0.76 and 

0.77, respectively, at p<0.05). 

 

3.2. Relations between metal distribution and physicochemical properties of the soil 

 

Mobilities of elements largely depend on the types of bonds by which they are 

associated with the soil components. The first two fractions of the applied sequential 

extraction F0 (water soluble) and F1 (exchangeable) constitute the available forms of 

elements. F2 (bound to carbonates) and F3 (bound to iron and manganese oxides) phases are 

potentially mobile, but not readily available under natural conditions. Finally, the last two 

fractions F4 (bound to organic matter) and F5 (residual) constitute unavailable pools of 

elements (Abollino et al., 2011). The hitherto correlations between soil characteristics and 

element distribution, referred to several elements and/or soil samples (Ashraf et al., 2012; 

Guo et al., 2005; Navas and Lindhorfer, 2005; Sipos et al., 2014) and, therefore, this study 

aimed at extending the database.  

The different patterns of metal partitioning in soil, being the function of metal and soil 

properties, are demonstrated in Fig. 2. PCA was performed to analyse possible relationships 

between soil types and the distribution of elements in different phases. The rotation of PCs 

was executed by the Varimax method with Kaiser normalization. The PCA showed that the 

first PCs explained 64.05 % of the total variance in the original data, Fig. 3. The PC1 
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contributed 44.33 %, and the PC2 19.72 % to the total variance. The contents of Al (which 

contributed 14.1 % of total variance), Cr (7.9 %), Cu (7.9 %), Fe (16.9 %), K (8.2 %), Li 

(13.3 %), Ni (8.3 %), Zn (13.0 %), exhibited negative scores according to the PC1. The 

contents of K (14.5 %), Li (8.8 %) and Zn (11.1 %) showed a positive influence on the 

evaluation of the PC2, while the content of Mn (26.5 %) and Pb (19.3 %) exhibited negative 

influences on the PC2 (Fig. 3). The Pearson's correlation coefficients between the content of 

the investigated elements in different soil fractions are presented in Table 4. 

The grouping of Cd with the samples related to Phase 1 (samples No. 9–16), Fig. 3, 

indicated that this element was mainly bound to the exchangeable phase (F1) in most of the 

examined soil samples. The obtained pseudo-total Cd concentrations in the present study 

were in agreement with the average concentration of Cd in the Earth’s crust (~0.2 μg/g) and 

with the background Cd level in surface soils (˂1 mg kg
–1

) (Gleyzes et al., 2002; Petrovic et 

al., 2009). Cadmium was identified as the most mobile of the investigated metals, with up to 

60.5 % in the exchangeable fraction. A high mobility of Cd was detected in other 

uncontaminated soil samples (Dimović et al., 2013), as well as in contaminated soil around a 

mining area (He et al. 2013). Pueyo et al. (2003) investigated the distribution of a large 

number of elements (Al, Ca, Fe, Mg, Mn, As, Bi, Cd, Cu, Pb, Tl and Zn) in contaminated soil 

and found that Cd was the most mobile. Due to the high Cd mobility and availability, its 

increased concentration in soil may cause long-term risks to the ecosystem, biota and 

humans, and hence, Cd belongs to the group pollutants that are of major interest in 

bioavailability studies listed by the US Environmental Protection Agency.  

The interconnection of Phase 3 (samples No. 25–32) with Mn and Pb indicate that 

these elements in soils are primarily linked to iron and manganese oxides. Logically, Mn as 

one of the main contributors in soil occurs mainly in the oxide fraction (44 to 81 %). The 

remaining Mn content is distributed between the other phases, in amounts which obviously 
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depend on soil type. The mobility of Mn in soils is extremely sensitive to soil conditions, 

such as acidity, wetness, organic matter content, biological activity (Nadaska et al., 2012). 

Generally, low pH values favour the reduction of insoluble manganese oxides, resulting in 

increased manganese mobility, while at soil pH values above 6, Mn is efficiently bound to 

organic matter, oxides and silicates, resulting in decreased Mn solubility. In addition, Mn 

availability is high in soils with low content of organic matter (Nadaska et al., 2012). This 

was confirmed by the present results, in which the most mobile Mn was found in samples 

Dystric Cambisol (S7), Stagnosol (S5) and Eutric Cambisol (S3), characterized by both low 

pH and low TOC content. Mn was found in the readily available phase for biogeochemistry 

cycles in the ecosystems (F1) and potentially bioavailable phase (F2), up to 16 % and 11 %, 

respectively, for certain soil types. A similar distribution of Mn in soil, with the highest 

content in F3, was also obtained by Petrović et al. (2009), Walna et al. (2010) and Navas and 

Lindhorfer (2005). Pb was also mainly associated to Fe-, Mn-oxide fraction (32–66 %), 

followed by the oxidizable (F4) phase (17–45 %) and the residual phase (13–27 %). 

Negligible Pb concentrations were found in fractions F0 and F1, except for Dystric Cambisol 

(S7), in which the labile F1 phase represents 11 % of the pseudo-total concentration. Abollino 

et al. (2002a) and Guo et al. (2005) reported that Pb was mostly associated with the residual 

phase, while Sarkar et al. (2014) found that the major geochemical phase for Pb was the Fe-, 

Mn-oxides phase, followed by the residual and the oxidizable phases, as was the case in the 

present study. Pb was found to have a high affinity for soil Fe-oxides. This was confirmed by 

Cornu et al. (2005), who reported that Pb was able to form stable hydroxide and carbonate 

complexes which are preferentially bound to the (slightly) positively charged Fe-oxide 

surfaces. Pb in the examined soil samples had a low potential mobility (0 % for F0 and around 

2 % for the F1 and F2 phases, on average) and, generally speaking, it could be considered as a 

relatively immobile element. The exception was sample S7 with 13 % of potentially mobile 
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Pb (F0+F1). Given that S7 was characterized by the lowest pseudo-total concentration of Pb 

compared with the other soil types, the higher mobility was more likely influenced by 

specific soil characteristics than some source of contamination.  

The high correlations between K, Zn, Li and Fe (Zn–Li=0.94, Fe–Li=0.91, K–

Zn=0.89, Fe–Zn=0.88, K–Li=0.81 and Fe–K=0.73 at p<0.01; Table 4) and their association 

with samples of Phase 5 (samples No. 41–48) on the bioplot PCA diagram, Fig. 3, indicate a 

similar distribution of these elements in the soil phases, with the highest amount in F5. In all 

soil samples, Zn was the most abundant in the residual fraction (69–90 %). Negligible 

concentrations of this element were found in phase F0, F1 and F2, indicating its low mobility. 

The abundance of Zn in F4 phase of all samples ranged from 7 to 15 %. An inappreciable 

amount of Zn was found in phase F3 except for in samples S1, S2 and S6, in which the 

abundance was 15–17 %. A difference in the Zn distribution among the various soil types 

was evidenced by Sarkar et al. (2014). The association of Zn with the Fe-, Mn-oxide phase 

may be linked to the high stability constants of Zn oxides (Abdu, 2010). Fe-oxides adsorb 

considerable quantities of Zn and may also occlude Zn in the lattice structures (Sarkar et al., 

2014). Li and K also existed mainly in the residual phase (52–74 % and 53–84 %, 

respectively). High content in F5 could primarily be linked to their natural geochemical origin 

and their association with the soil matrix. Between 4–19 % and 2–14 % of the extracted Li 

and K, respectively, were associated with the exchangeable phase and thus were quite labile 

and easily available. Presence of Li and K in the remaining phases varies significantly 

depending on the soil type, except in F0, in which negligible concentrations were found. In 

the available literature, it was difficult to find an adequate study to compare the distribution 

of these two elements. Finally, Fe is a soil macro element present mainly in the residual phase 

(62–83 %). In all soil types, the Fe distribution followed the order: F5 ˃ F3 ˃ F4. The high 
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percentages of Fe in the hardly accessible or inaccessible element pools confirmed its 

interconnection with the soil matrix.  

A high correlation was also obtained between Fe and Al (Table 4). Al was primarily 

distributed between the F3 (27–48 %) and F5 (35–54 %) phases, and in the F4 phase (13–19 

%). Insignificant concentrations of both Fe and Al were found in phases F0–F2. The obtained 

results for the Fe and Al distributions in the soil samples were in good agreement with those 

of several reported studies (e.g., Abollino et al., 2002a; Navas and Lindhorfer, 2005; Sarkar 

et al., 2014).  

The high correlations between Cr, Ni and Cu at p<0.01 (Table 4) indicate their similar 

speciation in the investigated soils. The highest levels of Cr were found in the F5 phase of all 

soils, and the highest levels of Ni and Cu were determined in this phase of the majority of the 

investigated soils. The dominant proportion of Ni and Cr found in the residual phase is in 

agreement with the results of other studies (Abollino et al., 2002a; Guo et al., 2005; Sarkar et 

al., 2014). Ni and Cr are, apart from the F5, present in F3 (6–42 % for Ni and 13–26 % for Cr) 

and F4 (12–33 % for Ni and 12–25 % for Cr) phases. In soil samples S3, S5, S6 and S7, Ni was 

present in F1 (~3 %), which represents its easily releasable content. Cu was distributed 

between the F3, F4 and F5 phases, with no similar pattern, indicating that the type of soil plays 

an important role in the distribution and mobility of Cu. Copper has an ionic radius close to 

that of Fe
3+

 and thus, it could be incorporated into the structure of crystalline Fe-oxides. 

Furthermore, the high stability constants of Cu complexes with organic matter enable Cu 

binding to lipids, proteins, and carbohydrates, while the high affinity of clay minerals for Cu 

incorporation explains its presence in the residue (Martinez and McBride, 1998; Sarkar et al., 

2014). No statistically significant correlations were found between Ba and the other 

examined elements. Ba was evenly distributed between phases F1, F2, F3, F4 and F5, with a 

negligible concentration in phase F0, in all the examined soil types. 
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As a final point, to clarify in what manner soil properties affect the mobility of 

examined elements, the Pearson's correlation coefficients were calculated (Table 5). The 

distribution of the majority of elements, in one or more soil fractions, was in correlation with 

the specific soil characteristics, whereas the patterns of Ba and Mn partitioning could not be 

connected with any of the investigated soil properties at the desired level of statistical 

significance.  

The partitioning of the macro-elements Fe and K was significantly correlated to the 

soil texture, i.e., to the content of clay. With the increased percentage of clay fraction in the 

soil, the Fe found in Fe-, Mn-oxide phase decreased, while the K concentration increased in 

the most stable fractions F4 and F5. The total content of K in soil generally increased with 

increasing clay content (Peverill et al., 1999), which was confirmed by the significant 

positive correlation found in the present study (0.78, p˂0.05, Table 3). Furthermore, the 

observed high stability of K in the clay-rich soils was in agreement with the previously 

reported significant positive relationship between non-exchangeable K and the illite clay 

content (Rezapour et al., 2009). The mobility of Al was not only strongly related to soil 

texture, but also to pH, two mutually connected soil properties (Table 3). The content of Al in 

the most mobile F1 phase was positively correlated with the sand and negatively with the silt 

content. In addition, a negative relationship between soil pH and the Al content in F2 was 

observed, which may be connected with negative correlation linking soil pH with the pseudo-

total content of Al (–0.83 at p˂0.05; Table 3).  

Considering the distribution of the micro-elements, the effects of the soil properties 

were numerous and complex. The distribution of Li was mostly affected by soil pH and 

carbonate content. The correlations were positive, meaning a higher Li content in the F2 

fraction of carbonate-rich soils, which also exhibited higher pH values. The general weak 

influence of CaCO3 on the distribution of the other elements may be partially ascribed to the 
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lack of carbonates in samples S3–S6. A similar absence of the effect of carbonate content on 

the mobility of Pb, Cu, Cr, Zn, As and Sn was registered by Ashraf et al. (2012) in the ex-

mining land of Bestari Jaya, Malaysia. The Cd distribution was significantly affected solely 

in F2 fraction. The Cd content increased with decreasing sand content, which is in agreement 

with the negative correlation between the sand content and the pseudo-total concentration of 

Cd in various soil types (–0.72 at p˂0.05; Table 3). In contrast, the content of Cd in F2 was 

positively correlated with soil pH. The easily available content of Pb in the F1 fraction largely 

increased with increasing sand fraction. On the other hand, increasing silt content is 

associated with stabilization of Pb through its redistribution from F1 to F3. The increased sand 

content had a similar effect on the mobility of Zn, given that the Zn concentration in F1 

increased, while simultaneously decreased in F2, with increasing sand fraction. Soil pH had 

an opposing effect, i.e., with increasing pH, the Zn redistributed from F1 to F2.  

The distributions of Cu, Cr and Ni were largely affected by the soil TOC and the clay 

content. The negative correlation between clay content and pseudo-total concentrations of Cr, 

Cu and Ni was previously observed (Table 3). In light of the results presented in Table 5, the 

observed trend may be interpreted as a decrease of the Cr content in F3 and F5, a Cu decrease 

in F3, and a reduction in the Ni content in F0, F1, F3 and F5. In addition the TOC content also 

showed a significant correlation with the pseudo-total Cr, Cu and Ni concentrations, but a 

positive one (Table 3). Thus, the increasing total concentration of the mentioned elements 

with increasing TOC may be associated with increasing Cr content in F2, F3, F4 and F5, the 

Cu in F3 and F4, and Ni in F0, F1, F3, F4 and F5. In addition, some stabilization of Cu with 

increasing TOC may be an explanation for the observed redistribution from F2 to F3 and F4. 

The Cu content in the carbonate fraction was also negatively correlated with the soil CEC.  

 

3.3. ANN modelling of metal distribution in different soil types 
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The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, implemented in the 

StatSoft Statistica evaluation routine, was used for the ANN modelling. The optimization 

procedures to minimize the error function between network and experimental outputs was 

used during the ANN training cycle (Pezo et al., 2013; Taylor, 2006) and the sum of squares 

(SOS) was evaluated according to the BFGS algorithm, to accelerate and stabilize the 

convergence of the results (Basheer and Hajmeer, 2000). The training process was repeated 

several times in order to obtain the best performance of the ANN, due to a high degree of 

variability of the parameters. It was accepted that successful training was achieved when the 

learning and cross-validation curves (SOS vs. training cycles) approached zero. Coefficient of 

determination (r
2
) and SOS were used as parameters to check the performance (i.e., the 

accuracy) of the obtained ANN. 

The optimum number of hidden neurons was chosen upon minimizing the difference 

between the predicted ANN values and the desired outputs, using SOS during testing as a 

performance indicator. The employed MLP is marked according to StatSoft Statistica's 

notation, "MLP" followed by the number of inputs, number of neurons in the hidden layer, 

and the number of outputs. According to the ANN performance (sum of r
2
 and SOSs for all 

variables in one ANN), it was determined that the optimal number of neurons in the hidden 

layer is 7 (network MLP 2-4-12), Table 6. 

The goodness-of-fit, between the experimental measurements and model calculated 

outputs, represented as ANN performance (r
2
 between measured and calculated Al, Ba, Cd, 

Cr, Cu, Fe, K, Li, Mn, Ni, Pb and Zn) during the training, testing and validation steps, are 

given in Table 7.  

The ANN models were used to predict the experimental variables (Al, Ba, Cd, Cr, Cu, 

Fe, K, Li, Mn, Ni, Pb and Zn) in the different soil types and phases. The networks were able 
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to predict reasonably well all process outputs for a broad range of the process variables (as 

seen in Fig. 4, where the experimental measured and ANN model predicted values are 

presented). 

The predicted values were very similar to the desired values in most cases, in terms of 

the r
2
 value, for the ANN models. The SOS obtained with the ANN models were of the same 

order of magnitude as the experimental errors for Al, Ba, Cd, Cr, Cu, Fe, K, Li, Mn, Ni, Pb 

and Zn reported in the literature (Basheer and Hajmeer, 2000; Pezo et al., 2013). The values 

of r
2
 between experimental and ANN model (MLP 2-4-12) outputs, for Al, Ba, Cd, Cr, Cu, 

Fe, K, Li, Mn, Ni, Pb and Zn were 0.978, 0.625, 0.910, 0.438, 0.572, 0.931, 0.815, 0.919, 

0.901, 0.427, 0.920 and 0.962, respectively, during the training period. Moreover, the means 

and the standard deviations of the residuals were analysed. The mean of the residuals for the 

ANN model were 5.90, –2.88, 0.00, –4.64, –1.14, –422.99, –7.65, –0.12, –8.04, –3.66, –0.06 

and –0.02 for Al, Ba, Cd, Cr, Cu, Fe, K, Li, Mn, Ni, Pb and Zn, respectively, while the 

standard deviations were 96.65, 18.17, 0.02, 41.01, 11.49, 1675.17, 553.68, 1.32, 225.93, 

39.21, 3.06 and 3.51, respectively. These results showed a relatively good approximation to a 

normal distribution around zero with a probability of 95 % (2•SD), which indicates a good 

generalization ability of the ANN model for the ranges of the observed experimental values.  

The fitting parameters imply that the ANN approach has a significant potential as a 

tool for the rapid assessment of metal mobility. The improvement in the prediction reliability 

should be tested in the future by taking into account additional soil parameters (such as 

mineralogy, specific surface area and porosity, anion exchange capacity (AEC), the type of 

organic matter, etc.). For instance, it could easily be observed from Fig. 4 that the predicted 

and measured K concentrations were largely scattered in the region of high concentrations, 

associated with fraction F5. As clay mineralogy plays an important role in terms of the 

distribution of the K content (Rezapour et al., 2009), it must be taken into consideration as 
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input data for ANN development. Furthermore, the high concentrations of Ni and Cr in 

sample S6 have a pronounced impact on the fitting results (Fig. 4). Even though S6 is an 

unpolluted soil, some locations in Serbia are recognized as Ni and Cr rich (Albanese et al., 

2015), and such unusually high concentrations of naturally occurring elements were 

associated with ophiolite masses and related sedimentary rocks. Therefore, the goodness-of-

fit could be enhanced by increasing the total sample size, which would, among others, also 

contain more extremes.  

 

4. Conclusions 

 

This study aimed to provide information on the speciation of Al, Fe, Mn, K, Cd, Cr, 

Cu, Li, Ba, Ni, Pb and Zn in different types of unpolluted soil, and establish correlations of  

metal contents and speciation with soil characteristics. For this purpose, a chemometric 

approach (PCA and ANN) was employed for the evaluation of the results of sequential 

extraction analysis. The patterns of metal partitioning were dependent on both metal and soil 

type. With the exception of Cd and Ba, these metals were commonly found in the less 

available fractions (F3, F4 and F5). Generally, soil texture and TOC had a predominant impact 

on the metal contents and speciation. Samples with a higher percentage of sand exhibited 

increased contents of Pb, Zn and Al in phase F1, which is readily available in the 

environment. An ANN model was developed in order to predict the complex distribution and 

mobility of elements in uncontaminated soils based on the known soil properties. High r
2
 

values and prediction accuracy of the observed outputs proved the ANN as useful in the 

prediction of metal (especially Al, Cd, Fe, K, Li, Mn, Pb and Zn) mobility in soils with a 

wide range of characteristics. The obtained relationships are important for a rapid assessment 
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of metal speciation and represent a starting point for analysing mobility changes due to 

contamination.  
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TABLES 

Table 1 

Descriptive statistics of physicochemical properties of the investigated soil types.  

 

Sand
a
 Silt

b
 Clay

c
 CaCO3

d
 pHKCl pHH2O CEC

e
 TOC

d
 P2O5

f
 K2O

f
 

Mean 32.2 30.8 37.1 2.90 5.46 7.05 32.03 2.28 9.69 28.19 

SD
g 

8.3 9.4 8.3 5.24 1.45 0.91 8.62 1.30 10.16 11.60 

Minimum 24.8 12.2 22.7 0 3.40 5.50 22.50 0.82 0.01 8.80 

Maximum 48.8 43.8 50.1 11.7 6.90 8.00 47.80 4.75 30.00 43.00 

Range 24.0 31.6 27.4 11.7 3.50 2.50 25.30 3.93 29.99 34.20 

a
 >0.02mm, %; 

b
 0.02-0.002mm, %; 

c
 <0.002mm, %; 

d
 %; 

e
 cmol kg

-1
; 

f 
mg 100g

-1
; 

g
 standard deviation. 

 

 

 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

29 

 

Table 2 

Pseudo-total concentrations (µg g
-1

) of the examined elements in different soil samples (S1-

S8).  

 Pseudo-total element concentrations in µg g
-1

 dry weight 

 S1 S2 S3 S4 S5 S6 S7 S8 

Al 1413 1419 1853 1879 2214 1669 1851 1532 

Ba 78.5 83.2 326 100 86.8 56.8 65.6 114 

Cd 0.189 0.164 0.192 0.201 0.149 0.158 0.0750 0.133 

Cr 43.5 40.9 62.5 24.4 45.0 501 20.7 24.6 

Cu 54.8 45.9 47.4 31.3 31.7 141 40.1 33.4 

Fe 11811 14461 23572 14101 11448 24354 12336 11977 

K 4417 1811 5059 3480 1472 609 1760 4396 

Li 13.7 15.1 22.1 12.9 12.8 15.6 10.6 18.4 

Mn 216 704 1837 1247 2408 1380 217 675 

Ni 69.0 73.7 62.1 22.6 61.4 529 18.4 28.1 

Pb 22.6 34.6 44.4 21.7 35.6 27.5 10.0 19.7 

Zn 56.6 53.2 54.7 35.6 31.5 34.9 28.3 36.9 
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Table 3 

Correlation matrix for the pseudo-total concentrations of different elements and 

physicochemical parameters of the examined soil types.  

 

Ba Cu Fe K Li Mn Ni Pb Sand Clay CaCO3 pHKCl pHH2O TOC K2O 

Al 0.17 -0.22 0.01 -0.24 -0.20 0.74
*
 -0.12 0.19 0.48 -0.15 -0.58 -0.83

*
 -0.83

*
 -0.33 0.04 

Ba 

 

-0.20 0.50 0.64
x
 0.81

*
 0.40 -0.23 0.64

x
 -0.23 0.21 -0.11 -0.12 -0.08 -0.27 -0.30 

Cd 

 

0.06 0.32 0.44 0.40 0.33 0.07 0.58 -0.72
*
 -0.08 -0.14 0.49 0.53 0.27 -0.06 

Cr 

 

0.98
+
 0.71

*
 -0.53 0.10 0.20 1.00

+
 0.09 0.29 -0.72

*
 -0.24 -0.05 0.12 0.76

*
 -0.71

*
 

Cu 

  

0.71
x
 -0.47 0.10 0.05 0.98

+
 0.06 0.27 -0.69

x
 -0.23 0.02 0.19 0.76

*
 -0.67

x
 

Fe 

   

-0.06 0.60 0.37 0.69
x
 0.51 0.14 -0.56 -0.28 -0.11 0.02 0.37 -0.85

+
 

K 

    

0.57 -0.15 -0.54 0.12 -0.61 0.78
*
 0.11 0.40 0.33 -0.09 0.35 

Mn 

      

0.18 0.72
*
 0.00 -0.38 -0.33 -0.44 -0.32 -0.01 -0.40 

Ni 

       

0.11 0.26 -0.73
*
 -0.21 -0.02 0.16 0.77

*
 -0.71

x
 

Sand 

         

-0.36 -0.51 -0.83
*
 -0.82

*
 -0.16 -0.14 

pHKCl 

            

0.96
+
 0.37 0.09 

+ 
Statistically significant at p<0.01 level, 

*
 statistically significant at p<0.05 level, 

x
 statistically significant at 

p<0.10 level; unmarked correlations are not statistically significant. 
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Table 4 

Correlation matrix for the element contents in different phases of the soil samples (n=48). 

 

Cd Cr Cu Fe K Li Mn Ni Pb Zn 

Al -0.42
+
 0.37

*
 0.51

+
 0.79

+
 0.53

+
 0.66

+
 0.56

+
 0.39

+
 0.67 0.66

+
 

Ba 0.26
x
 -0.08 0.07 -0.02 0.04 0.04 0.31

*
 -0.07 0.35

*
 -0.05 

Cd 

 

-0.18 -0.28
x
 -0.31

*
 -0.16 -0.18 -0.13 -0.18 -0.34

*
 -0.26

x
 

Cr 

  

0.53
+
 0.60

+
 0.09 0.45

+
 0.12 0.96

+
 0.22 0.34

*
 

Cu 

   

0.45
+
 0.18 0.29

*
 0.33

*
 0.71

+
 0.48 0.34

*
 

Fe 

    

0.73
+
 0.91

+
 0.17 0.57

+
 0.37

*
 0.88

+
 

K 

     

0.81
+
 -0.11 0.04 0.07 0.89

+
 

Li 

      

-0.08 0.39
+
 0.18 0.94

+
 

Mn 

       

0.20 0.79 -0.12 

Ni 

        

0.31
*
 0.31

*
 

Pb 

         

0.17 

+
 Statistically significant at p<0.01 level; 

*
 statistically significant at p<0.05 level; 

x
 statistically significant at 

p<0.10 level; unmarked correlations are not statistically significant. 
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Table 5 

Pearson's coefficients and p-values for the statistically significant correlations (p˂0.05) 

obtained between soil properties and elements in various fractions of the soils. 

Element Phase Property r p  Element Phase Property r p 

Al F1 Sand 0.846 0.008  Cd F2 Sand -0.731 0.039 

  Silt -0.802 0.017    pH 0.811 0.015 

 F2 pH -0.921 0.001  Ni F0 Clay -0.737 0.037 

Cr F2 TOC 0.770 0.026    TOC 0.724 0.042 

 F3 Clay -0.741 0.035   F1 Clay -0.721 0.044 

  TOC 0.748 0.033    TOC 0.730 0.04 

 F4 TOC 0.786 0.021   F3 Clay -0.736 0.037 

 F5 Clay -0.716 0.046    TOC 0.772 0.025 

  TOC 0.760 0.029   F4 TOC 0.816 0.014 

Cu F2 TOC -0.742 0.034   F5 Clay -0.754 0.031 

  CEC -0.712 0.048    TOC 0.740 0.036 

 F3 Clay -0.725 0.042  Pb F1 Sand 0.859 0.006 

  TOC 0.736 0.037    Silt -0.809 0.015 

 F4 TOC 0.762 0.028   F3 Silt 0.728 0.041 

Fe F3 Clay -0.843 0.009  Zn F1 Sand 0.717 0.045 

K F4 Clay 0.753 0.031    pH -0.948 0 

 F5 Clay 0.761 0.028   F2 Sand -0.786 0.021 

Li F2 CaCO3 0.866 0.005    Silt 0.861 0.006 

  pH 0.746 0.034    pH 0.751 0.032 

 F3 CEC 0.751 0.032       
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Table 6 

ANN summary.  

Network 

name 

Training 

performance 

Test 

performance 

Validation 

performance 

Training 

error 

Test 

error 

Validation 

error 

Training 

algorithm 

Error 

function 

Hidden 

activation 

Output 

activation 

MLP 2-4-12 0.783 0.795 0.853 0.110 0.140 0.180 BFGS 73 SOS Tanh Logistic 
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Table 7 

Coefficients of determination, r
2
, between experimentally measured and ANN outputs, during 

the training, testing and validation steps.  

r
2
 Al Ba Cd Cr Cu Fe K Li Mn Ni Pb Zn 

Training 0.978 0.625 0.910 0.438 0.572 0.931 0.815 0.919 0.901 0.427 0.920 0.962 

Testing 0.988 0.072 0.564 0.965 0.955 0.998 0.992 0.970 0.575 0.616 0.854 0.993 

Validation 0.882 0.897 0.854 0.965 0.679 0.964 0.926 0.952 0.561 0.818 0.785 0.949 
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Fig.1. Biplot of correlated pseudo-total element contents and physicochemical properties of 

the investigated soil types. 
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Fig.2. Distribution of Al, Ba, Cd, Cr, Cu, Fe, K, Li, Mn, Ni, Pb and Zn in the operationally 

defined soil fractions: F0 - water soluble, F1 - exchangeable, F2 - bound to carbonates, F3 - 

bound to Fe-, Mn-oxides, F4 - bound to organic matter, F5 - residual. 
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Fig. 3. Biplot of the correlated element contents in different fractions (F0, F1, F2, F3, F4 and 

F5) in the investigated soil samples (S1–S8). 
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Fig. 4. Experimentally measured and ANN model predicted values of Al, Ba, Cd, Cr, Cu, Fe, 

K, Li, Mn, Ni, Pb, and Zn in different soil fractions. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

39 

 

Highlights 

 Distribution of 12 metals in unpolluted soils was analyzed by sequential 

extraction. 

 Examined metals, except Cd and Ba, were commonly found in less available 

fractions. 

 Soil texture and TOC had a predominant effect on metal content and speciation. 

 Higher content of sand fraction affects higher mobility of Pb, Zn and Al. 

 ANN model accurately predicts element distribution based on soil properties. 


