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Fig. S1 Phenotypic characteristics of soil isolate Streptomyces sp. NP10: A cellulolytic activity using CMC cellulose 

in agar screen; B hemolytic activity on blood-agar and C ability to grow on in tryptone soy broth on a range of NaCl 

concentrations 
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Fig. S2 Crude culture extracts of Streptomyces sp. NP10 showed A antimicrobial activity in disc-diffusion assay 

(200 μg per disc) and B exhibited mild cytotoxicity against human fibroblasts (MRC5) and melanoma (B16) cell 

lines judged from MTT assay. Kanamycin (25 μg per disc) caused inhibition zones 10-15 mm for bacterial strains, 

while nystatin (50 μg per disc) caused inhibition zones of 12 mm with Candida strains 
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Identification methods and diversity of free FAs found in Streptomyces sp. NP10 strain 

 

The free FAs from the novel strain Streptomyces sp. NP10 were identified by GC-MS analysis as the corresponding 

methyl esters obtained after derivatization with CH2N2. All analyzed total ion chromatograms contained several 

series of FAMEs showing regularities in their GC retention behavior (constant retention index difference of ca. 100 

units) and possessing analogous mass spectra. Normal chain FAMEs (Fig. 3a, marked red, main text) included all 

even and odd members of the homologue series from 7:0 to 26:0, as well as 28:0 and 30:0. These compounds were 

readily identified from their mass spectra by comparison to library spectra and subsequent GC-MS analysis of 

authentic standards. In general, mass spectra of normal chain FAMEs are characterized by the base peak at m/z 74 

(Mc Lafferty rearrangement) and fragment ions at m/z 87 (β-cleavage) and [M – 31]
+ 

(loss of OCH3 group), while all 

other fragment ions [M – CnH2n+1]
+
 arose from cleavage of saturated unbranched alkyl chain (Dickschat et al. 2011; 

Fig. S3-a). Two more groups of saturated FAMEs showed mass spectra with significant fragment ions at m/z 74 and 

87 but they eluted slightly faster from the GC column than the mentioned normal chain homologues implying that 

these were their branched-chain isomers (Fig. 3a, main text). Taking into account the so far established biosynthetic 

pathways by which bacteria could produce branched chain FAs it was assumed that these were methyl esters of 

methyl branched FAs (Kaneda 1991). The structures of these branched compounds were proposed based on a careful 

analysis of distinctions in their mass spectral fragmentation patterns since scission commonly occurs at adjacent 

bonds to the tertiary carbon atoms, yielding ions of variable intensities for different classes of isomers, as well as, on 

the decrease of retention indices (ΔRIs) compare to related normal chain isomer (Radulović et al. 2012). The first 

group of branched FAMEs had ΔRI of 36 units and relatively intensive fragment at [M – 43]
+
 (loss of C3H7 group) 

which is indicative for iso-FAMEs (Radulović et al. 2012; Fig. S3-b). This assumption that (ω−1)-methyl branched 

series was in question was further supported by the occurrence of methyl esters of both even and odd FAs (from i-

8:0 to i-20:0) (Fig. 3a, marked blue, main text) most probably derived from leucine or valine starters, respectively 

(Dickschat et al. 2011). Furthermore, as it was previously mentioned, the presence of the isopropyl moiety was 

clearly visible from the corresponding NMR spectra. Commercially available i:16:0 was then converted to methyl 

ester via CH2N2 and after GC co-injection, it was ambiguously confirmed that this synthetic compound was identical 

to the methyl ester of natural FAs. The second series of FAMEs had ΔRI value of 28 units and intense [M – 57]
+
 ion 

(loss of C4H9) which is typical for anteiso-FAMEs (Radulović et al. 2012; Fig. S3-c). Within this group only the 

FAMEs originating from the odd FAs (starting from a-11:0 to a-19:0; Fig. 3a, marked magenta, main text) were 

found, pointing to an isoleucine-derived starter and additionally supporting methyl branching in the (ω−2)-position 

(Dickschat et al. 2011). Furthermore, the feature of (ω−1)-methyl branched compounds is that they elute slightly 

earlier (higher ΔRI value) than their (ω−2)-methyl branched counterparts. Recently we have found that for iso-

alkane series ΔRI is 39 units (on DB-5MS column), while for anteiso-alkane is 30 units (Radulović et al. 2012), and 

this is in very nice agreement with presently established ΔRI values for iso-FAMEs (ΔRI = RI(n-ROOMe) – RI(i-

ROOMe) = 36) and anteiso-FAMEs (ΔRI = RI(n-ROOMe) – RI(a-ROOMe) = 28). Then, the chemical shifts of 

carbon atoms from two initially non-identified methyl groups, at δ 11.430 and 19.234 ppm (Fig. 2c, main text), were 

almost identical with those reported for ω- and (ω – 2)-methyl groups (11.38 and 19.20 ppm, respectively) in 

synthetic 12-methyltetradecanoic acid (Biermann and Metzger 2004). Closer inspection of 1D and 2D NMR spectra 

and comparison of carbon chemical shifts with mentioned literature data enabled the detection of signals arrived 

from "CH3-CH2-CH(CH3)-CH2" structural fragment (Fig. 2b, main text). 

 These experimentally determined ΔRI values were further applied for estimation of branching methyl 

group position in methyl esters of some unsaturated and cyclopropane FAs. Precisely, a dozen of methyl esters of 

monounsaturated FAs, grouped again in three series according to their retention on GC column, were also detected. 

In contrast to the spectra of saturated FAMEs, hydrocarbon ions (with general formula [CnH2n-1]
+
) dominate the 

spectrum of all detected monoenoic FAMEs, with ion at m/z 55 as the base peak, whereas the parent ion and 

fragment ions representing the loss of the methanol ([M – 32]
+.

), the loss of the Mc Lafferty ion ([M – 74]
+.

) and Mc 

Lafferty ion (at m/z 74) per se were also relatively abundant. While the identity of normal chain isomers, 16:1ω7c 

(at RI = 1899) and 18:1ω9c (RI = 2099), was undoubtedly confirmed by co-injection of authentic standards, for 

compounds eluting at RI 1863 and 2063 was assumed according to ΔRI value of 36 units (ΔRI = 1899 – 1863 and 

ΔRI = 2099 – 2063) that they were methyl esters of iso-monounsaturated FAs: i-16:1ω6c and i-18:1ω8c, 

respectively. Closer inspection of their mass spectra revealed also the presence of ions at [M – 55]
+
, [M – 87]

+
 and 

[M – 105]
+
 indicative of the (ω-1)-position of the methyl group in branched monoenoic FAMEs (Boon et al. 1977). 
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Two more compounds eluting at RI 1971 and 2171 showed a similar set of fragment ions but shifted by 14 mass 

units to lower values at [M – 69]
+
, [M – 101]

+ 
and [M – 119]

+
 that together with ΔRI value of 28 units (e.g. ΔRI = 

1999 – 1971) pointed to the (ω−2)-position of branching methyl group so they were identified as a-17:1ω7c and a-

19:1ω9c, respectively (Boon et al. 1977). Since monounsaturated FAMEs, especially methyl-branched, are prone to 

double bond migration during GC-(EI)MS analysis (Rontani et al. 2009), they were further derivatized with DMDS 

in order to additionally confirm the double bond position. Generally the mass spectra of DMDS derivatives show 

strong fragmentation between the methylthio groups, and the fragment ion containing the methyl ester function is 

characterized by the further loss of CH3OH (Dickschat et al. 2005). All EI-MS spectra of the herein analyzed DMDS 

adducts showed two substantial fragment ions at m/z 217 and [M – 217]
+
. The third, relatively intense, peak was also 

observed at m/z 185 owing to the loss of CH3OH from the ion at m/z 217 (Fig. 3b, main text). These data clearly 

indicated the double-bond position at C-9 in all detected monounsaturated FAs in the strain Streptomyces NP10. The 

presence of internal, non-conjugated, disubstituted double bond was also evident from NMR spectra of FR11 since 

two methines signals at δ 129.749 and 130.023 in 
13

C NMR correlated to a 
1
H NMR multiplet at δ 5.25-5.45 in the 

HSQC spectrum. Furthermore, these signals showed correlation in HMBC spectrum with appropriate ones for allylic 

methlylene proton and carbon atoms, at δ 2.021 ppm and 27.122 ppm, respectively (Fig. 2a, b and d, main text). The 

absolute value of the 
13

C chemical shifts of allylic carbons could be by itself very diagnostic of the cis or trans 

configuration of a double bond since it was established that if double bond is close to mid-chain, the value of 

chemical shift of allylic carbons should be approximately 27 ppm for cis and 32 ppm for trans isomer (Santos and 

Graça 2014). Thus, the mentioned NMR data for FR11 are concordant with a cis configuration of double bond in all 

detected monoenoic FAs. 

 Additionally, one more group of FAMEs from fraction 11 was detected with mass spectral fragmentation 

identical to those described for monoenoic FAMEs, but having for a few units greater RI values, so it was assumed 

that these are methyl esters of cyclopropane FAs. In general, the identification of cyclopropane FAMEs by GC-MS 

analysis is hindered by the fact that their mass spectra are indistinguishable from those of monounsaturated FAs with 

one carbon longer alkyl chain since it appears that under electron bombardment cyclopropane ring rearrange to give 

a double bond (Christie and Holman 1966). However, RI values of methyl esters of monoenoic and cyclopropanoic 

FAs are sufficiently different and this can be useful information in deciding between possible structures. Our 

assumption that these were cyclopropane FAMEs was sustained by the fact that they remained the same upon 

derivatization with DMDS, while all monounsaturated FAMEs were converted to corresponding DMDS adducts. 

Thus, in order to clearly corroborate the presence of the cyclopropyl group, as well as, to assign its stereochemistry, 

the 
1
H NMR spectrum, as well as other 1D and 2D NMR spectra, of non-derivatized FR11 were once again closely 

inspected. It was previously found that methylene protons of the cyclopropane ring in cis configuration normally 

show absorptions at ca. 0.6 ppm and at − 0.3 ppm, while in the case of a trans cyclopropane ring these two 

diastereotopic methylene hydrogens are similar, due to a pseudo-C2V symmetry, and both resonate at approximately 

0.2 ppm (Macmillan and Molinski 2005; Knothe 2006). Therefore, as protons of a cyclopropane ring normally 

resonate at high-field it could be possible to observe appropriate signals in the 
1
H NMR spectrum of the whole FA 

mixture without interference from other peaks. The mentioned characteristic proton signals were indeed detected as 

ddd at δ 0.562 and quartet at δ − 0.333 ppm (while no absorption was observed at 0.2 ppm) and they showed HSQC 

cross peaks with the same secondary carbon atom (DEPT experiment) that resonated at 10.924 ppm in 
13

C NMR 

spectrum. Additional broad singlet originating from the two methine protons was also observed at δ 0.644 ppm and 

it correlated with two methine carbons at 15.736 and 15.782 ppm (Fig. 2a, b and c, main text). These three high-field 

signals in the 1H NMR spectrum were also mutually coupled in homonuclear 2D spectra. All these observations are 

according to literature data indicative of the presence of a cis 1,2-disubstituted cyclopropane ring in the detected 

cyclopropane FAs (Macmillan and Molinski 2005; Knothe 2006). For compounds eluting at RI 2002 and 2202 it 

was assumed, based on comparisons of retention indices with literature values, that these are normal chain 

homologues 17:0cy9-10 and 19:0cy9-10, respectively (Zouari et al. 2011). Once again their identity was 

undoubtedly verified by co-injection of authentic samples obtained by cyclopropanation of methyl esters of 16:1ω7c 

and 18:1ω9c, respectively, using CH2N2 in the presence of Pd(PhCN)2Cl2 as the catalyst (Gangadhar et al. 1988), 

whereas the position of branching methyl group in i-17:0cy9-10 (RI = 1966) and a-18:0cy9-10 (RI = 2074) was 

inferred from the corresponding ΔRI values. 

 Finally, a group of minor compounds exhibiting mass spectra with two significant fragment ions at m/z 88 

as the base peak and at m/z 101 pointed either to α-methyl branched FAMEs or fatty acid ethyl esters (FAEEs). The 

possibility of classifying these compounds in three series according to their RI values, as well as, the presence of [M 
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– 28]
+
 ion (loss of CH2=CH2), arisen by Mc Lafferty rearrangement at the alkoxy branch of molecular ion, in their 

mass spectra (Gross 2004), prevailed on the side of ethyl esters of n, iso- and anteiso- FAs (i-14:0, i-15:0, a-15:0, 

i:16:0, 16:0 and 18:0). This assumption was confirmed by co-injection of authentic samples. 

 Several minor oxygenated FAs: 3-OH-8:0, 3-OH-10:0, 10-oxo-18:0, were identified as well. The 

identification was made easier by the fact that the introduction of hydroxy, oxo or epoxy functionality leads to very 

distinguishable fragmentation ions in mass spectra that also defines their position in the alkyl chain (e.g. 3-hydroxy-

FAs were distinguished by the base peak at m/z 103 produced by a characteristic cleavage α to the carbon with the 

hydroxyl group, while intensive ion at m/z 155 was diagnostic for oxirane ring in position 9 and 10; Ryhage and 

Stenhagen 1960). Of course, wherever it was possible the initial identification was confirmed by co-injection of a 

synthetic standard. 
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Fig. S3 Mass spectra of A methyl pentadecanoate (15:0), B methyl 13-methyltetradecanoate (i-15:0) and C methyl 

12-methyltetradecanoate (a-15:0) with distinguishing fragmentations 
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Fig. S4 Optimization of free fatty acids extraction from strain Streptomyces sp. NP10. A Distribution of major fatty 

acids. B Distribution of certain classes of fatty acids. Hex = hexane, EtOAc = ethyl acetate, Et2O = diethyl ether and 

CHCl3 = chloroform. N = normal chain, I = iso, A = anteiso and U = unsaturated FAs 
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Fig. S5 Influence of different growth medium (R2YE* - minimal supplemented with yeast extract, R2m - defined 

minimal medium and MSY - maltose-soy flower) and temperature on production of free fatty acids by strain 

Streptomyces sp. NP10. A. Distribution of main fatty acids. B. Distribution of certain classes of fatty acids. Number 

in the brackets, except for last sample, represents the number of days after inoculation when the extraction was done. 

N = normal chain, I = iso, A = anteiso and U = unsaturated FAs 

 

*R2m and R2YE (Kieser et al., 2000) contain per liter: 103 g sucrose, 0.25 g K2SO4, 10.12 g MgCl2  6H2O, 10 g 

glucose, 0.1 g Difco casamino acids, 0.05 g KH2PO4, 0.3 g L-proline, trace element solution 0.2 mL (per liter: 40 mg 

ZnCl2, 200 mg FeCl3 × 6H2O, 10 mg CuCl2  2H2O, 10 mg MnCl2  4H2O, 10 mg Na2B4O7  10H2O and 10 mg 

(NH4)6Mo7O24 4H2O). In addition R2YE contains 0.5 g L
–1

 Difco yeast extract. 
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Table S1 Phenotypic characteristics of Streptomyces sp. NP10 

Characteristics Result
 

Growth on carbon or nitrogen source
a  

glucose + 

mannitol + 

glycerol + 

sucrose - 

maltose + 

xylose + 

fructose + 

L-Alanine + 

L-Arginine - 

L-Asparagine + 

L-Cystine - 

L-Histidine - 

L-Lysine + 

Growth in the presence of 
 

NaCl (%, w/v) 12 

thallous acetate
b 

+ 

sodium azide
b 

+ 

potassium telluride
b 

+ 

Biochemical activity 
 

starch hydrolysis + 

gelatin hydrolysis + 

urea hydrolysis + 

nitrate reduction - 

H2S production - 

indole production - 

catalase presence + 

lipase presence - 

hemolysin presence + 

DNAse presence + 

a
 0.1 %, w/v

 

b
 0.001 %, w/v 
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Table S2 Cellular FA profile of new strain Streptomyces sp. NP10 

RI
a
 Compound Designation Class Content (%) Method of identification

d
 

A
b
 B

c
 

1287 Methyl 8-methylnonanoate i-10:0 I tr
e 

tr RI, MS 

1323 Methyl decanoate 10:0 N tr tr RI, MS, CoI 

1388 Methyl 9-methyldecanoate i-11:0 I tr 0.4 RI, MS 

1396 Methyl 8-methyldecanoate a-11:0 A tr tr RI, MS 

1424 Methyl undecanoate 11:0 N tr tr RI, MS, CoI 

1488 Methyl 10-methylundecanoate i-12:0 I tr 0.7 RI, MS 

1524 Methyl dodecanoate 12:0 N tr tr RI, MS, CoI 

1588 Methyl 11-methyldodecanoate i-13:0 I 0.8 0.5 RI, MS 

1596 Methyl 10-methyldodecanoate a-13:0 A 1.3 0.8 RI, MS 

1624 Methyl tridecanoate 13:0 N 0.5 0.4 RI, MS, CoI 

1688 Methyl 12-methyltridecanoate i-14:0 I 11.2 0.4 RI, MS 

1699 Methyl (Z)-9-tetradecenoate 14:1ω5c U n.d.
f 

tr RI, MS, DMDS 

1724 Methyl tetradecanoate 14:0 N 2.7 2.3 RI, MS, CoI 

1788 Methyl 13-methyltetradecanoate i-15:0 I 6.2 0.8 RI, MS 

1796 Methyl 12-methyltetradecanoate a-15:0 A 16.3 0.4 RI, MS 

1824 Methyl pentadecanoate 15:0 N 2.2 2.7 RI, MS, CoI 

1863 Methyl (Z)-14-methylpentadec-9-enoate i-16:1ω6c U tr tr RI, MS, DMDS 

1888 Methyl 14-methylpentadecanoate i-16:0 I 17.7 20.0 RI, MS, CoI 

1899 Methyl (Z)-9-hexadecenoate 16:1ω7c U 1.7 3.4 RI, MS, CoI, DMDS 

1924 Methyl hexadecanoate 16:0 N 14.3 23.5 RI, MS, CoI 

1971 Methyl (Z)-14-methylhexadec-9-enoate a-17:1ω7c U 3.4 2.5 RI, MS, DMDS 
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1988 Methyl 15-methylhexadecanoate i-17:0 I 4.8 5.4 RI, MS 

1996 Methyl 14-methylhexadecanoate a-17:0 A 6.0 9.9 RI, MS 

1999 Methyl (Z)-9-heptadecenoate 17:1ω8c U tr tr RI, MS, DMDS 

2002 Methyl 8-(2-hexylcyclopropyl)octanoate 17:0cy9-10 CP 2.2 3.9 RI, MS, CoI 

2024 Methyl heptadecanoate 17:0 N 1.2 2.0 RI, MS, CoI 

2088 Methyl 16-methylheptadecanoate i-18:0 I 2.5 1.0 RI, MS 

2089 Methyl (Z,Z)-9,12-octadecadienoate 18:2ω6c U Tr 0.9 RI, MS, CoI 

2099 Methyl (Z)-9-octadecenoate 18:1ω9c U 2.0 7.0 RI, MS, CoI, DMDS 

2124 Methyl octadecanoate 18:0 N 1.6 4.2 RI, MS, CoI 

2188 Methyl 17-methyloctadecanoate i-19:0 I tr tr RI, MS 

2196 Methyl 16-methyloctadecanoate a-19:0 A 0.6 n.d. RI, MS 

2202 Methyl 8-(2-octylcyclopropyl)octanoate 19:0cy9-10 CP 0.3 0.7 RI, MS, CoI 

2224 Methyl nonadecanoate 19:0 N 0.3 tr RI, MS, CoI 

2288 Methyl 18-methylnonadecanoate i-20:0 I 0.3 n.d. RI, MS 

2291 Methyl cis-9,10-epoxystearate 18:0ep9-10c EP n.d. 4.7 RI, MS, CoI 

2324 Methyl eicosanoate 20:0 N tr tr RI, MS, CoI 

2424 Methyl heneicosanoate 21:0 N tr n.d. RI, MS 

2432 Methyl 9,12-diepoxystearate (isomer 1) 18:0di-ep9-10:12-13 EP n.d. 0.8 RI, MS, CoI 

2462 Methyl 9,12-diepoxystearate (isomer 2) 18:0di-ep9-10:12-13 EP n.d. 0.2 RI, MS, CoI 

2488 Methyl 20-methylheneicosanoate i-22:0 I tr tr RI, MS 

2524 Methyl docosanoate 22:0 N tr 0.1 RI, MS, CoI 

2578 Methyl 9,10-dihydroxynonadecenoate( isomer 1) 9,10-di-OH-19:1 H n.d. 0.2 MS 

2586 Methyl 9,10-dihydroxynonadecenoate( isomer 2) 9,10-di-OH-19:1 H n.d. 0.2 MS 

2724 Methyl tetracosanoate 24:0 N n.d. tr RI, MS 

 Total   100 (40) 100 (42)  

 Saturated fatty acid methyl esters   90.4 (32)
g
 75.5 (28)  
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 Normal chain (N)   22.6 (13) 35.3 (13)  

 even-numbered   18.5 (7) 30.1 (8)  

 odd-numbered   4.1 (6) 5.2 (5)  

 Iso (I)   43.5 (12) 29.1 (10)  

 even-numbered   31.7 (7) 22.1 (5)  

 odd-numbered   11.8 (5) 7.0 (5)  

 Anteiso (A)   24.3 (5) 11.1 (4)  

 even-numbered   n.d. n.d.  

 odd-numbered   24.3 (5) 11.1 (4)  

 Unsaturated fatty acid methyl esters (U)   7.1 (6) 13.8 (7)  

 normal chain   3.7 (4) 11.3 (5)  

 iso   tr (1) tr (1)  

 anteiso   3.4 (1) 2.5 (1)  

 Hydroxy fatty acid methyl esters (H)   n.d. 0.4 (2)  

 Epoxy fatty acid methyl esters (EP)   n.d. 5.7 (3)  

 Cyclopropane fatty acid methyl esters (CP)   2.5 (2) 4.6 (2)  

a 
RI  − Retention indices on a DB-5 column calculated against a series of co-injected n-alkanes (C6‒C34) 

b 
Ethyl acetate whole cell extract of strain Streptomyces sp. NP10 

c
 Ethyl acetate (pH 2) whole cell extract of strain Streptomyces sp. NP10 

d 
RI − Constituent identified by retention index matching; MS − Constituent identified by mass spectra comparison; CoI − The identity of the constituent was 

additionally confirmed by co-injection of an authentic sample; DMDS ‒ Position of double bond was confirmed by formation of corresponding dimethyldisulfide 

adducts 

e
 tr − trace (<0.05%) 

f
 n.d. – not detected 

g
 number in brackets represents the number of compounds belonging to that class 
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Table S3. Free FAs profiles of four different Streptomyces strains 

RIa Compound Designation Class 
Streptomyces

sp. NP10 

Streptomyces 

sp. NP2 

Streptomyces 

durmitorensis 

Streptomyces 

lividans 

Method of 

identificationb 

1022 Methyl heptanoate 7:0 N trc n.d. n.d. n.d.d RI, MS, CoI 

1122 Methyl octanoate 8:0 N 0.039e n.d. n.d. n.d. RI, MS, CoI 

1222 Methyl nonanoate 9:0 N 0.090 tr n.d. tr RI, MS, CoI 

1255 Methyl 3-hydroxyoctanoate 3-OH-8:0 H tr n.d. n.d. n.d. RI, MS 

1287 Methyl 8-methylnonanoate i-10:0 I tr n.d. n.d. n.d. RI, MS 

1323 Methyl decanoate 10:0 N tr tr tr tr RI, MS, CoI 

1388 Methyl 9-methyldecanoate i-11:0 I n.d. n.d. n.d. tr RI, MS 

1396 Methyl 8-methyldecanoate a-11:0 A tr n.d. n.d. tr RI, MS 

1404 Methyl 10-undecenoate 11:1ω1 U tr n.d. n.d. tr RI, MS, CoI 

1424 Methyl undecanoate 11:0 N tr tr n.d. n.d. RI, MS, CoI 

1488 Methyl 10-methylundecanoate i-12:0 I n.d. tr n.d. 0.023 RI, MS 

1524 Methyl dodecanoate 12:0 N n.d. 0.026 0.037 0.057 RI, MS, CoI 

1588 Methyl 11-methyldodecanoate i-13:0 I 0.066 0.018 n.d. tr RI, MS 

1596 Methyl 10-methyldodecanoate a-13:0 A tr 0.017 n.d. tr RI, MS 

1624 Methyl tridecanoate 13:0 N 0.036 n.d. n.d. tr RI, MS, CoI 

1688 Methyl 12-methyltridecanoate i-14:0 I 1.174 0.263 0.093 0.170 RI, MS 

1724 Methyl tetradecanoate 14:0 N 0.287 0.046 0.054 0.135 RI, MS, CoI 

1753 Ethyl 12-methyltridecanoate  E tr tr tr tr RI, MS 

1788 Methyl 13-methyltetradecanoate i-15:0 I 0.586 0.153 0.205 0.437 RI, MS 

1796 Methyl 12-methyltetradecanoate a-15:0 A 2.057 0.481 0.420 0.431 RI, MS 

1824 Methyl pentadecanoate 15:0 N 0.164 0.031 0.035 0.128 RI, MS, CoI 

1853 Ethyl 13-methyltetradecanoate  E tr tr tr tr RI, MS 

1861 Ethyl 12-methyltetradecanoate  E tr tr tr tr RI, MS, CoI 

1863 Methyl (Z)-14-methylpentadec-9-enoate i-16:1ω6c U tr tr 0.031 0.172 RI, MS, DMDS 

1888 Methyl 14-methylpentadecanoate i-16:0 I 1.449 0.576 0.544 0.893 RI, MS, CoI 
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1899 Methyl (Z)-9-hexadecenoate 16:1ω7c U 0.175 0.169 0.046 0.329 RI, MS, CoI, DMDS 

1924 Methyl hexadecanoate 16:0 N 2.006 0.551 0.130 0.619 RI, MS, CoI 

1953 Ethyl 14-methylpentadecanoate  E tr tr tr n.d. RI, MS, CoI 

1966 Methyl 8-(2-(4-methylpentyl)cyclopropyl)octanoate i-17:0cy9-10 CP tr 0.044 0.053 n.d. RI, MS 

1971 Methyl (Z)-14-methylhexadec-9-enoate a-17:1ω7c U tr tr 0.064 0.424 RI, MS, DMDS 

1988 Methyl 15-methylhexadecanoate i-17:0 I 0.314 0.061 0.106 0.205 RI, MS 

1989 Ethyl hexadecanoate  E n.d. tr tr tr RI, MS, CoI 

1996 Methyl 14-methylhexadecanoate a-17:0 A 0.637 0.123 0.293 0.319 RI, MS 

1999 Methyl (Z)-9-heptadecenoate 17:1ω8c U tr n.d. n.d. tr RI, MS, DMDS 

2002 Methyl 8-(2-hexylcyclopropyl)octanoate 17:0cy9-10 CP 0.177 0.094 0.136 0.228 RI, MS, CoI 

2024 Methyl heptadecanoate 17:0 N 0.114 0.027 0.035 0.041 RI, MS, CoI 

2053 Ethyl 15-methylhexadecanoate  E n.d. tr tr tr RI, MS 

2061 Ethyl 14-methylhexadecanoate  E tr tr tr tr RI, MS 

2063 Methyl (Z)-16-methylheptadec-9-enoate i-18:1ω8c U tr tr tr tr RI, MS, DMDS 

2074 Methyl 8-(2-(4-methylhexyl)cyclopropyl)octanoate a-18:0cy9-10 CP tr 0.041 0.041 tr RI, MS 

2088 Methyl 16-methylheptadecanoate i-18:0 I 0.089 tr tr tr RI, MS 

2089 Methyl (Z,Z)-9,12-octadecadienoate 18:2ω6c U n.d. n.d. n.d. tr RI, MS, CoI 

2099 Methyl (Z)-9-octadecenoate 18:1ω9c U tr 0.194 0.044 0.118 RI, MS, CoI, DMDS 

2124 Metyl octadecanoate 18:0 N 0.563 0.080 0.062 tr RI, MS, CoI 

2195 Ethyl octadecanoate  E tr tr tr tr RI, MS, CoI 

2202 Methyl 8-(2-octylcyclopropyl)octanoate  19:0cy9-10 CP tr 0.018 n.d. tr RI, MS 

2224 Methyl nonadecanoate 19:0 N tr tr n.d. tr RI, MS, CoI 

2324 Methyl eicosanoate 20:0 N tr 0.016 tr tr RI, MS, CoI 

2424 Methyl heneicosanoate 21:0 N n.d. tr tr tr RI, MS 

2524 Methyl docosanoate 22:0 N tr 0.016 tr tr RI, MS, CoI 

2624 Methyl tricosanoate 23:0 N tr tr tr tr RI, MS 

2724 Methyl tetracosanoate 24:0 N n.d. tr n.d. tr RI, MS 

2924 Methyl hexacosanoate 26:0 N tr tr n.d. tr RI, MS 

3024 Methyl heptacosanoate 27:0 N tr n.d. n.d. n.d. RI, MS 
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a RI − Retention indices on a DB-5 column calculated against a series of co-injected n-alkanes (C6‒C34) 

b RI − Constituent identified by retention index matching; MS − Constituent identified by mass spectra comparison; CoI − The identity of the constituent was additionally 

confirmed by co-injection of an authentic sample; DMDS ‒ Position of double bond was confirmed from the fragmentation pattern of the corresponding dimethyl disulphide 

adducts 

c tr − trace (<0.015 µg mg-1) 

d n.d. – not detected 

e concentration is expressed as µg per mg of the dry mycelium 

f number in brackets represents the number of compounds belonging to that class 

3124 Methyl octacosanoate 28:0 N tr n.d. n.d. tr RI, MS 

 Total   10.021 (47) 3.044 (43) 2.427 (34) 4.731 (47)  

 Saturated fatty acid methyl esters   9.671 (29)f 2.485 (26) 2.014 (18) 3.458 (29)  

 Normal chain (N)   3.299 (18) 0.793 (16) 0.353 (11) 0.980 (17)  

 even-numbered   2.895 (9) 0.735 (9) 0.283 (7) 0.811 (10)  

 odd-numbered   0.404 (9) 0.058 (7) 0.070 (4) 0.169 (7)  

 Iso (I)   3.678 (7) 1.071 (7) 0.948 (5) 1.728 (8)  

 even-numbered   2.712 (4) 0.839 (4) 0.637 (3) 1.086 (4)  

 odd-numbered   0.966 (3) 0.232 (3) 0.311 (2) 0.642 (4)  

 Anteiso (A)   2.694 (4) 0.621 (3) 0.713 (2) 0.750 (4)  

 even-numbered   n.d. n.d. n.d. n.d.  

 odd-numbered   2.694 (4) 0.621 (3) 0.713 (2) 0.750 (4)  

 Unsaturated fatty acid methyl esters (U)   0.175 (7) 0.407 (5) 0.174 (5) 0.619 (7)  

 normal chain   0.175 (4) 0.363 (2) 0.090 (2) 0.447 (5)  

 iso   tr (2) tr (2) 0.031 (2) 0.172 (2)  

 anteiso   tr (1) 0.044 (1) 0.053 (1) n.d.  

 3-Hydroxy fatty acid methyl esters (H)   tr (1) n.d. n.d. n.d.  

 Cyclopropane fatty acid methyl esters (CP)   0.177 (4) 0.153 (4) 0.241 (3) 0.652 (4)  

 Saturated fatty acid ethyl esters (E)   tr (6) tr (8) tr (8) tr (7)  
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Methyl 8-(2-(4-methylpentyl)cyclopropyl)octanoate: RI (DB-5) = 1966; MS(EI, 70 eV), m/z (rel. int, %): 282 (2.7) [M]
+.

, 250 (22.1) ([M – CH3OH]
+
, 208 (9.4), 227 (10.5), 195 (7.8), 

177 (7.3), 166 (7.1), 152 (8.9), 139 (12),137 (11.2), 123 (18.4), 111 (27), 97 (51.4), 87 (41.6), 83 (60.5), 74 (56.9), 70 (53.2), 69 (92), 57 (39.3), 55 (100), 43 (50.7), 41 (61.4). 

 

Methyl 8-(2-(4-methylhexyl)cyclopropyl)octanoate: RI (DB-5) = 1966; MS(EI, 70 eV), m/z (rel. int, %): 296 (0.8) [M]
+.

, 264 (16.7) ([M – CH3OH]
+
, 227 (17.8), 222 (4.8), 195 (11.7), 177 

(9.8), 165 (4.6), 153 (9.7), 139 (11.4),137 (9.5), 123 (15.2), 111 (24.9), 97 (51.9), 87 (30.5), 83 (65.4), 74 (43), 70 (100), 69 (69.6), 57 (39), 55 (95), 43 (37.7), 41 (54.1). 
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