Supplementary data for article:
Kop, T.; Bjelaković, M.; Milić, D. Synthesis and Properties of Bis(Pyrrolidino)Fullerenes Bridged by a Flexible Alkyl-Tether. Tetrahedron 2015, 71 (29), 4801-4809. https://doi.org/10.1016/j.tet.2015.05.038

Supplementary data

Synthesis and properties of bis(pyrrolidino)fullerenes bridged by a flexible alkyl-tether

Tatjana Kop, Mira Bjelaković and Dragana Milić

Content

1. Experimental Section 2
2. Table S1. Visible region absorption bands of cis-2 bisadducts 4
3. Table S2. Visible region absorption bands of cis-3 bisadducts 4
4. Table S3. NMR chemical shifts of the non-fullerene moiety of regioisomers 4
5. Table S4. ${ }^{13} \mathrm{C}$ NMR chemical shifts of the fullerene moiety of cis-2 bisadducts 5
6. Table S5. ${ }^{13} \mathrm{C}$ NMR chemical shifts of the fullerene moiety of bridged cis-1, cis-3, eq itrans-4 bisadducts 6
7. NMR spectra of compounds 2a-e, 3a-e and bisadducts 4-15 7
8. Figure S1: SEM images of the self-organized particles of 7 prepared from different solvents on various substrates 29
9. Figure S2. SEM images of self-organized particles of 7 obtained from at different temperatures 30
10. Figure S3. SEM images of microparticles of 7 obtained from without or with ultrasound stimuli 31
11. Figure S4. SEM images of cis-2 bisadduct 9 and cis-3 bisadduct 12
12. Table S6. Antioxidant capacity of bisadducts 4-15 32

Experimental Section

General: Dry-column flash chromatography (DCFC) was carried out with Merck silica gel $60(15-40 \mu \mathrm{~m})$. Thin layer chromatography (TLC) was carried out on precoated silica gel $60 \mathrm{~F}_{254}$ plates. IR spectra were recorded with a Perkin-EImer FTIR 1725X spectrophotometer. UV spectra were recorded with a GBC-Cintra 40 UV-vis spectrophotometer. NMR spectra were recorded with Varian Gemini 200 (${ }^{1} \mathrm{H}$ at 200 $\mathrm{MHz},{ }^{13} \mathrm{C}$ at 50 MHz) and Brucker Avance $500\left({ }^{1} \mathrm{H}\right.$ at $500 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 125 MHz) spectrometers. Chemical shifts are mesured in ppm, J in Hz . Samples were dissolved in the indicated solvent system, and TMS was used as an internal reference (or DSS in $\mathrm{D}_{2} \mathrm{O}$ solutions). The high-resolution MS spectra were obtained with an Agilent Technologies 6210 TOF LC-MS spectrometer. Reactions induced by microwave irradiation were performed in a Milestone MultiSynth microwave multimode oven by using a MonoPREP kit.
Morphology investigations: Investigations of sample morphology were carried out with SEM, using a JEOL JSM-840A instrument, at an acceleration voltage of 30 kV . The samples for investigation of morphology of self-organized stuctures of 7 were prepared by dissolving in solution (PhMe, PhMe/i-PrOH (1:1), $i-\mathrm{PrOH}$) at room temperature, $0^{\circ} \mathrm{C}$, and by heating (2 h) at $50^{\circ} \mathrm{C}$ for $\mathrm{PhMe} / i-\mathrm{PrOH}$ or $80^{\circ} \mathrm{C}$ for PhMe , with (15 min) or without ultrasound stimuli. A drop of 1 mM solution of $7 \mathrm{in} \mathrm{PhMe} / i-\mathrm{PrOH}(1: 1, \mathrm{v} / \mathrm{v})$, as well as their solution in individual solvents (PhMe or $i-\mathrm{PrOH}$) were deposited on the surface of substrate (Si , Al foil and glass, $10 \times 10 \mathrm{~mm}$) and left during 24 h to slowly evaporate in a glass Petri dish (diameter 10 cm) under PhMe atmosphere at the room temperature. The remaining fullerene derivatives were investigated under the same conditions on a glass substrate by slow evaporation of a 1 mM solution (PhMe and 1:1 PhMe/i-PrOH mixture) at room temperature without ultrasonication. The investigated samples were gold sputtered in a JFC 1100 ion sputter and then subjected to SEM observations.
Antioxidant Activity in vitro: All experiments were performed in triplicate, and the average values were taken. Preparation of liposomal gel of fullerene C_{60} and fullerene bisadducts 4-15. Liposomes were composed of tested compounds and soybean lecithin in a 1:4 ratio. Mesured fullerene or fullerene $(0.1-1 \mathrm{mg})$ and fourfold mass of lecithin are solubilized in minimal volume of PhMe under the ultrasound for 1 minute. Solvent was evaporated and film of lipid-fullerene complex carefully diluted on vortex with deionized water to the concentration of the fullerenic component of $0.02 \mathrm{mg} / \mathrm{mL}$. The final concentration of the pure compound of $0.002 \mathrm{mg} / \mathrm{mL}$ was obtained prior to use mixing the solution with water in 1:9 ratio.

FOX reagent preparation. Working FOX reagent was preared by adding 10 mL of Reagent $2\left(98 \mathrm{mg}\right.$ of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \times 6 \mathrm{H}_{2} \mathrm{O}$ (FAS) in 100 mL of $250 \mathrm{mM} \mathrm{H}_{2} \mathrm{SO}_{4}$) to 900 mL of Reagent 1 (95 mg of XO-Na salt and 880 mg of 2,6-di-t-butyl-4-methylphenol (BHT) in 900 mL of MeOH) giving the final concentrations of $250 \mu \mathrm{M} \mathrm{FAS}, 125 \mu \mathrm{M}$ of $\mathrm{XO}, 25 \mathrm{mM} \mathrm{H}_{2} \mathrm{SO}_{4}$, and 4 mM BHT. The reagent was consumed within 24 h . The apsorbance was measured at 560 nm by UV-vis spectrophotometer GBC-Cintra 40 with $90 \% \mathrm{MeOH}$ as a zero probe. The applicability of the method in used range of peroxide concentration was confirmed by preparing standard calibration curve using increasing concentrations of TBHP $(0-200 \mu \mathrm{M})$ incubated with FOX reagent at room temperature for 30 min . Apsobances mesured at 560 nm at the different concentrations confirmed linear correlation.
Sample preparation. The fullerenesomes and vitamin C solutions ($0.02 \mathrm{mg} / \mathrm{mL}$) were diluted by nine-fold volume of water to gain 0.002 $\mathrm{mg} / \mathrm{mL}$ concentration prior to use ($0.050 \mathrm{~mL}: 0.450 \mathrm{~mL}$ of water). The same volume of $200 \mu \mathrm{M} \mathrm{TBHP}$ (obtained by diluting 0.050 mL of 2 mM TBHP with 0.450 mL of water) was added to the sample and vortexed for 1 min . After 10 min of incubation at room temperature, to an aliquot of 0.050 mL of the sample 0.950 mL of FOX reagent was added. Absorbance at 560 nm was determined for each sample after 80 min of incubation at room temperature.
Standard probe preparation. The standard probe of TBHP was prepared in the same manner, replacing the sample by the same volume of water. The absorbance of the standard probe reffers to the starting (maximum) concentration of the peroxide in sample solution, prior to incubation. Difference of absorbances of the standard probe $\left(A_{s}\right)$ and sample (A) is proportional to the quantity of the consumed peroxide by the sample compound.
Blank probe preparation. The blank probe contained 0.950 mL of FOX reagent and 0.050 mL of water. Apsorbance of the blank probe mesured at $560 \mathrm{~nm}\left(\mathrm{~A}_{0}\right)$ reffers to the color of the reagent itself in the absence of the peroxide, and all absorbances of the samples and standards are diminished by the value of A_{0} for the calculations of the peroxide concentration.

General procedures

a) Synthesis of dibenzyl esters of diglycines by direct N, N^{\prime}-dialkylation of diamines by benzyl bromoacetate: To an ice-cooled solution of diamine ($0.043 \mathrm{~mol}, 1 \mathrm{~mol}$ equiv) and TEA ($8.70 \mathrm{~g}, 11.9 \mathrm{~mL}, 0.086 \mathrm{~mol}, 2 \mathrm{~mol}$ equiv) in DCM (250 mL), solution of BBA (17.9 g , $13.5 \mathrm{~mL}, 0.086 \mathrm{~mol}, 2 \mathrm{~mol}$ equiv) in DCM (100 mL), was added dropwise, during 4 h . After additional stirring for 24 h , mixture was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$ and then with brine ($2 \times 100 \mathrm{~mL}$), and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the remaining material was purified on a SiO_{2} column by dry-flash chromatography using below mentioned solvents as eluents.
b) Benzyl groups removal by catalytic reduction. To a solution of dibenzyl ester of diglycine (1 mmol) in $\mathrm{MeOH}(50-100 \mathrm{~mL}) 10 \% \mathrm{Pd} / \mathrm{C}$ (10%, w/w) was added and the reaction mixture was hydrogenated at 40 psi H_{2} over 24 h at room temperature. H_{2} was evacuated from suspension with argon stream. The catalyst was removed by filtration and the solvent was evaporated to dryness, leaving the crude product, pure enough for further step.

1. Dibenzyl- N, N^{\prime}-(heptane-1,7-diyl)diglycinate (2a) was obtained as a colourless oil ($1.77 \mathrm{~g}, 27 \%$) from 1,7-heptanediamine 1 a (2.00 g , $0.015 \mathrm{~mol}, 1$ mol equiv) and TEA ($3.11 \mathrm{~g}, 4.26 \mathrm{~mL}, 0.031 \mathrm{~mol}, 2$ mol equiv) in DCM (100 mL) and BBA solution ($7.06 \mathrm{~g}, 4.83 \mathrm{~mL}, 0.31$ $\mathrm{mol}, 2 \mathrm{~mol}$ equiv in DCM $(50 \mathrm{~mL})$), according to general procedure (a): Eluent: EtOAc. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33(\mathrm{~s}, 5 \mathrm{H}$, $\left.\mathrm{CH}^{\text {Ar }}\right), 5.14\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}^{\mathrm{Br}}\right), 3.42\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}^{\mathrm{Gly}}\right), 2.57\left(t, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NH}\right), 1.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 1.57-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.29 \mathrm{ppm}(\mathrm{brs}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.12(\mathrm{C}=\mathrm{O})$, $135.37\left(\mathrm{C}_{\mathrm{a}}{ }^{\mathrm{Ar}}\right), 128.27,128.04\left(\mathrm{CH}^{\mathrm{Ar}}\right), 66.11\left(\mathrm{CH}_{2}^{\mathrm{Br}}\right), 50.58\left(\mathrm{CH}_{2}{ }^{\mathrm{Gly}}\right), 49.20\left(\mathrm{CH}_{2}{ }^{1}\right), 29.59$, $28.97\left(\mathrm{CH}_{2}{ }^{4}\right)$, 26.77 ppm . ESI-TOF-MS: m/z: calc. for $\left[\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}: 427.25913$, measured 427.25858 ; IR (ATR): $\tilde{v}=3388$, 3031 , $2935,2859,1746,1656,1582,1491,1456,1388,1329,1218,1080,1045,740,701 \mathrm{~cm}^{-1}$.
2. Dibenzyl- N, N^{\prime}-(octane-1,8-diyl)diglycinate (2b) was obtained as a colourless oil ($238 \mathrm{mg}, 31 \%$) from 1,8 -octanediamine $\mathbf{1 b}$ (250 mg , $1,733 \mathrm{mmol}, 1 \mathrm{~mol}$ equiv) and TEA ($350 \mathrm{mg}, 0.48 \mathrm{~mL}, 3.466 \mathrm{mmol}, 2$ mol equiv) in DCM (12 mL) and BBA solution ($793 \mathrm{mg}, 0.54 \mathrm{~mL}$, $3.466 \mathrm{mmol}, 2 \mathrm{~mol}$ equiv in DCM (6 mL)), according to general procedure (a): Eluent: EtOAc; ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.30(s$,
$\left.5 \mathrm{H}, \mathrm{CH}^{\mathrm{Ar}}\right), 5.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}^{\mathrm{Bn}}\right), 3.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}^{\mathrm{Gly}}\right), 2.58\left(t, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NH}\right), 1.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 1.58-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.28 \mathrm{ppm}(\mathrm{br} \mathrm{s}$, $4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.41(\mathrm{C}=\mathrm{O})$, $135.57\left(\mathrm{C}_{\mathrm{a}}{ }^{\mathrm{Ar}}\right), 128.53,128.29\left(\mathrm{CH}^{\mathrm{Ar}}\right), 66.40\left(\mathrm{CH}_{2}{ }^{\mathrm{Br}}\right), 50.85\left(\mathrm{CH}_{2}{ }^{\mathrm{Gly}}\right), 49.49\left(\mathrm{CH}_{2}{ }^{1}\right)$, 29.88, 29.28, 27.02 ppm ; ESI-TOF-MS: m/z: calc. for $\left[\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}: 441.27478$, measured 441.27493 ; IR (ATR): $\tilde{v}=3339$, 3034, 2927, 2854, 1740, 1668, 1457, 1379, 1343, 1186, 1080, $740,699 \mathrm{~cm}^{-1}$.
3. Dibenzyl-N, N^{\prime}-(nonane1,9-diyl)diglycinate (2c) was obtained as a colourless oil ($890 \mathrm{mg}, 31 \%$) from 1,9-nonanediamine $\mathbf{1 c}(1.00 \mathrm{~g}$, $6.000 \mathrm{mmol}, 1 \mathrm{~mol}$ equiv) and TEA ($1.21 \mathrm{~g}, 1.66 \mathrm{~mL}, 12.00 \mathrm{mmol}, 2$ mol equiv) in DCM (50 mL) and BBA solution ($2.74 \mathrm{~g}, 1.90 \mathrm{~mL}$, $12.00 \mathrm{mmol}, 2 \mathrm{~mol}$ equiv in DCM $(25 \mathrm{~mL})$), according to general procedure (a): Eluent: PhMe/EtOAc 1:1; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.35\left(s, 5 \mathrm{H}, \mathrm{CH}^{\mathrm{Ar}}\right), 5.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}^{\mathrm{Bn}}\right), 3.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}^{\mathrm{Gly}}\right), 2.58\left(t, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NH}\right), 2.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 1.58-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{br}$ $\mathrm{s}, 5 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.28(\mathrm{C}=\mathrm{O})$, $135.59\left(\mathrm{C}_{\mathrm{q}}{ }^{\mathrm{Ar}}\right), 128.47,128.22\left(\mathrm{CH}^{\mathrm{Ar}}\right), 66.35\left(\mathrm{CH}_{2}{ }^{\mathrm{Br}}\right), 50.78\left(\mathrm{CH}_{2}{ }^{\mathrm{Gly}}\right), 49.47$ $\left(\mathrm{CH}_{2}-\mathrm{NH}\right), 29.82,29.30,29.26,27.02 \mathrm{ppm}$; IR (ATR): $\tilde{v}=3325,3062,3033,1223,2852,1737,1657,1578,1491,1459,1393,1329$, 1182, 1023, 737, $699 \mathrm{~cm}^{-1}$.
4. Dibenzyl- N, N^{\prime}-(decane-1,10-diyl)diglycinate (2d) was obtained as a colourless oil (1.49 g, 21.6\%) from 1,10-decanediamine 1d (2.50 g , $0.0145 \mathrm{~mol}, 1$ mol equiv) and TEA ($2.93 \mathrm{~g}, 4.01 \mathrm{~mL}, 0.029 \mathrm{~mol}, 2 \mathrm{~mol}$ equiv) in DCM (90 mL) and BBA solution ($6.65 \mathrm{~g}, 4.55 \mathrm{~mL}, 0.029$ $\mathrm{mol}, 2 \mathrm{~mol}$ equiv in DCM (45 mL), according to general procedure (a): Eluent: EtOAc; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{CH}^{\text {Ar }}\right.$), $5.15\left(s, 2 \mathrm{H}, \mathrm{CH}_{2}^{\mathrm{Br}}\right), 3.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}^{\mathrm{Gly}}\right), 2.58\left(t, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NH}\right), 1.89(b r s, 1 \mathrm{H}, \mathrm{NH}), 1.60-1.40(m, 2 \mathrm{H}), 1.26 \mathrm{ppm}(b r s, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.22(\mathrm{C}=\mathrm{O}), 135.48\left(\mathrm{C}_{\mathrm{q}}^{\mathrm{Bn}}\right), 128.36,128.13\left(\mathrm{CH}^{\mathrm{Bn}}\right), 66.20\left(\mathrm{CH}_{2}^{\mathrm{Bn}}\right), 50.71\left(\mathrm{CH}_{2}{ }^{\mathrm{Gly}}\right), 49.36(\mathrm{CH}-\mathrm{NH}), 29.77$, $29.22\left(2 \mathrm{CH}_{2}\right), 26.93 \mathrm{ppm} ;$ IR (ATR): $\tilde{v}=3444,2976,2939,1748,1473,1434,1399,1217 \mathrm{~cm}^{-1}$; ESI-TOF-MS: $\mathrm{m} / \mathrm{z}:$ calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4}+2 \mathrm{H}\right]^{2+}: 235.15668$, measured: 235.15656; calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}: 469.30608$, measured: 469.30540 .
5. Dibenzyl- N, N^{\prime}-(dodecane-1,12-diyl)diglycinate (2e) was obtained as a colourless oil ($1.48 \mathrm{~g}, 20 \%$) from 1,12 -dodecanediamine $\mathbf{1 e}$ (3.00 $\mathrm{g}, 0.015 \mathrm{~mol}, 1 \mathrm{~mol}$ equiv) and TEA ($3.02 \mathrm{~g}, 4.14 \mathrm{~mL}, 0.030 \mathrm{~mol}, 2 \mathrm{~mol}$ equiv) in DCM (94 mL) and BBA solution ($6.86 \mathrm{~g}, 4.70 \mathrm{~mL}, 0.030$ $\mathrm{mol}, 2 \mathrm{~mol}$ equiv in DCM $(47 \mathrm{~mL})$) according to general procedure (a): Eluent: PhMe/EtOAc 1:1; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.32(\mathrm{~s}$, $\left.5 \mathrm{H}, \mathrm{CH}^{\mathrm{Ar}}\right), 5.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}^{\mathrm{Bn}}\right), 3.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}^{\mathrm{Gly}}\right), 2.59\left(t, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NH}\right), 1.71(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}), 1.58-1.38(m, 2 \mathrm{H}), 1.26 \mathrm{ppm}(\mathrm{br}$ $s, 8 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.41(\mathrm{C}=\mathrm{O}), 135.54\left(\mathrm{C}_{\mathrm{a}}^{\mathrm{Ar}}\right), 128.49,128.25\left(\mathrm{CH}^{\mathrm{Ar}}\right), 66.35\left(\mathrm{CH}_{2}^{\mathrm{Bn}}\right), 50.85\left(\mathrm{CH}_{2}{ }^{\mathrm{Gly}}\right), 49.51\left(\mathrm{CH}_{2}-\right.$ NH), 29.92, $29.42\left(2 \mathrm{CH}_{2}\right), 29.37,27.08 \mathrm{ppm}$; IR (ATR): $\tilde{v}=3444,2976,2939,1748,1473,1434,1399,1217 \mathrm{~cm}^{-1}$; ESI-TOF-MS: $\mathrm{m} / \mathrm{z}:$ calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4}+2 \mathrm{H}\right]^{2+}: 235.15668$, measured: 235.15656; calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}: 469.30608$, measured: 469.30540 . IR (ATR): $\tilde{v}=3327,3034,2921,2851,1742,1656,1577,1464,1391,1215,1188,994,736,699 \mathrm{~cm}^{-1}$; ESI-TOF-MS: m / z : calc. for $\left[\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{4}+2 \mathrm{H}\right]^{2+}: 249.17233$, measured: 249.17317; calc. for $\left[\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}: 497.33738$, measured: 497.33723 .
6. N, N^{\prime}-(heptane-1,7-diyl)diglycine (3a). Catalytic reduction of dibenzyl ester $\mathbf{2 a}(1.77 \mathrm{~g}, 4.15 \mathrm{mmol})$ yielded diglycine $\mathbf{3 a}$ as oil (740 mg , $72.5 \%) .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=3.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{Gly}}\right.$), $3.05\left(t, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NH}\right), 1.82-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.38 \mathrm{ppm}(\mathrm{br} \mathrm{s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=173.95(\mathrm{C}=\mathrm{O})$, $51.64\left(\mathrm{CH}_{2}{ }^{\text {Gly }}\right), 50.11\left(\mathrm{CH}_{2}-\mathrm{NH}\right), 30.26\left(\mathrm{CH}_{2}^{4}\right), 28.00,27.97 \mathrm{ppm}$; IR (ATR): 2929, 2854, 2362, 1620, 1570, 1469, 1375, $1321 \mathrm{~cm}^{-1}$; ESI-TOF-MS: m/z: calc. for $\left[\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}: 247.16523$, measured 247.16401; calc. for $\left[\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}: 269.14718$, measured 269.14642.
7. N, N^{\prime}-(octane-1,8-diyl)diglycine (3b). Catalytic reduction of dibenzyl ester $\mathbf{2 b}$ ($238 \mathrm{mg}, 0.54 \mathrm{mmol}$) yielded oilish diglycine $\mathbf{3 b}$ (110 mg , 78%). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=3.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{Gly}}\right), 3.02\left(t, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NH}\right), 1.80-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.35 \mathrm{ppm}(\mathrm{br} \mathrm{s}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=174.46(\mathrm{C}=\mathrm{O}), 51.90\left(\mathrm{CH}_{2}{ }^{\mathrm{Gly}}\right), 50.24\left(\mathrm{CH}_{2}{ }^{1}\right), 30.59,28.22,28.19 \mathrm{ppm} ; \mathrm{IR}(\mathrm{KBr}): \tilde{v}=3026,2914,2847,2362$, 1609, 1573, 1449, 1418, 1320, $1301 \mathrm{~cm}^{-1}$. ESI-TOF-MS: m/z: calc. for $\left[\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}$: 261.18088, measured 261.17962; calc. for $\left[\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}$: 283.16283, measured 283.16203.
8. N, N^{\prime}-(nonane-1,9-diyl)diglycine (3c). Catalytic reduction of dibenzyl ester $\mathbf{2 c}(820 \mathrm{mg}, 1.80 \mathrm{mmol}$) yielded oilish diglycine $\mathbf{3 c}(390 \mathrm{mg}$, 79%). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=3.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\text {Gly }}\right.$), $3.03\left(t, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NH}\right), 1.82-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.33(b r s, 5 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=174.20(\mathrm{C}=\mathrm{O}), 51.79\left(\mathrm{CH}_{2}{ }^{\mathrm{Gly}}\right), 50.20\left(\mathrm{CH}_{2}{ }^{1}\right), 30.79\left(\mathrm{CH}_{2}{ }^{5}\right), 30.68,28.24,28.10 \mathrm{ppm}$; IR (ATR): $\tilde{v}=3201,3037$, 2924, 2851, 1621, 1570, 1498, 1466, 1375, 1307, $597 \mathrm{~cm}^{-1}$; ESI-TOF-MS: m/z: calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}+2 \mathrm{H}\right]^{2+}$: 138.10191, measured: 138.10095; calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}: 275.19653$, measured: 275.19530.
9. N, N^{\prime}-(decane-1,10-diyl)diglycine (3d). Catalytic reduction of dibenzyl ester $\mathbf{2 d}(1.02 \mathrm{~g}, 2.18 \mathrm{mmol}$) yielded diglycine $\mathbf{3 d}$ as a colourless oil ($500 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=3.58$ ($s, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\text {Gly }}$), $3.03\left(t, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NH}\right.$), $1.80-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.31$ (br s, 6H) ppm; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=174.26(\mathrm{C}=\mathrm{O}), 51.82\left(\mathrm{CH}_{2}{ }^{\mathrm{Gly}}\right), 50.26\left(\mathrm{CH}_{2}{ }^{1}\right), 30.99,30.81,28.32,28.17 \mathrm{ppm}$; IR (ATR): $\tilde{v}=2922$, 2850, 1741, 1578, 1446, 1392, 1326, $1217 \mathrm{~cm}^{-1}$; ESI-TOF-MS: m/z: calc. for [$\left.\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} 2 \mathrm{H}\right]^{2+}$: 145.10973, measured: 145.10980; calc. for $\left[\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}: 289.21218$, measured: 289.21100.
10. N, N^{\prime}-(dodecane-1,12-diyl)diglycine (3e). Catalytic reduction of dibenzyl ester $\mathbf{2 e}(480 \mathrm{mg}, 0.97 \mathrm{mmol}$) yielded diglycine 3 e as a colourless oil ($290 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$-susp.): $\delta=3.53$ (s, $2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\text {Gly }}$), $2.97\left(t, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NH}\right.$, overlapped with DSS signal on $2.91(t, J=8.0 \mathrm{~Hz})$), 1.90-1.52 ($m, 2 \mathrm{H}$), $1.29(\mathrm{br} \mathrm{s}, 8 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}-\mathrm{susp}$): $\delta=174.69(\mathrm{C}=\mathrm{O})$, 52.13 $\left(\mathrm{CH}_{2}{ }^{\mathrm{Gly}}\right), 50.36\left(\mathrm{CH}_{2}{ }^{1}\right), 31.26,31.14,30.90,28.42\left(2 \mathrm{CH}_{2}\right)$ ppm; IR (ATR): $\tilde{v}=3066,2920,2851,1617,1576,1496,1465,1440,1381$, 1321, 1305, 595, $569 \mathrm{~cm}^{-1}$; ESI-TOF-MS: m/z: calc. for $\left[\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} 2 \mathrm{H}\right]^{2+}$: 159.112538, measured: 159.1258, calc. for $\left[\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}$: 317.24348, measured: 317.24275.

Table S1. Visible region absorption bands 400-800 nm of cis-2 bisadducts.

Compound/R-	$\boldsymbol{\lambda}_{1} / \boldsymbol{\varepsilon}$	$\boldsymbol{\lambda}_{2} / \boldsymbol{\varepsilon}$	$\boldsymbol{\lambda}_{3} / \boldsymbol{\varepsilon}$	$\boldsymbol{\lambda}_{4} / \boldsymbol{\varepsilon}$	$\boldsymbol{\lambda}_{5} / \boldsymbol{\varepsilon}$
$\left.\mathbf{5 I - (} \mathrm{CH}_{2}\right)_{7^{-}}$	$449 / 4900$	$489 / 3200$	$585 / 1100$	$643 / 520$	$682 / 340$
7I-($\left(\mathrm{CH}_{2}\right)_{8^{-}}$	$447 / 4600$	$484 / 2700$	$575 / 860$	$645 / 420$	$681 / 250$
9/-(CH2 $)_{9^{-}}$	$442 / 5100$	$484 / 3100$	$570 / 1000$	$643 / 460$	$681 / 290$
$\mathbf{1 1 / - (\mathrm { CH } _ { 2 }) _ { 1 0 ^ { - } }}$	$447 / 4300$	$483 / 2500$	$572 / 830$	$640 / 390$	$702 / 250$
$\mathbf{1 3 / - (\mathrm { CH } _ { 2 }) _ { 1 2 ^ { - } }}$	$446 / 5000$	$483 / 3000$	$570 / 900$	$640 / 420$	$683 / 280$

Table S2. Principal visible region absorption bands 400-800 nm of cis-3 bisadducts.

Compound/R-	$\boldsymbol{\lambda}_{\mathbf{1}} / \boldsymbol{\varepsilon}$	$\boldsymbol{\lambda}_{\mathbf{2}} / \boldsymbol{\varepsilon}$	$\boldsymbol{\lambda}_{\mathbf{3}} / \boldsymbol{\varepsilon}$	$\boldsymbol{\lambda}_{\mathbf{4}} / \boldsymbol{\varepsilon}$	$\boldsymbol{\lambda}_{\mathbf{5}} / \boldsymbol{\varepsilon}$
$\mathbf{6 / - (}\left(\mathrm{CH}_{2}\right)_{7^{-}}$	$435 / 3800$	$469 / 2300$	$554 / 1300$	$657 / 450$	$729 / 310$
8/-(CH2$)_{8^{-}}$	$434 / 2900$	$465 / 2000$	$555 / 900$	$656 / 480$	$731 / 300$
$\mathbf{1 0 / - (}\left(\mathrm{CH}_{2}\right)_{9^{-}}$	$430 / 3700$	$466 / 2200$	$550 / 1200$	$657 / 410$	$727 / 300$
$\mathbf{1 2 / - (\mathrm { CH } _ { 2 }) _ { 1 0 ^ { - } }}$	$429 / 3600$	$465 / 2200$	$552 / 1000$	$658 / 410$	$724 / 300$

Table S3. ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR chemical shifts ($\delta(\mathrm{ppm})$, multiplicity, $J \mathrm{in} \mathrm{Hz}$) of the non-fullerene moiety of regioisomers

Regioisomer	$\delta\left(s p^{3}-\mathrm{C}^{\text {full }}\right)$	$\delta\left(\mathrm{CH}_{2}{ }^{\text {pyrr }}\right)$	$\delta\left(\mathrm{CH}_{2}\left(1, \mathrm{n} ; 1^{\prime}, \mathrm{n}\right.\right.$ ') $)$	$\delta\left(\mathrm{CH}_{2}\right)$
cis-1 (C7)	$\begin{aligned} & 67.68 \\ & 65.36 \end{aligned}$	$\begin{aligned} & 4.74 \mathrm{~d}(9.0) ; 4.55 \mathrm{~d}(9.0) ; \\ & 3.95 \mathrm{~d}(9.0) ; 3.43 \mathrm{~d}(9.0) \\ & 66.28 ; 66.14 \end{aligned}$	$\begin{aligned} & 3.25 d d(9.5 ; 13.5) ; 2.97 d d(6.0 ; 13.5) \\ & 52.74 \end{aligned}$	$\begin{aligned} & 1.60-2.20 \\ & 27.53 ; 26.04 ; 23.60 \end{aligned}$
$\begin{aligned} & \text { cis-2 }\left(\mathrm{C}_{7}\right) \\ & 5 \end{aligned}$	$\begin{aligned} & 69.72 \\ & 69.47 \end{aligned}$	$\begin{aligned} & \text { 4.92dd(11.5; 2.7); 4.36dd(10.5; } \\ & 2.7) ; 3.96 d(10.5) ; 3.55 d(11.5) \\ & 69.55 ; 66.71 \end{aligned}$	$\begin{aligned} & 3.83 \mathrm{ddd}(4.5 ; 8.5 ; 12.5) ; 2.84 \mathrm{dt}(11.0 \text {; } \\ & 5.0) \\ & 52.14 \end{aligned}$	$\begin{aligned} & 1.70-2.30 \\ & 29.60 ; 28.35 ; 27.92 \end{aligned}$
$\begin{aligned} & \text { cis-2 }\left(\mathrm{C}_{8}\right) \\ & 7 \end{aligned}$	$\begin{aligned} & 67.36 \\ & 67.00 \end{aligned}$	$\begin{aligned} & \text { 4.54dd(9.0; } 1.5) ; 4.20 \mathrm{dd}(8.5 \text {; } \\ & 1.5) ; 3.44 \mathrm{~d}(8.5) ; 3.04 \mathrm{~d}(9.0) \\ & 67.33 ; 65.15 \end{aligned}$	$\begin{aligned} & 3.23 \mathrm{dt}(4.5 ; 7.0) ; 2.63 \mathrm{br} \mathrm{~d}(11.0) \\ & 51.94 \end{aligned}$	$\begin{aligned} & 1.35-2.37 \\ & 27.85 ; 27.49 ; 22.96 \end{aligned}$
$\begin{aligned} & \text { cis-2 }\left(\mathrm{C}_{9}\right) \\ & \mathbf{9} \end{aligned}$	$\begin{aligned} & 68.67 \\ & 67.77 \end{aligned}$	$\begin{aligned} & \text { 4.68dd(9.5; 1.5); 4.27dd(9.5; } \\ & 1.5) ; 3.54 \mathrm{~d}(9.5) ; 3.23 \mathrm{~d}(9.5) \\ & 67.77 ; 67.63 \end{aligned}$	$\begin{aligned} & 3.21 \mathrm{dt}(4.0 ; 12.0) ; 2.67 \mathrm{dt}(12.0 ; 4.0) \\ & 54.84 \end{aligned}$	$\begin{aligned} & \text { 1.50-2.00 } \\ & \text { 29.00; 28.78; 27.42; } 27.07 \end{aligned}$
$\begin{aligned} & \text { cis-2 }\left(\mathrm{C}_{10}\right) \\ & \mathbf{1 1} \end{aligned}$	$\begin{aligned} & 67.47 \\ & 67.13 \end{aligned}$	$\begin{aligned} & 4.44 \mathrm{dd}(9.0 ; 1.5), 4.22 \mathrm{dd}(9.0 \text {; } \\ & 1.5) ; 3.44 \mathrm{~d}(9.0) ; 3.37 \mathrm{~d}(9.0) \\ & 68.25 ; 67.13 \end{aligned}$	$\begin{aligned} & \text { 2.99ddd(4.5; 8.5; 12.5); 2.85ddd(4.5; } \\ & 8.5 ; 13.0) \\ & 52.63 \end{aligned}$	$\begin{aligned} & 1.45-2.05 \\ & 28.07 ; 27.83 ; 27.23 ; 25.89 \end{aligned}$
$\begin{aligned} & \text { cis-2 }\left(\mathrm{C}_{12}\right) \\ & 13 \end{aligned}$	$\begin{aligned} & 66.89 \\ & 66.71 \end{aligned}$	$\begin{aligned} & \text { 4.04d(9.0); 3.99d(9.0); } \\ & 3.69 \mathrm{~d}(9.0) ; 3.67 \mathrm{~d}(9.0) \\ & 67.69 ; 67.49 \end{aligned}$	$\begin{aligned} & 2.88 \mathrm{dt}(11.5 ; 7.0) ; 2.82 \mathrm{dt}(11.5 ; 7.0) \\ & 54.16 \end{aligned}$	$\begin{aligned} & \text { 1.42-1.88 } \\ & \text { 28.22; 28.20; 27.23; } 26.96 ; 26.30 \end{aligned}$
$\begin{aligned} & \text { cis-3 }\left(\mathrm{C}_{7}\right) \\ & \mathbf{6} \end{aligned}$	$\begin{aligned} & 71.47 \\ & 67.84 \end{aligned}$	$\begin{aligned} & \text { 4.59dd(11.0; 2.5); 4.48dd(10.5; } \\ & 2.5) ; 4.31 \mathrm{~d}(10.5) ; 3.56 \mathrm{~d}(11.0) \\ & 69.51 ; 65.08 \end{aligned}$	$\begin{aligned} & \text { 3.50ddd(7.0; 8.5; 11.5); 2.81ddd(3.5; } \\ & 7.5 ; 11.5) \\ & 51.58 \end{aligned}$	$\begin{aligned} & 1.53-1.95 \\ & 28.37 ; 27.88 ; 24.38 \end{aligned}$
$\begin{aligned} & \text { cis-3 }\left(\mathrm{C}_{8}\right) \\ & \mathbf{8} \end{aligned}$	$\begin{aligned} & 69.09 \\ & 65.58 \end{aligned}$	$\begin{aligned} & 4.28 \mathrm{~d}(9.5) ; 4.27 \mathrm{~d}(9.0) ; \\ & 3.88 \mathrm{~d}(9.0) ; 3.18 \mathrm{~d}(9.5) \\ & 68.41 ; 64.63 \end{aligned}$	$\begin{aligned} & 3.15 \mathrm{q}(6.0) ; 2.71 \mathrm{br} \mathrm{~d}(11.5) \\ & 51.90 \end{aligned}$	$\begin{aligned} & 1.01-2.35 \\ & \text { 29.56; } 28.78 ; 25.23 \end{aligned}$
$\begin{aligned} & \text { cis-3 }\left(\mathrm{C}_{9}\right) \\ & 10 \end{aligned}$	$\begin{aligned} & 69.29 \\ & 65.62 \end{aligned}$	$\begin{aligned} & 4.37 \mathrm{dd}(9.5 ; 1.0) ; 4.36 \mathrm{~d}(8.5) \text {; } \\ & 3.81 \mathrm{dd}(8.5 ; 1.0) ; 3.26 \mathrm{~d}(9.5) \\ & 69.07 ; 66.90 \end{aligned}$	$\begin{aligned} & \text { 3.14dt(3.5; 11.5); 2.67dt(11.5; 4.0) } \\ & 53.43 \end{aligned}$	$\begin{aligned} & 1.28-2.07 \\ & 29.13 ; 28.89 ; 28.45 ; 25.13 \end{aligned}$
$\begin{aligned} & \text { cis-3 }\left(\mathrm{C}_{10}\right) \\ & 12 \end{aligned}$	$\begin{aligned} & 69.26 \\ & 65.79 \end{aligned}$	$\begin{aligned} & \text { 4.36dd(9.5; 1.5); 4.35dd (9.5; } \\ & \text { 1.5); 3.79d(9.5); 3.36d (9.5) } \\ & 68.48 ; 67.74 \end{aligned}$	$\begin{aligned} & 3.01 \mathrm{ddd}(11.5 ; 9.5 ; 4.0) ; 2.82 \operatorname{ddd}(11.5 \text {; } \\ & 5.5 ; 4.5) \\ & 53.02 \end{aligned}$	$\begin{aligned} & \text { 1.42-2.02 } \\ & \text { 27.52; 27.05; 26.98; } 25.73 \end{aligned}$
$\begin{aligned} & e q\left(C_{12}\right) \\ & 14 \end{aligned}$	$\begin{aligned} & 70.34 \\ & 69.68 \\ & 69.27 \end{aligned}$	$\begin{aligned} & \text { 4.32dd(10.0; 1.5); 4.05s; 3.82s; } \\ & 3.73 \mathrm{dd}(8.5 ; 1.5) \\ & 68.19 ; 66.75 ; 65.41 \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{2}(1): 2.95 \mathrm{t}(5.5) ; \mathrm{CH}_{2}(12): 2.94 \mathrm{t}(5.5) \\ & 53.34 ; 51.60 \end{aligned}$	$\begin{aligned} & 1.20-1.80 \\ & 30.28 ; 30.25 ; 29.86 ; 29.61 ; 28.95 ; \\ & \text { 28.37; 28.07; 27.27; 26.44; 25.33 } \end{aligned}$
$\begin{aligned} & \text { trans-4 }\left(\mathrm{C}_{12}\right) \\ & 15 \end{aligned}$	$\begin{aligned} & 70.25 \\ & 70.03 \end{aligned}$	$\begin{aligned} & \text { 4.55dd(9.0; 2.0); 4.53dd(9.0; } \\ & 2.0) ; 4.09 \mathrm{~d}(9.0) ; 3.70 \mathrm{~d}(9.0) \\ & 68.88 ; 65.40 \end{aligned}$	$\begin{aligned} & 3.19-3.26 \mathrm{~m} ; 2.95 \mathrm{dt}(12.0 ; 5.0) \\ & 52.86 \end{aligned}$	$\begin{aligned} & 1.05-1.88 \\ & 31.23 ; 30.65 ; 29.76 ; 28.53 ; 27.54 \end{aligned}$
$\bar{\delta}$ range	$65-72$	$\begin{aligned} & 3.0-4.9 \\ & 65-70 \end{aligned}$	$\begin{aligned} & 2.6-3.8 \\ & 51-55 \end{aligned}$	$\begin{aligned} & 1.0-2.4 \\ & 23-30 \end{aligned}$

Table S4. ${ }^{13} \mathrm{C}$ NMR chemical shifts of the fullerene moiety of cis-2 bisadducts relative to literature values for the corresponding N-mTEG fulleropyrrolidine bisadduct [1].

$5\left(\mathrm{C}_{7}\right)$	7 (C_{8})	9 (C_{9})	11 (C_{10})	13 (C_{12})	$(-\mathrm{mTEG})_{2}$
160.18	160.12	159.65	159.82	159.02	158.67*
155.92	155.35	156.04	155.97	156.11	156.51*
149.06	149.14	149.15	149.22	149.20	149.28
148.83**	148.84**	148.85**	148.90**	148.82**	148.86**
148.80**	148.81**	148.80**	148.86**	148.75**	148.75**
147.29	147.57	147.49	147.60	147.49****	147.84*
146.75	146.78***	147.17	147.25	,	147.73
146.61**	146.78	147.73**	147.70**	147.69**	147.66**
146.50	146.70	147.03	147.06	147.42	147.49*
146.50	146.65	146.80	146.84	146.93	147.10
146.15	146.65	146.64	146.81	146.83	146.92
145.98	146.36	146.39	146.48	146.43	146.48
145.83	146.31	146.02	146.15	146.08	146.11
145.70	146.09	145.79	145.99	145.69	145.76
145.37	145.78	145.64	145.73	145.66	145.69
145.09	145.46	145.41	145.53	145.61	145.52
145.02	145.24	145.19	145.26	145.27	145.38
144.67	145.14	145.14	145.23	145.12	145.11
144.57	144.60	144.74	144.72	144.76	144.86
144.12	144.53	144.67	144.68	144.58	144.52
144.12	144.12	144.19	144.22	144.37	144.48
143.92	144.02	144.07	144.14	144.13	144.21
143.92	144.01	144.01	144.06	144.00	144.03
142.71	143.10	143.10	143.19	142.97	142.92
141.72	141.53	141.54	141.58	141.56	141.63
140.73	140.82	140.86	140.90	140.89	140.96
137.71	138.66	138.89	138.91	138.83	138.76
133.11	133.87	133.45	133.70	133.80	133.86
132.46	133.05	132.13	132.59	132.91	133.21
129.40**	130.68**	129.20**	130.08**	129.56**	129.34**

* Signals of the $s p^{2}$ fullerene carbons adjacent to functionalized 6,6-bond.
** Carbon signals of the relative intensity 1 (the others are the relative intensity 2).
*** Carbon signal of the relative intensity $3(2+1)$.
**** Carbon signal of the relative intensity $4(2+2)$.
mTEG - triethylene glycol mono methyl ether, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}$

1. K. Kordatos, S. Bosi, T. Da Ros, A. Zambon, V. Lucchini, M. Prato, J. Org. Chem. 2001, 66, 2802-2808.

Table S5. ${ }^{13} \mathrm{C}$ NMR chemical shifts of the fullerene moiety of bridged cis-1, cis-3, eq itrans-4 bisadducts relative to literature values for the corresponding N-mTEG fulleropyrrolidine bisadducts [1].

cis-1		cis-3					$e q$		trans-4	
$4\left(C_{7}\right)$	$(-\mathrm{mTEG})_{2}$	$6\left(C_{7}\right)$	$8\left(C_{8}\right)$	10(C9)	12 (C_{10})	-(mTEG) 2^{-}	$14\left(C_{12}\right)$	-(mTEG) 2^{-}	15 (C_{12})	$(\mathrm{mTEG})_{2^{-}}$
151.97	152.21*	154.70	153.89	153.78	153.68	152.00*	159.21	159.20*	154.14	154.85*
151.42	151.26*	150.10	149.14	149.67	149.81	150.18*	154.54	153.78*	153.43	152.79*
150.20	150.58*	148.85	148.93	149.01	149.03	149.12	153.36	153.23*	152.13	151.55*
149.01	149.08	148.21	148.45	148.53	148.56	148.94*	152.51	152.79*	150.64**	150.90*
148.10	148.20	148.13	148.10	148.25	148.27	148.75	149.60**	149.80**	150.03	150.85**
147.05	147.46	147.85	147.75	148.06	148.06	148.15	148.77	148.85	149.04**	149.52**
146.89	147.14	147.43	147.71	147.78	147.80	147.57	148.05	148.02	148.89	149.22
146.41	146.47	146.64	146.79	146.91	146.96	147.14	147.63**	147.75**	148.57	148.26
146.19**	146.22	146.46	146.52	146.43	146.28	146.29	147.49	147.75	148.17	147.97
146.15	146.14**	146.03	146.15	146.20	146.21	146.05	147.49	147.26	147.10**	147.64**
145.55	145.59	146.02	145.94	146.05	146.05	145.89	147.31	147.20	146.76	147.51
145.37	145.42	145.75	145.86	145.94	145.95	145.85	147.12	146.75	145.99	146.22
145.07	145.15	145.72	145.59	145.67	145.69	145.66	145.94	146.62	145.92	146.10
144.64	145.14	145.53	145.57	145.65	145.59	145.54	145.70	145.71	145.83	146.08
144.26	144.70	144.88	144.96	145.12	145.17	145.34	145.12	145.13	145.62	145.50
144.08	144.35	144.79	144.84	144.95	144.94	145.18	144.97	144.98	145.57	145.01
144.02	144.15	144.68	144.61	144.75	144.77	144.76	144.59	144.66	144.40	144.98
143.81	144.10	142.20	142.97	142.11	143.06	142.35	144.51	144.60	144.02	144.66
143.22	143.86	142.14	142.03	142.10	142.09	142.31	144.32	144.37	142.81**	142.84**
143.09	143.06	141.98	142.02	141.93	142.08	141.86	143.48	143.66	142.32	142.58
142.78**	142.82**	141.50	142.01	141.86	142.06	141.75	143.26	143.20	142.08	142.13
142.46	142.48	141.43	141.66	141.68	141.59	141.46	142.24	142.30	141.72	141.74
142.42**	142.48**	139.63	139.69	139.73	139.75	139.80	141.54	141.71	141.34	141.71
142.37	142.43	138.31	138.11	138.24	138.26	138.56	141.48	141.56	141.29	141.38
142.05	142.06	135.94	136.98	137.14	137.27	136.88	141.15	141.45	141.16	141.21
141.74	141.78	134.62	135.36	134.95	134.98	135.18	140.91	140.68	138.75	139.09
140.84	140.85	134.45	134.59	134.20	133.95	134.17	138.88	139.16	138.48	138.60
137.99**	137.96**	130.70	130.03	130.49	130.59	130.54*	136.58	136.73	136.09	136.07
135.18	135.30						135.70	135.52	135.49	135.41
134.96	135.15								131.19	131.18

* Signals of the $s p^{2}$ fullerene carbons adjacent to functionalized 6,6-bond.
** Carbon signals of the relative intensity 1 (the others are the relative intensity 2).
mTEG - triethylene glycol mono methyl ether, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}$

1. K. Kordatos, S. Bosi, T. Da Ros, A. Zambon, V. Lucchini, M. Prato, J. Org. Chem. 2001, 66, 2802-2808.

NMR spectra of compound 2a.

NMR spectra of compound $\mathbf{2 b}$.
BnOOC

NMR spectra of compound 2c

NMR spectra of compound 2d

NMR spectra of compound 2e

NMR spectra of compound 3a

NMR spectra of compound 3b

$$
\begin{aligned}
& \text { "anif oin oin } \\
& \text { aitatidesinites }
\end{aligned}
$$

NMR spectra of compound 3c

${ }^{\text {couss }}$
隹
comile

NMR spectra of compound 3d

NMR spectra of compound $3 e$

MKN-71, qu-Sugiersien
MKN-71, qu-Sugiersien
AmbNIT-200 teporatu"
AmbNIT-200 teporatu"
Mu.se sevochuce (rrayed
Mu.se sevochuce (rrayed
*)
*)
lol
lol
contimously on
contimously on
*)
*)

NMR spectra of compound 4

NMR spectra of compound 5

NMR spectra of compound 6

NMR spectra of compound 7

NMR spectra of compound 8

NMR spectra of compound 9

NMR spectra of compound 10

NMR spectra of compound 11

NMR spectra of compound 12

NMR spectra of compound 13

NMR spectra of compound 14

NMR spectra of compound 15.

Figure S1: SEM images of the self-organized particles of 7 prepared from different solvents on various substrates at room temperature: PhMe (a: glass substrate, d: Al foil, \mathbf{g} : Si wafer), $\mathrm{PhMe} / i-\mathrm{PrOH}$ (b: glass substrate, \mathbf{e} : Al foil) and $i-\mathrm{PrOH}$ (c: glass substrate, f: Al foil)

Figure S2. Self-organized particles of $\mathbf{7}$ obtained from PhMe solution (left) and from
PhMe/i-PrOH (1:1) mixture (right) at different temperatures.

Figure S3. SEM images of flaked microparticles of 7 obtained from PhMe solution (left) and from PhMe/i-PrOH (1:1) mixture (right) without (a, b) or with (c, d) ultrasound stimuli.

Figure S4. SEM images of cis-2 bisadduct 9 (left) and cis-3 bisadduct 12 prepared from
PhMe solution on glass substrate.

Table S6: Antioxidant capacity of bisadducts 4-15 determined as a percentage of scavenged peroxide. Results are also presented relative to vitamin C and pristine C_{60} as standards. The last two columns present efficiencies relative to

Compound	$\mathrm{H}_{2} \mathrm{O}_{2}$					TBHP				
	Δ (\%)	$\Delta / \Delta_{\text {vitC }}$	$\Delta / \Delta_{\text {c60 }}$	$\begin{gathered} \Delta / \Delta_{\text {vitC }} \\ \times \\ M / M_{\text {vit }} \end{gathered}$	$\Delta / \Delta_{\mathrm{C} 60} \times$ M/Mc60	Δ (\%)	$\Delta / \Delta_{\text {vitC }}$	$\Delta / \Delta_{\text {c60 }}$	$\begin{gathered} \Delta / \Delta_{\text {vitC }} \\ \times \\ M / M_{\text {vitc }} \end{gathered}$	$\Delta / \Delta_{660 \times}$ M/ $M_{\text {c60 }}$
4, cis-1, $n=7$	-17.3	1.3	0.9	6.6	1.1	-16.7	1.4	1.0	7.2	1.2
5, cis-2, $n=7$	-22.5	1.6	1.2	8.2	1.5	-19.3	1.6	1.2	8.2	1.5
6, cis-3, $n=7$	-17.5	1.3	0.9	6.6	1.1	-16.7	1.4	1.0	7.2	1.2
7, cis-2 $n=8$	-22.4	1.7	1.2	8.5	1.5	-22.3	1.9	1.3	9.9	1.6
8, cis-3, $n=8$	-18.7	1.4	1.0	7.1	1.3	-20.6	1.8	1.2	9.2	1.5
9, cis-2, $n=9$	-17.7	1.3	0.9	6.9	1.2	-16.1	1.4	1.0	7.3	1.3
10, cis-3, $n=9$	-13.5	1.0	0.7	5.2	0.9	-11.0	0.9	0.7	5.0	0.9
11, cis-2, $n=10$	-16.8	1.2	0.9	6.6	1.2	-14.9	1.3	0.9	6.8	1.2
12, cis-3, $n=10$	-11.2	0.8	0.6	4.3	0.8	-10.2	0.9	0.6	4.8	0.8
13, cis-2, $n=12$	-16.3	1.2	0.8	6.6	1.1	-15.6	1.1	0.7	6.0	1.0
14, eq, $n=12$	-12.0	0.9	0.6	5.0	0.8	-11.5	1.0	0.6	5.4	0.9
15, trans-4, $n=12$	-11.3	0.8	0.6	4.4	0.8	-8.94	0.8	0.5	4.2	0.7
C_{60}	-19.0	1.4	1.0	5.7	1	-16.7	1.4	1	5.8	1
Vitamin C	-13.7	1.0	0.7	1	0.2	-11.7	1	0.7	1	0.2

