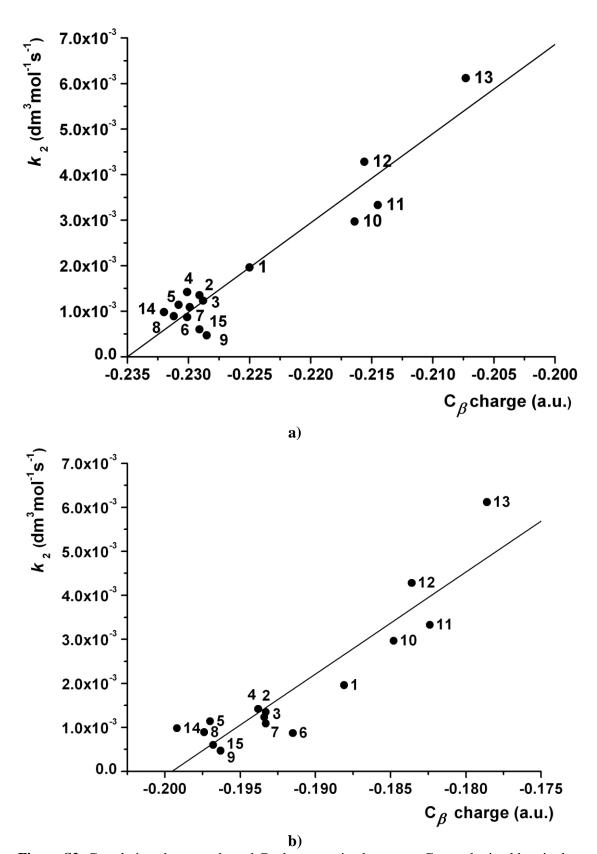
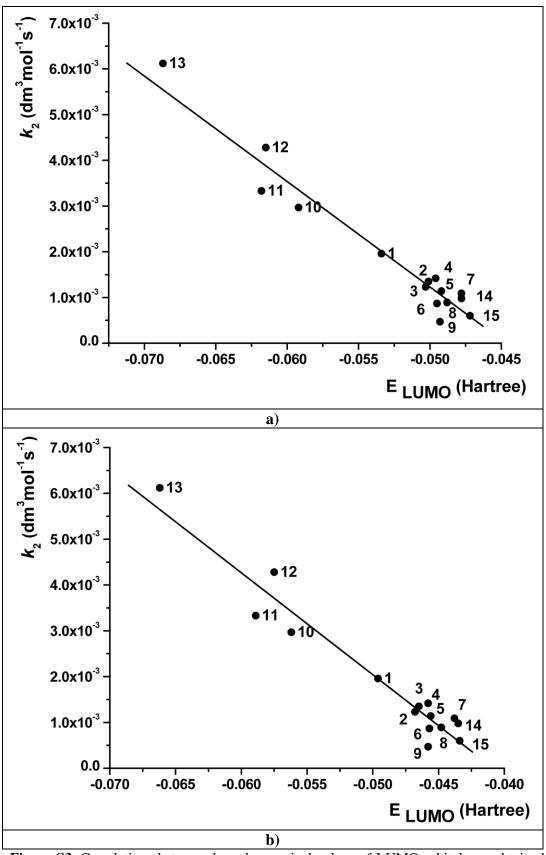

Supplementary data for article:

Cvijetić, I.; Vitorović-Todorović, M. D.; Juranić, I. O.; Drakulić, B. J. Reactivity of (E)-4-Aryl-4-Oxo-2-Butenoic Acid Arylamides toward 2-Mercaptoethanol. A LFER Study.

Monatshefte Fur Chemie 2013, 144 (12), 1815–1824. https://doi.org/10.1007/s00706-013-1084-6

Reactivity of (E)-4-aryl-4-oxo-2-butenoic acid arylamides toward 2-mercaptoethanol. A LFER study


Ilija N. Cvijetić,* Maja D. Vitorović-Todorović, Ivan O. Juranić, Branko J. Drakulić


Figure S1. a) HOMO, and b) LUMO of the compound **1**, as obtained by MP2 calculations. Major part of LUMO orbital is located on Michael acceptor moiety of the molecule.

.

^{*} ilija@chem.bg.ac.rs

Figure S2. Correlations between k_2 and Coulson atomic charges on C_{β} , as obtained by single point calculation by **a**) semiempirical MO PM6 (r = 0.955, n = 15, F = 134.55, slope = 0.1961, intercept = 0.0461), and **b**) semiempirical MO PM7 method (r = 0.918, n = 15, F = 70.14, slope = 0.2317, intercept = 0.0462), using geometries optimized on MP2 level of theory.

Figure S3. Correlations between k_2 and numerical values of LUMO orbitals, as obtained by single point calculation by **a**) semiempirical MO PM6 (r = 0.975, n = 15, F = 253.17, slope = -0.2356, intercept = -0.0106), and **b**) semiempirical MO PM7 method (r = 0.970, n = 15, F = 203.79, slope = -0.2222, intercept = 0.0090), using geometries optimized on MP2 level of theory.

Table S1. Experimental and predicted values of $log(k_R/k_H)$, obtained according to Eq. 3 (Figure 5, main text).

Comp.	$\log(k_{ m R}/k_{ m H})$					
Nºº	Experimental	Predicted				
1	0	0.0378				
2	-0.1619	-0.0986				
3	-0.2024	-0.1077				
4	-0.1400	-0.1440				
5	-0.2354	-0.2364				
8	-0.3429	-0.4002				
9	-0.6202	-0.6714				
10	0.1805	0.0924				
11	0.2302	0.2470				
12	0.3392	0.2470				
13	0.4945	0.5121				
14	-0.3010	-0.2765				
15	-0.5141	-0.4749				

Table S2. Experimentally determined second-order rate constants (k_2 , dm³ mol⁻¹s⁻¹) for the addition of 2-mercaptoethanol to compounds **1-15**, calculated charges on C_{β} in a.u. (Figure 1, main text), and values of HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital) in Hartrees. Calculation obtained in vacuum.

		PM6			PM7			MP2		
Comp. Nº	$k_2 \ (\cdot 10^{-3})$	Coulson Charge C_{β}	номо	LUMO	Coulson Charge C _β	номо	LUMO	Mulliken Charge C _β	номо	LUMO
1	1.96 (±0.11)	-0.2250	-0.3382	-0.0534	-0.1881	-0.3370	-0.0496	-0.2353	-0.3214	0.0212
2	$1.35 (\pm 0.17)$	-0.2291	-0.3370	-0.0501	-0.1933	-0.3359	-0.0465	-0.2362	-0.3204	0.0243
3	$1.23 (\pm 0.10)$	-0.2288	-0.3370	-0.0503	-0.1934	-0.3359	-0.0468	-0.2386	-0.3201	0.0246
4	$1.42 (\pm 0.10)$	-0.2301	-0.3368	-0.0496	-0.1938	-0.3356	-0.0458	-0.2363	-0.3203	0.0245
5	$1.14 (\pm 0.05)$	-0.2308	-0.3364	-0.0492	-0.1970	-0.3354	-0.0456	-0.2372	-0.3199	0.0250
6	$0.87 (\pm 0.03)$	-0.2301	-0.3371	-0.0495	-0.1915	-0.3359	-0.0457	-0.2235	-0.3207	0.0232
7	$1.09 (\pm 0.12)$	-0.2299	-0.3365	-0.0478	-0.1933	-0.3353	-0.0438	-0.2238	-0.3205	0.0250
8	$0.89 (\pm 0.01)$	-0.2312	-0.3363	-0.0488	-0.1974	-0.3351	-0.0448	-0.2372	-0.3197	0.0254
9	$0.47 (\pm 0.03)$	-0.2285	-0.3368	-0.0493	-0.1963	-0.3359	-0.0458	-0.2372	-0.3203	0.0247
10	$2.97 (\pm 0.31)$	-0.2164	-0.3410	-0.0592	-0.1848	-0.3403	-0.0562	-0.2296	-0.3250	0.0137
11	$3.33 (\pm 0.22)$	-0.2145	-0.3416	-0.0618	-0.1824	-0.3408	-0.0589	-0.2293	-0.3253	0.0113
12	$4.28 (\pm 0.51)$	-0.2156	-0.3411	-0.0615	-0.1836	-0.3400	-0.0575	-0.2302	-0.3245	0.0127
13	$6.12 (\pm 0.78)$	-0.2073	-0.3438	-0.0687	-0.1786	-0.3431	-0.0662	-0.2252	-0.3281	0.0033
14	$0.98 (\pm 0.03)$	-0.2320	-0.3304	-0.0478	-0.1992	-0.3306	-0.0435	-0.2388	-0.3111	0.0271
15	$0.60 (\pm 0.01)$	-0.2291	-0.3271	-0.0472	-0.1968	-0.3264	-0.0434	-0.2366	-0.3091	0.0269

Table S3. Statistical values of correlations between rate constants (k_2) and the descriptors obtained from optimized geometries (Charges on \mathbb{C}_{β} atom, HOMO, and LUMO); r – Correlation coefficient, n – Number of compounds in correlation, F – Fischer F test.

	PM6			PM7			MP2		
	Coulson Charge C_{β}	НОМО	LUMO	Coulson Charge C_{β}	НОМО	LUMO	Mulliken Charge C_{β}	НОМО	LUMO
r	0.955, 0.954*	0.959	0.975	0.918, 0.903*	0.951	0.970	0.945	0.953	0.969
n	15	13	15	15	13	15	13	13	15
F	134.55	125.55	253.17	70.14	103.59	203.79	83.41	110.52	196.72

^{*} Correlation coefficient obtained with Mulliken charge