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Summary 27 

The primary enzyme involved in polyphosphate (polyP) synthesis, polyphosphate kinase (ppk), 28 

has been deleted in Pseudomonas putida KT2440. This has resulted in a 3 to 6 fold reduction in 29 

polyhydroxyalkanoate (PHA) accumulation compared to the wild-type under conditions of nitrogen 30 

limitation, with either temperature or oxidative (H2O2) stress, when grown on glucose.  The accumulation 31 

of PHA by Δppk mutant was the same as the wild-type under nitrogen limiting growth conditions.  There 32 

was no difference in polyP levels between wild-type and Δppk strains under all growth conditions tested.  33 

In the Δppk mutant proteome, polyphosphate kinase (PPK) was undetectable but up-regulation of the 34 

polyP associated proteins polyphosphate ATP/NAD kinase (PpnK), a putative polyphosphate AMP 35 

phosphotransferase (PP_1752), and exopolyphosphatase (PPX) was observed.  Δppk strain exhibited 36 

significantly retarded growth with glycerol as carbon and energy source (42 h lag period compared to 24 37 

h in wild-type strain) but similar growth to the wild-type strain with glucose.  Analysis of gene 38 

transcription revealed down-regulation of glycerol kinase (glpK) and the glycerol facilitator (glpF) 39 

respectively.  Glycerol kinase protein expression was also down-regulated in the ∆ppk mutant.  The 40 

deletion of ppk did not affect motility but reduced biofilm formation.  Thus, the knockout of the ppk gene 41 

has resulted in a number of phenotypic changes to the mutant without affecting polyP accumulation. 42 
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 49 

Introduction 50 

Polyphosphate (polyP) is an inorganic polymer composed of chains of tens or hundreds of 51 

phosphate (Pi) residues linked via high energy phosphoanhydride bonds (Kulaev, 1975).  PolyP is 52 

produced through the action of the polyphosphate kinase enzyme (PPK) which is encoded by the ppk gene 53 

(Achbergerová and Nahálka, 2011).  PolyP has been implicated in several roles in bacteria including as a 54 

substitute for ATP for the phosphorylation of various sugars, nucleosides, coenzyme precursors and 55 

proteins with its levels fluctuating according to nutritional availability (Skorko, 1989; Kuroda and 56 

Kornberg, 1997; Kornberg et al., 1999).  This has led to suggestions that it is likely a regulatory molecule 57 

(Kulaev et al., 1999).  The role of polyP in stress response has been extensively reported for Escherichia 58 

coli and Pseudomonas aeruginosa (Rao et al., 1998; Rashid and Kornberg, 2000; Tsutsumi et al., 2000; 59 

Fraley et al., 2006; Brown and Kornberg, 2008; Schurig-Briccio et al., 2009,). 60 

We have previously described the dual accumulation of both polyP and the biodegradable carbon-61 

based polymer medium chain length PHA (mcl-PHA), in a number of Pseudomonas strains including the 62 

biotechnologically important strain P. putida KT2440 (Tobin et al., 2007).  Both polymers are 63 

accumulated concurrently for the first 24 h of growth after which time polyP is degraded but mcl-PHA 64 

accumulation continues.  In an attempt to determine if the polyP accumulation is critical or benefits mcl-65 

PHA accumulation, as is the case for polyhydroxybutyrate (PHB) (Smolders et al., 1995; Mino et al., 66 

1998), in this work, we have deleted the ppk gene in P. putida KT2440.  Such a gene deletion has been 67 

shown to dramatically reduce polyP levels in E. coli and P. aeruginosa (Fraley et al., 2006; Schurig-68 

Briccio et al., 2009).  However, the ppk gene deletion mutant of P. putida KT2440 accumulated normal 69 

levels of polyP.  This finding provided us with a unique opportunity to study the effect of the ppk gene 70 

deletion on the physiology of P. putida KT2440 cells accumulating normal levels of polyP under normal 71 

growth and stressful conditions.  We have previously shown that stress proteins were up-regulated during 72 

mcl-PHA accumulation (Nikodinovic-Runic et al., 2009) and thus wished to examine the ability of the 73 

ppk mutant to accumulate PHA under stress conditions. 74 A
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Recently, Escapa and co-workers suggested the phosphorylation state of a carbon substrate, 75 

glycerol, affected the lag period of growth for P. putida KT2440 on this substrate (Escapa et al., 2013).  76 

The metabolism of carbon substrates such as glucose and glycerol involve phosphorylation, for instance, 77 

the first step in glycerol metabolism is the phosphorylation of glycerol to glycerol-3-phosphate 78 

(Schweizer et al., 1997).  In order to gain insight into the effect of ppk gene deletion on carbon 79 

metabolism we examined the growth of the mutant on glycerol and glucose.  Therefore, the current 80 

manuscript describes a global physiological effect of ppk gene deletion with mcl-PHA accumulation, 81 

stress response, and carbon metabolism affected in P. putida KT2440 cells accumulating normal levels of 82 

polyP. 83 

 84 

Results and discussion 85 

Effect of ppk deletion on polyP accumulation 86 

It was vital to determine if the ∆ppk mutant was still capable of producing the polyP polymer in 87 

the absence of a functioning PPK enzyme.  As polyP is associated with stress response, levels were 88 

determined under oxidative and temperature stress as well as under non-stress and limited phosphate 89 

conditions.  Relative polyP accumulation by wild-type and mutant strains were analysed at various 90 

starting concentrations of KH2PO4 (0.07, 1, 10, 36 mM) over a 48 h period (Fig. 1A).  Despite the 91 

knockout of the ppk gene, the mutant was still capable of accumulating polyP.  Both wild-type and mutant 92 

strain accumulated 2 fold and 4 fold higher levels of polyP respectively, with 0.07 mM phosphate in the 93 

medium compared to other concentrations (1, 10, 36 mM).  In general polyP levels of wild-type and 94 

mutant were shown to accumulate over the first 15 h of growth and reached a maximum at 24 h before a 95 

gradual decline over the second 24 h (Fig. 1B).  While certain growth conditions reduced polyP levels, 96 

there were broadly similar for both ∆ppk mutant and wild-type after 48 h of growth under oxidative and 97 

temperature stress (Fig. 2A and Fig. 2B) and non-stress (Fig. 1A and Fig. 1B) growth conditions.  The 98 

one exception was that the mutant strain (∆ppk) accumulated 1.8 fold less polyP compared to the wild-99 A
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type strains after 48 h of incubation at 37 °C (Fig. 2B). Deletion of the ppk gene in other bacteria such as 100 

P. aeruginosa and E. coli has been shown to reduce polyP accumulation compared to the wild-type strain 101 

and have a negative effect on bacterial survival, stress response (Rao and Kornberg, 1996), biofilm 102 

formation and motility (Shi et al., 2004).  Interestingly the knockout of the ppk gene in P. putida KT2440 103 

did not affect the level or profile of polyP accumulation over time (Fig. 1B). 104 

To elucidate how the mutant was capable of producing polyP without a functioning PPK, various 105 

proteins associated with the metabolism of polyP were targeted for the expression analysis.  No 106 

production of the PPK protein was detected in the ∆ppk mutant at any stage of growth with glycerol (Fig. 107 

3, Supporting Table 1).  However, several polyP associated proteins were up-regulated in the ∆ppk mutant 108 

during mid and late log phases of growth.  These included a probable inorganic polyphosphate/ATP-NAD 109 

kinase, a polyphosphate:AMP phosphotransferase and exopolyphosphatase (PPX) (Fig. 3, Supporting 110 

Table 1).  A subset of 30S ribosomal proteins, used as controls, were unaffected by the ppk knockout 111 

(Supporting Table 1). 112 

It is possible that these proteins are up-regulated in the absence of a functioning PPK and may 113 

explain why the polyP polymer is still produced in the mutant.  Itoh and Shiba (2004) reported that AMP 114 

phosphotransferases can form polyP in vitro and thus the replacement of PPK activity is possible by AMP 115 

phosphotransferase.  The presence of elevated levels of exopolyphosphatase in the mutant is surprising as 116 

polyP levels are the same as wild-type (Fig. 1AB).  The up-regulation of a hydrolysing enzyme in a cell 117 

accumulating polyP would promote a futile energy consuming cycle.  It may be possible that the PPX can 118 

catalyse a reverse reaction and produce polyP however this has not been reported in other bacteria to date 119 

(Akiyama et al., 1993; Wurst and Kornberg, 1994).  Importantly, no detectable level of PPK protein or 120 

ppk gene transcript was observed in the proteomic and transcription analysis. 121 

 122 

Effect of ppk deletion on PHA accumulation 123 

PolyP has been implicated in stress response and adaptation.  In order to understand the effect of 124 

the ppk knockout we examined the ability of the Δppk mutant to accumulate the important biopolymer 125 A
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PHA under both non-stress and stress conditions (oxidative and temperature), in comparison to the wild-126 

type. 127 

Under non-stress conditions, with glucose present as sole carbon source in the presence of 128 

limiting nitrogen concentrations, the wild-type strain produced 0.62 g l-1 cell dry weight (CDW) and 35 % 129 

PHA (0.25 g l-1). The mutant grew to similar levels (0.65 g l-1) and produced PHA to 32 % (0.21 g l-1). 130 

While both the wild-type and mutant showed a decrease in PHA accumulation in the presence of 131 

0.5 mM H2O2 the mutant strain (∆ppk) accumulated 6 fold less PHA compared to the wild-type strain 132 

(Fig. 4A).  Under the same growth conditions, the ∆ppk mutant strain achieved 1.4-fold lower biomass 133 

compared to the wild-type (Fig. 4C).  When the hydrogen peroxide (H2O2) concentration was increased to 134 

1 mM both strains were dramatically inhibited in growth and no detectable PHA was accumulated due to 135 

low biomass (Fig. 4AC).  136 

PHA accumulation in the ∆ppk mutant was 2.1 and 3.0 fold lower compared to the wild-type 137 

strain at 20 °C and 37 °C respectively when supplied with glucose as the sole carbon and energy source 138 

(Fig. 4B).  Both, wild-type and ∆ppk mutant strains, accumulated similar levels of PHA at 25 °C and 30 139 

°C with glucose as carbon source.  No significant difference in biomass was observed between both 140 

strains at any of the temperatures tested after 48 h of incubation with glucose as the carbon and energy 141 

source (Fig. 4D). Furthermore, both wild-type and mutant strains were found to have similar growth 142 

characteristics when grown on glucose under nitrogen limitation (Supporting Fig. 1), implying that the 143 

reduced PHA accumulation of the mutant under conditions of dual stress is not due to delayed growth.    144 

We have previously reported the production of stress proteins by P. putida CA-3 during PHA 145 

accumulation (Nikodinovic-Runic et al., 2009) and the negative impact of deletion of a stress protein Clp 146 

protease subunit ClpA on PHA accumulation (Goff et al., 2009).  While inorganic nutrient limitation is 147 

considered a stress, alone it is insufficient to reduce the PHA accumulating capacity of the ∆ppk mutant.  148 

However, the presence of an additional stress (e.g. temperature, H2O2) negatively impacts PHA 149 A
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accumulation by the ∆ppk mutant far more than the wild-type strain (Fig. 4A and Fig. 4B) suggesting that 150 

the ppk gene product plays a role in PHA accumulation from glucose under conditions of dual stress. 151 

 152 

Effect of ppk deletion on glycerol metabolism 153 

Glycerol is an important carbon source for the production of biological polymers such as PHA.  154 

Its metabolism in P. putida is reliant on phosphorylation by the action of glycerol kinase.  Accumulation 155 

of glycerol-3-phosphate up-regulates glycerol metabolism by interacting with the negative regulator GlpR 156 

(Schweizer and Po, 1996).  This step is rate limiting and contributes to a long lag phase (over 24 h) when 157 

P. putida was grown in the presence of glycerol (Fig. 5A).  Due to the importance of this phosphorylation 158 

step we examined the link between polyP and glycerol metabolism with regard to PHA accumulation. 159 

When grown in the presence of 20 mM glycerol the ∆ppk mutant achieved 0.17 g l-1 of biomass 160 

compared to 0.59 g l-1 for the wild-type strain after 48 h of incubation (Fig. 5A).  There was a 161 

significantly prolonged lag phase of 42 h for the ∆ppk mutant. In addition the ∆ppk mutant was unable to 162 

produce any PHA polymer over this time (Fig. 5B).  Transcription levels for key glycerol metabolic genes 163 

were determined by quantitative PCR and compared between wild-type and ∆ppk strains during early-log 164 

growth.  All values are given as fold changes for the mutant compared to the wild-type levels using rpoN 165 

sigma factor as the internal control.  It was found that glpK (glycerol kinase) was down-regulated 2.0 fold 166 

thus potentially retarding the formation of glycerol-3-phosphate.  The glpF (glycerol uptake facilitator) 167 

was also down-regulated 2.5 fold in the ∆ppk mutant compared to the wild-type which could have serious 168 

implications on glycerol uptake rate and is likely to play a role in the elongated lag phase observed for the 169 

∆ppk strains.  Previously a glpF transposon knockout in E. coli was seen to have a glycerol transport 170 

negative phenotype (Sweet et al., 1990). The glpD (glycerol-3-phosphate dehydrogenase) gene was 171 

down-regulated 1.4 fold in the mutant.  However, this fold difference may be too low to be considered as 172 

biologically relevant.   173 A
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Proteomic analysis revealed that the glycerol kinase protein was down-regulated throughout mid 174 

and late log stages of growth (Fig. 3, Supporting Table 1).  According to spectral count estimation the 175 

glycerol dehydrogenase protein was expressed to the same levels in the wild-type and ∆ppk mutant at 176 

early log growth and at higher levels in the ∆ppk mutant in the mid and late log phase of growth 177 

(Supporting Table 1).  However the highest expression levels of the dehydrogenase enzyme in the ∆ppk 178 

mutant (late log) and wild-type (mid log) were the same.  The production levels of both proteins correlate 179 

well with the observed transcript data mentioned above during early log growth, however, the GlpF 180 

protein was not detected during expression analysis.  A subset of 30S ribosomal proteins were used as 181 

controls and were unaffected by the ppk knockout (Supporting Table 1). 182 

  183 

Complementation of ∆ppk mutant 184 

In order to ensure that the phenotypic effects observed were not related to polar effects due to the 185 

mutagenesis process, a complemented strain of the ∆ppk mutant was generated by expressing the ppk 186 

gene on a broad host range expression vector pJB861in the ∆ppk mutant. P. putida KT2440 ∆ppk 187 

complemented mutant grew to 86 % of the wild-type CDW (Supporting Fig. 2A) in the presence of the m-188 

toluic acid inducer and 20 mM glycerol and recovered just under half of the PHA accumulating ability of 189 

the wild-type (Supporting Fig. 2B). The P. putida KT2440 ∆ppk mutant failed to reach higher levels of 190 

biomass or PHA in the presence of the inducer compared to the control (no inducer). 191 

 192 

Effect of ppk deletion on biofilm development and motility 193 

PolyP is reported to have a significant impact on bacterial biofilm development (Fraley et al., 194 

2006) and motility (Rashid et al., 2000).  However, P. putida KT2440 ∆ppk accumulates normal levels of 195 

polyP at 30 °C and thus it provided an opportunity to examine the effect of ppk gene deletion, in the 196 

presence of polyP, on biofilm formation and motility.  Biofilm formation was 1.6 fold lower for the ∆ppk 197 

mutant compared to wild-type when incubated for 48 h on MSM supplemented with 0.4 % glucose at 30 198 A
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°C (Supporting Fig. 3).  However, motility was unaffected as both wild-type and ∆ppk mutant exhibited 199 

similar motility to each other at all temperatures tested with motility highest for both strains at 30 °C 200 

(Supporting Fig. 4). 201 

 202 

Conclusion 203 

Since PHA accumulation is affected in the ∆ppk mutant it suggests that the accumulation of 204 

polyP and mcl-PHA are not interdependent in P. putida KT2440 which differs from short chain length 205 

PHA (PHB) and polyP where accumulation in cells is interdependent (Lee and Choi, 1999).  In the ∆ppk 206 

mutant strain a number of cellular functions are compromised (stress response, PHA accumulation, and 207 

glycerol metabolism), gene transcription reduced (glpf, glpk), and protein expression altered (GlpK, PPX, 208 

PpnK) suggesting that the ppk gene or its product in P. putida KT2440 has a regulatory function. The 209 

same levels of polyP in the Δppk mutant and wild-type under stress and non-stress growth conditions 210 

suggests there is either not a link between the ppk gene and polyp accumulation or other genes or proteins 211 

can substitute for the role of polyphosphate kinase in P. putida KT2440. 212 

 213 
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