Supplementary data for the article:

García-Fernández, P.; Aramburu, J. A.; Moreno, M.; Zlatar, M.; Gruden-Pavlović, M. A Practical Computational Approach to Study Molecular Instability Using the Pseudo-JahnTeller Effect. Journal of Chemical Theory and Computation 2014, 10 (4), 1824-1833. https://doi.org/10.1021/ct4011097

Supporting Information for:

A Practical Computational Approach to Study

Molecular Instability Using the Pseudo Jahn-Teller

Effect

Pablo García-Fernández ,,, \dagger Jose Antonio Aramburu, ${ }^{\dagger}$ Miguel Moreno, ${ }^{\dagger}$ Matija Zlatar, ${ }^{\ddagger}$ and Maja Gruden-Pavlović ${ }^{〔}$

Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Santander, Spain, Center for Chemistry, IHTM, University of Belgrade, Belgrade, Serbia, and Faculty of Chemistry, University of Belgrade, Belgrade, Serbia

E-mail: garciapa@unican.es

[^0]
List of Figures

S1 Calculation of the total contributions to the force constant at LDA level, (left) K_{0} (blue), K_{v} (red) and K_{e} (green) varying the basis quality in NH_{3}; Comparison of the absolute value of K_{v} and K_{e}, varying the basis quality . . s3

S2 Calculation of the orbital contributions for each of the occupied orbitals of NH_{3} to the total force constant for several basis-sets at LDA level of theory . s4

List of Tables

S1 Orbital contributions forNH3 and BH_{3} at GGA (BLYP and PBE)/cc-pvtz level of theory . s5

S2 Contributions of K_{0}, K_{v} and K_{e} to the force constant of the orbital $1 a_{2}^{\prime \prime}$ NH_{3} and their decomposition in kinetic energy, electron-electron repulsion, electron-nuclear interactions at GGA (BLYP and PBE)/cc-pvtz level of theory. s5

Figure S1: Calculation of the total contributions to the force constant at LDA level, (left) K_{0} (blue), K_{v} (red) and K_{e} (green) varying the basis quality along the series cc-pvXz (X=d, t, q, 5,6$)$ in NH_{3}; (right) Comparison of the absolute value of K_{v} and $K_{e}, \Delta K=|K v / K e|-1$ in \% varying the basis quality

Figure S2: Calculation of the orbital contributions for each of the occupied orbitals of NH_{3} to the total force constant for several basis-sets at LDA level of theory

Table S1: Orbital contributions for NH_{3} and BH_{3} at GGA (BLYP and PBE)/cc-pvtz level of theory. The orbital contributions are given per individual orbital, i.e. the e^{\prime} orbital total contribution is twice the one in the table due to the degeneracy. Units are eV / \AA^{2}.

System	Contribution	BLYP				PBE			
		K_{0}	$2 K_{v}$	K_{e}	K	K_{0}	$2 K_{v}$	K_{e}	K
NH_{3}	$1 a_{1}^{\prime}$	58.84	-64.14	39.91	34.61	48.24	-64.02	39.97	24.18
	$2 a_{1}^{\prime}$	84.35	-110.52	40.69	14.53	80.13	-110.09	43.58	13.62
	$1 e^{\prime}$	107.29	-153.53	90.17	43.93	103.76	-152.93	94.85	45.68
	$1 a_{2}^{\prime \prime}$	171.84	-322.55	147.23	-3.49	168.69	-324.09	153.58	-1.83
	Nuclear	-150.88	0.0	0.0	-150.88	150.88	0.0	0.0	-150.88
	DFT XC	0.0	0.0	14.07	14.07	0.0	0.0	20.18	20.18
	Total	378.74	-804.28	422.24	-3.30	353.70	-804.07	447.01	-3.37
BH_{3}	$1 a_{1}^{\prime}$	26.87	-24.16	12.18	14.89	24.77	-24.17	12.14	12.74
	$2 a_{1}^{\prime}$	30.11	-28.70	8.22	9.62	29.12	-28.35	8.80	9.56
	$1 e^{\prime}$	55.49	-73.29	20.77	20.77	54.24	-72.29	39.27	21.22
	Nuclear	-69.15	0.0	0.0	-69.15	-69.15	0.0	0.0	-69.15
	DFT XC	0.0	0.0	9.26	9.26	0.0	0.0	10.03	10.03
	Total	98.83	-199.44	106.79	6.18	93.22	-197.11	109.51	5.62

Table S2: Contributions of K_{0}, K_{v} and K_{e} to the force constant of the orbital $1 a_{2}^{\prime \prime} \mathrm{NH}_{3}$ and their decomposition in kinetic energy (T), electron-electron repulsion $\left(V_{e e}\right)$, electron-nuclear interactions $\left(V_{e n}\right)$ at GGA (BLYP and PBE)/cc-pvtz level of theory. Units are eV / \AA^{2}.

		k_{0}	$2 k_{v}$	k_{e}	k
BLYP	T	125.05	-308.90	178.27	-5.58
	$V_{e n}$	94.13	-51.65	-22.47	20.01
	$V_{e e}$	-47.35	38.00	-8.58	-17.93
	Total	171.84	-322.55	147.23	-3.50
PBE	T	126.18	-310.92	167.03	-17.71
	$V_{e n}$	94.11	-51.31	2.99	45.79
	$V_{e e}$	-51.61	38.15	-16.44	-29.90
	Total	168.69	-324.09	153.58	-1.82

[^0]: *To whom correspondence should be addressed
 ${ }^{\dagger}$ Universidad de Cantabria
 ${ }^{\ddagger}$ Center for Chemistry, IHTM, University of Belgrade
 ${ }^{\top}$ Faculty of Chemistry, University of Belgrade

