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Abstract: Nitric oxide synthases (NOS) are the enzymes responsible for nitric oxide (NO) generation. NO is a free radical 

which reacts with various molecules to cause multiple biological effects. It is clear that the generation and actions of NO 

under physiological and pathophysiological conditions are exquisitely regulated and extend to almost every cell type and 

function within the circulation. While the molecule mediates many physiological functions, an excessive presence of NO 

is toxic to cells. The enzyme NOS, constitutively or inductively, catalyses the production of NO in several biological 

systems. NO is derived not only from NOS isoforms but also from NOS-independent sources. In mammals, to date, three 

distinct NOS isoforms have been identified: neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS 

(eNOS). The molecular structure, enzymology and pharmacology of these enzymes have been well defined, and reveal 

critical roles for the NOS system in a variety of important physiological processes. This review focuses on recent 

advances in the understanding of the interactions between NOS enzymes and pathophysiology of cardiovascular diseases 

(CVD) and the role of NO agonists as potential therapeutic agents in treatment of CVD.  
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INTRODUCTION  

 Nitric oxide (NO) is a gaseous lipophilic free radical 
which reacts with various molecules to cause multiple 
biological effects and it is generated by three distinct 
isoforms of nitric oxide synthases (NOS), neuronal (nNOS), 
inducible (iNOS) and endothelial NOS (eNOS) [1-3]. The 
three NOS isoforms have similar enzymatic mechanisms that 
involve electron transfer for oxidation of the terminal 
guanidine nitrogen of L-arginine. These enzymes all require 
several cofactors for proper function, including 
tetrahydrobiopterin (BH4), nicotinamide-adenine-
dinucleotide phosphate (NAD-PH), flavin adenine 
dinucleotide, and flavin mononucleotide. Most of the effects 
of NO, on smooth muscle cells, platelets and cardiac 
myocytes, are mediated through its activation of soluble 
guanylate cyclase (cGMC) and amplifying the production of 
cyclic guanosine monophosphate (cGMP) [4, 5] but the 
increasing evidences indicate that NO mediates its effects 
also, through cGMC-independent mechanisms [5, 6]. NO 
reacts exclusively with other paramagnetic species, such as 
other radicals or metal centers, due to the presence of an 
unpaired electron [7]. It can react with reactive oxygen 
species (ROS) such as superoxide anion ( O2

.- 
) to form more 

active intermediate, such as peroxynitrite, in reaction that is 
six time faster than the dismutation of O2

.- 
by superoxide 

dismutase (SOD) [3, 8]. Peroxynitrite directly oxidises 
cysteine and tryptophan, while modification of lysine, and  
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arginine probably occurs via secondary reactions with lipid 

hydroperoxide radicals [3, 9]. NO, unlike other intracellular 

molecules, is freely diffusible and influences a number of 

biosynthetic, metabolic, signaling and membrane transport 

processes [10]. NO dilates the vascular tree and inhibits 

platelet aggregation, thrombus formation, leukocyte 

adhesion and vascular proliferation [11]. Exogenous and 

endogenous NO [12] inhibits vascular smooth muscle cell 

(VSMC) proliferation [11] and migration [12]. Reduced NO 

bioavailability is implicated in the development of vascular 

diseases, although it is poorly understood whether this is a 

cause of, or result of endothelial dysfunction (ED) or both 
pathogenic events [3, 13, 14]. 

 The existing knowledge on the role of NO in 

physiological and pathophysiological states has opened up a 

wide range of possibilities, especially in our understanding 

of the mechanisms of actions of drugs that modulate NO 

action. The high level of inducible NO is thought to be a 

major factor in the severe hypotension that characterizes the 

toxic shock syndrome. The role of NO and NOS in 

regulating vascular physiology, through neuro-hormonal, 

renal and other non-vascular pathways, as well as direct 

effects on arterial smooth muscle, appear to be more intricate 

than was originally thought. This review will focus on NOS 

and NO roles in endothelial dysfunction and chronic heart 

failure (CHF), as opposite extremes of NO bioavailability: 

decreased in endothelial dysfunction and increased in CHF. 

In addition review will discuss the recent studies of drugs 

and supplements that modulate NO bioavailability and their 

application as a potential therapeutic agent in treatment of 
aforementioned CVD. 
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ROLE OF NO IN ENDOTHELIAL DISFUNCTION  

 Most commonly, ED is characterized by an impaired NO 
bioavailability due to reduced production of NO by NOS or 
increased breakdown by ROS and it occurs early in the 
development of atherosclerosis [15, 16]. Cardiovascular risk 
factors are often associated with ED [14], which is also 
prognostic for occurrence of cardiovascular events. ED links 
CVD to pediatric chronic kidney disease because ED plays a 
major role in the development of CVD [17]. Endothelium-
dependent vasodilatation is mediated by NO, prostacyclin, 
and an endothelium-derived hyperpolarising factor (EDHF), 
and involves small (SK) and intermediate (IK) conductance 
Ca

(2+)
-activated K

(+) 
channels. Opening of SK and IK 

channels is associated with EDHF-type vasodilatation, but, 
through increased endothelial cell Ca

(2+)
 influx, L-arginine 

uptake, and decreased ROS production, it may also lead to 
increased NO bioavailability and endothelium-dependent 
vasodilatation. Therefore, SK and IK channels may be drug 
targets for the treatment of endothelial dysfunction in 
cardiovascular disease [18].  

 NO produced by three different isoforms of NOS widely 
expressed in virtually all vascular cell types is mostly 
produced by the eNOS in endothelial cells where it plays a 
crucial role in vascular tone and structure regulation [19]. It 
also exerts an anti-inflammatory influence, inhibits platelets 
adhesion and aggregation, and prevents smooth muscle cells 
proliferation and migration [19]. Because of this, the loss of 
NO production and bioactivity could explain why diverse 
pathological conditions such as hypercholesterolemia, 
hypertension, diabetes and cigarette smoking are all 
considered risk factors for atherosclerosis [20].  

 NO is released by endothelial cells mainly in response to 
shear stress, but also by many other molecules such as 
acetylcholine, bradykinin, thrombin, adenosine diphosphate 
(ADP), phosphodiesterase type 5 (PDE5) inhibitors and 
nitrovasodilators among others, leading to a relaxation of 
VSMC [16, 21-29]. There are also exogenous sources of NO 
that could influence its availability via nitrites, S-
nitrosothiols, N-nitroso proteins and iron nitrosyl complexes 
[30]. 

 The endothelium possesses all three NOS isoforms, 
eNOS, nNOS and under certain conditions, for example 
inflammation, has the capacity to express iNOS [3, 31, 32]. 
eNOS is only fully functional in a dimeric form, and the 
functional activity of the eNOS dimer is dependent on the 
number of bound tetrahydrobiopterin (BH4) molecules [33]. 
Tsutui et al. provided a novel concept of the diverse roles of 
eNOSs system mainly contributing to the endothelium-
derived hyperpolarizing factor /H2O2 responses in 
microvessels while serving as a NO-generating system in 
large arteries [32]. 

 There are many inhibitors of biological activity of NO, 
such as monocytes, decreased L-arginine uptake, decreased 
co-factors (Ca

2+
, calmodulin, BH4), inhibition of electron 

flow (nicotinamide adenine dinucleotide phosphate-oxidase 
(NADPH), flavins), inhibition of NOS expression, inhibition 
of substrate binding to NOS and NO scavengers [20]. Also 
increased ROS concentrations (e.g. superoxide anion) reduce 
the amount of bioactive NO and form toxic peroxynitrite. 
Peroxynitrite in turn, can "uncouple" endothelial NO 

synthase to become a dysfunctional superoxide-generating 
enzyme that contributes to vascular oxidative stress [34]. 
Beside them, some oxidation products of NO with ROS and 
thiols, such as nitrite, S-nitrosothiols and N-nitroso proteins 
are nowadays regarded as physiological storage pool of NO 
since these reactions are reversible and this can change an 
image of NO being “ paracrine” factor [30, 35]. Among all 
of them, a lot of attention in recent years is focused on BH4 
bioavailability and its role as an essential cofactor for 
optimal NOS production of NO [36]. Hence in this section 
we will discuss recent advancements on BH4 role and NO 
bioavailability in relation to ED. 

 BH4 is a critical cofactor for all 3 isoforms of NOS and 
is involved in the reduction of the heme iron of the enzyme 
to ultimately form an iron-oxy species that hydroxylates L-
arginine to produce NO. In the absence of BH4, the NOS 
enzymes produce superoxide rather than NO, a situation 
referred to as NOS uncoupling [36, 37]. Oxidation of BH4 
leads to eNOS uncoupling in a variety of other disease states 
including atherosclerosis, myocardial infarction, and 
diabetes [38-41]. Recent in vitro studies with purified eNOS, 
implicated it as an important source of vascular ROS 
production [41] . However, in the intact cell, BH4 depletion 
alone does not appear to be sufficient of an insult to trigger 
eNOS uncoupling. Increased levels of the BH4 oxidation 
product dihydrobiopterin (BH2), rather than BH4 depletion 
alone, is the molecular trigger for NO insufficiency and 
eNOS uncoupling. As such, there are three states of eNOS in 
regard to the biopterin cofactor: BH4-eNOS (the functional 
NO synthase), BH2-eNOS, and biopterin-free eNOS, both of 
which are uncoupled- eNOS, which have oxidase activity 
[41].  

 It is becoming increasingly clear that oxidative stress and 
perturbation of redox equilibrium in the endothelium, are of 
central importance for NOS activity and NO production [42] 
and that it can be seen and evaluated by redox balance of 
biopterin cofactors. One mechanism of BH4 oxidation is 
through laminar shear stress that acutely stimulates 
endothelial production of NO and over the long term 
enhances eNOS gene expression [43]. It has been shown that 
BH4 deficiency and NOS uncoupling likely contribute to the 
vascular inflammation and abnormal cytokine milieu 
induced by disturbed flow without affecting systemic 
immune cell numbers. The other mechanism of BH4 
oxidation and subsequent NOS uncoupling is via O2

._ 

produced by NADPH oxidases activated through oscillatory 
shear stress. ROS produced by uncoupled NOS could further 
activate NADPH oxidases, in a feed-forward fashion and 
that could contribute to ROS production throughout the 
vessel wall. Oral BH4 supplementation prevented NOS 
uncoupling and improved endothelial function in the carotid 
exposed to disturbed flow induced by partial carotid ligation 
[36]. These findings highlight a pivotal role of BH4 
deficiency and NOS uncoupling in atherosclerosis 
progression, particularly under the patterns of low and 
oscillatory shear flow, and indicate that modulation of 
vascular BH4 levels could be a therapeutic target for 
preventing atherosclerosis at branches and curvatures in the 
arterial tree. [36]. Opposite to that, studies in humans and 
laboratory animals have shown that the shear stress induced 
by physical exercise is a powerful stimulant for the release of 
vasorelaxing factors produced by the vascular endothelium, 
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such as NO and the EDHF, resulting in a decrease of arterial 
pressure levels [14]. 

 There is extensive evidence that thiols potentiate eNOS 
activity and alleviate oxidative stress [44, 45]. NOS 
uncoupling induces oxidative stress and has previously been 
shown to occur with depletion of L-Arginine or BH4 and 
elevation of methylarginine levels [46-49]. It has been 
reported that eNOS possesses specific redox-sensitive thiols 
that are readily S-glutathionylated in endothelial cells and 
vessels with marked endothelial dysfunction and 
hypertension [50]. This oxidative modification switches 
eNOS from its classical NO synthase function to that of an 
NADPH-dependent oxidase generating O2

.
. Because NO and 

O2
.
 have many opposing roles in cell signalling and vascular 

function [50], S-glutathionylation of eNOS will trigger 
profound changes in cellular and vascular function and will 
mediate redox-signalling under oxidative stress. 
Therapeutics with thiol-reducing properties can therefore 
now be developed and refined as potent drugs for reversing 
ED and ameliorating hypertension and other cardiovascular 
disease [51]. Therapeutically, drugs in clinical use such as 
angiotensin-converting enzyme (ACE) inhibitors, 
angiotensin II type 1 (AT1) receptor blockers, and statins 
have pleiotropic actions that can improve endothelial 
function. Also, dietary polyphenolic antioxidants can reduce 
oxidative stress [34]. 

 There is a whole relatively new area of research that 
investigates a beneficial role of red wine on cardiovascular 
system. The protective effect most likely involves the ability 
of red wine polyphenols (RWPs) to reduce vascular 
oxidative stress possibly by preventing the upregulation of 
NADPH oxidase and the angiotensin system [52]. Direct 
incubation of endothelial progenitor cell (EPC) with RW and 
resveratrol can modify the functions of EPC, including 
attenuation of senescence and promotion of EPC adhesion, 
migration, and tube formation. These data suggest that RW 
ingestion may alter the biology of EPC, and these alterations 
may contribute to its unique cardiovascular protective effect 
[53].  

 The availability and transport of L-arginine modulate 
rates of NO biosynthesis in circulating blood cells and 
vasculature, which provides a protective effect against 
cardiovascular diseases. Growing evidence shows that 
depression is a risk factor for the development of coronary 
artery disease (CAD). In depressive patients, the L-arginine-
nitric oxide pathway seems to be impaired. Further clinical 
studies are needed to confirm the beneficial effects of L-
arginine uptake on amelioration of symptoms in patients 
with CAD and depression [54]. 

 Variations in the eNOS gene could have a plethora of 
effects on the enzyme including altered protein stability, 
altered post-translational processing such as acylation or 
phosphorylation, altered intracellular distribution or altered 
cofactor association: all of which could influence the 
enzymatic activity [3]. Among the genes that may potentially 
influence the onset and the progression of CVD, there are 
those controlling the following: renin-angiotensin-
aldosterone system (RAAS), adrenergic receptors, 
paraoxonases, endothelin and NOS [55]. There are also 
recent emerging evidences that gene NOS3 polymorphism is 
associated with increased risk in certain CVD patient groups 

as well as in patients suffering from nephropathy and 
diabetes. For example, The 894T and 786C alleles of the 
NOS3 gene are significantly associated with both 
hypertension and CVD in renal allograft recipients [56]. In 
addition, The G894T polymorphism of the eNOS gene is 
associated with severity of renal disease and the presence of 
the 894T allele aggravated renal damage and increased the 
incidence of CVD in Tunisian CRD patients [57]. Gonzales 
et al. showed that NOS2A or NOS3 gene polymorphisms do 
not infer a direct risk for CV events in rheumatoid arthritis. 
However, some interactions between NOS gene 
polymorphisms and HLA-DRB1 alleles confer an increased 
risk of developing CV events in patients with rheumatoid 
arthritis [58]. NOS3-gene may be involved in the 
development of diabetic nephropathy in patients with type 1 
diabetes and can be predictive of CVD during follow-up 
[59]. On the other hand, the need for large-scale genetic 
association studies using tagging polymorphisms is 
warranted to confirm or refute a role of the NOS3 gene in 
coronary heart disease [60]. 

NO IN CHF-EFFECTS OF CARVEDILOL  

 CHF is a complex clinical syndrome that can result from 
any structural or functional cardiac or non cardiac disorder 
that impairs the ability of the heart to respond to 
physiological demands for increased cardiac output [61].  

 The role of NO in CHF is complex. On the one hand, 
lack of NO is leading to ED with its detrimental 
consequences including impaired tissue perfusion, 
myocardial ischaemia, and vascular remodeling [35]. On the 
other hand, higher concentrations of NO, which have been 
observed in the failing myocardium, may cause the loss of 
myocytes and inhibit myocyte contractility [62, 63]. 

 High quantities of NO released during septicemia result 
in cardiovascular collapse and eventual death. Previous 
studies have also reported increased myocardial iNOS 
expression and activity in CHF [64, 65]. Indeed, because 
high concentrations of NO attenuate myocyte contraction 
and catecholamine responses [66, 67], one proposed 
mechanism of myocardial dysfunction in CHF is excessive 
NO production secondary to increased inflammatory 
cytokines. In support of this concept, studies have shown 
that NOS blockade improves myocardial beta-adrenergic 
responsiveness [65, 68]. 

 Recent investigations have shown that in failing 
myocardium, chronic beta-adrenergic blockade improves 
myocardial function and left ventricular (LV) remodeling, 
although the cellular mechanisms responsible for these 
salutary effects have not been fully defined [69]. In addition, 
for example, in dogs with pacing-induced cardiac failure [70] 
a reduction in O2 consumption has been observed, and 
consequently, in coronary flow, suggesting a down-
regulation of energy metabolism. It has been also seen that in 
dogs with heart failure (HF), selective iNOS inhibition with 
S-methyl-isothiourea increased LV contractility and oxygen 
consumption at rest and during exercise, indicating that, 
unlike what is observed in normal hearts, in failing hearts 
NO in excess is mainly produced by iNOS rather than by 
eNOS [71]. The increase in coronary blood flow after 
inhibition of the release of NO is clearly due to the 
prevalence of the effect mediated by the increased oxygen 
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consumption on the vessels that would be otherwise 
counteracted by a reduced concentration of NO in the 
vascular wall. From this [72]

 
investigation it seems that the 

reduction in O2 consumption, which may take place in CHF, 
depends on the increased availability of NO [73-75]. It has 
been shown that NO has a negative effect on -adrenergic 
response of ventricular myocardium that appears to be 
enhanced in failing myocardium. Moreover, -adrenergic 
stimulation by isoproterenol increases NO release [73-75] 
and can amplify its depressant modulation. It may then be 
argued that in HF the effect of an increased -adrenergic 
activation on myocardium is attenuated by a sort of negative 
functional feedback. Since a long lasting -adrenergic 
activation is a maladaptive phenomenon, this feedback can 
play a protective role against the progression of CHF [73-
75].  

 Carvedilol, a nonselective beta blocker with antioxidant 
and -adrenergic receptor blocking (‘alpha-blocking’) 
activities, is one of the most effective beta blockers in 
reducing ventricular tachyarrhythmias and mortality in 
individuals with HF [76-80]. The reports on the effect of 
carvedilol on NO production are scarce yet controversial. 
Kurosaki et al. reported that carvedilol stimulated the 
expression of iNOS in cardiac myocytes [81] . In addittion, 
one in vivo study using rats indicated that the drug decreased 
arterial pressure whilst it increased NO production [82]. On 
the other side, Pecivova et al. reported that carvedilol does 
not affect the expression of iNOS by macrophages [83] and 
Yoshioka et al., (2000) demonstrated a novel effect of 
carvedilol as a NO quenching agent. Their results indicate 
that carvedilol directly interacts with NO in a cell-free 
system [84]. 

 In the clinical setting, the effects of carvedilol on NO 
may be diverse depending on the local concentrations of free 
radicals and NO. The proposed antioxidant mechanisms of 
carvedilol include: (1) direct interaction with oxygen 
radicals; (2) prevention of the depletion of intracellular 
antioxidants; (3) attenuation of iron-mediated free radical 
formation [85, 86].  

 The antioxidant and alpha-blocking activities of 
carvedilol have been suggested to contribute to its beneficial 
effects, but the benefits of antioxidants and alpha blockers 
have not been corroborated by clinical studies [87, 88]. Zhou 
et al. found that carvedilol is the only beta blocker tested that 
can effectively suppress arrhythmogenic store overload–
induced Ca

2+
 release that can lead to triggered arrhythmias 

and sudden death [76, 89]. Carvedilol did so by directly 
altering the function of channel ryanodine receptors 2, 
independent of its beta- or alpha-blocking or antioxidant 
activities [76]. 

 Regarding other antioxidants and their potential role in 
ameliorating increased content of NO and ROS in CHF, no 
trials have been identified on the effect of omega-3 capsules 
on morbidity in patients with CHF [90]. One trial of 56 
patients with advanced heart failure indicated that 
supplementation with vitamin E did not result in any 
significant improvements in prognostic or functional indexes 
of heart failure or in quality of life [91]. On the other hand 
Horning et al. were the first to show that acute intra-arterial 
administration or oral intake of vitamin C over a period of 4 

weeks significantly improved flow-mediated dilatation by 
about 50% in patients with CHF [92]. 

 In summary, the overexpression of iNOS and the 
increased production of NO seem to characterize the CHF. 
This is accompanied by an increased ROS production, which 
may lead to ONOO  (peroxynitrite) formation. NO oxide has 
a negative impact on -adrenergic response of ventricular 
myocardium that is enhanced in failing myocardium [85].  

CONCLUSION 

 Increasing knowledge of the role of iNOS in heart has 
stimulated efforts to target NO pathway pharmacologically. 
On the basis of survey presented in this review, we can say 
that NO is a very important “messenger molecule” so far as 
its spectrum of actions is concerned. This molecule plays a 
vital role in a wide variety of pathophysiological and 
biochemical reactions. In summary, NO has been 
acknowledged as a critically important mediator in 
pathophysiology of different cardiac diseases. NO has been 
identified as one of the key targets for novel therapeutic 
interventions to minimize irreversible tissue damage 
associated with CVD. A safer technology to regulate in vivo 
synthesis of NO by generic manipulation would be a 
welcome work.  
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