INSTITUTE OF TECHNICAL SCIENCES OF SASA MATERIALS RESEARCH SOCIETY OF SERBIA

Programme and the Book of Abstracts

TWENTIETH YOUNG RESEARCHERS' CONFERENCE MATERIALS SCIENCE AND ENGINEERING

Belgrade, November 30 – December 2, 2022

4-4

Tris-(nitroacetylacetonato) complexes as new high-energy materials

Danijela S. Kretić¹, Ivana S. Veljković², Nikola Marković¹, Dušan Ž. Veljković¹ ¹University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia; ²University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia

Recent advances in high-energy materials studies have shown that coordination compounds are promising energetic compounds with satisfactory detonation properties and moderate sensitivity. Earlier experimental studies found that the nitro-acetylacetonato aluminum (III) complex easily ignites in the air when heated. Theoretical calculations performed on nitroaromatic explosives revealed that molecular electrostatic potential over the C-NO₂ bonds is a good tool for determining the impact sensitivity of these molecules. Herein, we calculated the molecular electrostatic potential and bond dissociation energies for several nitro-tris(acetylacetonato) complexes. A rough estimation of the electrostatic potential predicts slightly positive electrostatic potentials above the C-NO₂ bonds. These results show that the metal ion replacement may induce the fine adjustment of electrostatic potential above the C-NO₂ bonds in the nitro-chelate complexes. The reported results agree with the calculated bond dissociation energies. These values indicate that introducing the transition metals in the nitro-chelate complexes may increase their sensitivity. However, we also synthesized and characterized the nitro-tris(acetylacetonato) cobalt(III) complex. The UV/VIS and FTIR tests confirmed that the synthesized complex was Co(acac-NO₂)₃. The obtained results agree with the experimental results that Collman et al. reported. The open flame test showed that this complex easily combusts when exposed to the open flame.

Acknowledgments

This research was supported by the Science Fund of the Republic of Serbia, PROMIS, #6066886,CD-HEM.