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Abstract: A three-dimensional QSAR pharmacophore model for antimalarial activ-
ity of steroidal 1,2,4,5-tetraoxanes was developed from a set of 17 substituted
antimalarial derivatives out of 27 analogues that exhibited remarkable in vitro

activity (below 100 ng/mL) against sensitive and multidrug-resistant Plasmodium

falciparum malaria. The pharmacophore, which contains two hydrogen bond accep-
tors (lipid) and one hydrophobic (aliphatic) feature, was found to map well onto the
potent analogues and many other well-known antimalarial trioxane drugs including
artemisinin, arteether, artesunic acid, and tetraoxanes. The presence of at least one
hydrogen bond acceptor in the trioxane or the tetraoxane moiety appears to be neces-
sary for potent activity of this class of compounds. Docking calculations of some of
these compounds with heme are consistent with the above observation as the prox-
imity of the heme iron to the oxygen atom of the trioxane or the tetraoxane moiety
favors potent activity of the compounds. Electron transfer from the oxygen of
trioxane or the tetraoxane appears to be crucial for mechanism of action of the com-
pounds. This information together with the pharmacophore should enable search for
new peroxide containing antimalarial candidates from databases and custom de-
signed synthesis of more efficacious and safer analogues.

Keywords: QSAR; 3D pharmacophore; tetraoxane; malaria, steroids.

INTRODUCTION

Malaria is one of the most dangerous diseases affecting primarily poor people

of tropical and subtropical regions. The death toll of over 1.5 million per year, and

increasing resistance of standard antimalarial drugs, e.g., chloroquine, justifies

WHO’s appeal for delivery of new drug entities.1 The introduction of new anti-

malarial pharmacophore of artemisinin origin2 paved the way for the discovery of
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new lead compounds possessing a peroxide moiety.3 Our own research,4 and of

others,5 revealed a 1,2,4,5-tetraoxacyclohexane (tetraoxane) moiety as one of very

promising antimalarial leads.

We earlier reported that steroidal tetraoxanes possessing two steroidal carriers

show pronouced in vitro antimalarial activity against Plasmodium falciparum,

with the more potent compounds exhibiting IC50 values as low as 9.29 nM.4b In

addition, we recently reported the synthesis and in vitro antimalarial activity of 41

mixed steroidal tetraoxanes from which 12 were found to be more active than

artemisinin on chloroquine-resistant P. falciparum W2 clone, compound 19 (Table

I, Scheme 1) being one of the most potent antimalarials in vitro.4c Introduction of

cholic acid derived tetraoxane carrier resulted in enhanced antimalarial activity, as

compared to simple tetraoxanes, and very low toxicity: the lowest selectivity index

(SI) value being 1400.4b,4c The activity of steroidal tetraoxanes is primarily

shape-dependant. A clear difference between the cis and trans isomers was ob-

served with the bis-steroidal series.4b The mixed steroidal tetraoxanes series with

the (4"R) substituted compounds (Table I) were found to be significantly more ac-

tive than corresponding (4"S) epimers.4c

In the light of the above findings, we set out to identify the quantitative struc-

ture–activity relationships between the compounds, and to build a pharmacophore

model for activity to guide the design and synthesis of well tolerated target specific

peroxide containing antimalarials.

EXPERIMENTAL

Chemicals

Bis-steroidal tetraoxanes (1-8) were prepared in a peroxyacetalization reaction directly from
the corresponding ketone, followed by further functionalization of the C(24) ester group.4b,4f Mixed
steroidal tetraoxanes were obtained by coupling of gem-dihydroperoxides with the corresponding

ketones.4c Structure of the tetraoxanes 1 and 23 was derived by X-ray analyses.4b,4c

Biological testing

The in vitro antimalarial drug susceptibility screen was a modification of the procedures first pub-
lished by Desjardins et al., 6 with modifications developed by Milhous et al.7 In brief, the assay relied on
the incorporation of radiolabeled hypoxanthine by the parasites and inhibition of isotope incorporation
was attributed to activity of known or candidate antimalarial drugs. For each assay, proven antimalarials
were used as controls. The incubation period was 66 h and the starting parasitemia was 0.2 % with a 1 %
hematocrit. The media used was an RPMI-1640 culture media with no folate or p-aminobenzoic acid
(PABA) and 10 % normal heat inactivated human plasma. For quantitative in vitro drug susceptibility
testing, two well-characterized P. falciparum malaria clones were used, W2 and D6.8 W2 is a clone of
the Indochina I isolate and is resistant to chloroquine and pyrimethamine, but susceptible to mefloquine.
D6 is a clone from the Sierra I/UNC isolates and is susceptible to chloroquine and pyrimethamine, but
has reduced susceptibilities to mefloquine and halofantrine.

Drugs were dissolved directly in dimethyl sulfoxide (DMSO) and diluted 400 fold with com-
plete culture media. The compounds were then diluted 2-fold, 11 times, to give a concentration
range of 1,048-fold. These dilutions were performed automatically by a Biomek 1000 or 2000 Liq-

uid Handling System into 96-well microtiter plates. The diluted drugs were then transferred (25 �l)

to test plates, 200 �l of parasitized eryhtrocytes (0.2 % parasitemia and 1 % hematocrit) were added,
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and incubated at 37 �C in a controlled environment of 5 % CO2, 5 % O2 and 90 % N2. After 42 h, 25

�l of 3H-hypoxanthine was added and the plates incubated for an additional 24 h. At the end of the

66-hour incubation period, the plates were frozen at �70 �C to lyse the red cells and later thawed and
harvested onto glass fiber filter mats by using a 96-well cell harvester. The filter mats were then
counted in a scintillation counter and the data downloaded with the custom-made, automated analy-
sis software developed at WRAIR. For each drug, the concentration response profile is determined
and 50 % inhibitory concentrations (IC50) are determined by using a nonlinear, logistic dose re-

sponse analysis program.

METHODS

Method for generation of the 3D QSAR model

The three-dimensionl QSAR model for antimalarial activity of the tetraoxanes

was carried out using the CATALYST 4.8 methodology.9 The version 4.8 in

CATALYST allows the excluded volume as an additional function that can be

added for the automatic generation of the pharmacophore. The structures of 27

steroidal tetraoxanes (Table I) plus artemisinin, arteether, and two other tetra-

oxanes (28 and 29) were edited within CATALYST to create a separate stockroom

of antimalarials of this class of compounds along into the CATALYST and energy

minimized to the closest local minima using the generalized CHARMM-like force

field as implemented in the program. Conformations ranging from 0�84 kJ/mol

were generated for each of the tetraoxanes. Molecular flexibility was taken into ac-

count by considering each compound as a collection of conformers representing a

different area of conformational space accessible to the molecule within a given

energy range. The ”best quality searching procedure” was adopted to select repre-

sentative conformers over a 0�84 kJ/mol range above the computed global mini-

mum. Since this search procedure in CATALYST can generate up to 250 conform-

ers for each molecule within the 84 kJ/mol range, the conformational energy space

generated above the lowest conformation can identify the best 3-dimensional ar-

rangement of chemical functions explaining the activity variations among the

training set. A prerequisite for development of a reliable 3D QSAR model of the

compounds is the correlation of a characteristic and reproducible biological activ-

ity to structural information of the respective compound. The conformational

model of 17 compounds (Table II) including artemisinin and arteether with diverse

activities were taken from the stockroom of the tetraoxanes to create a truly diverse

training set for generation of the pharmacophore that aims to identify the best

three-dimensional arrangement of chemical functions explaining the activity vari-

ations among the training set (Table II). The training set with the in vitro activity

data were used for automatic generation of hypotheses within CATALYST (Hy-

poGen) using several chemical functions such as hydrogen bond acceptor, hydro-

gen bond donor, hydrophobic sites, positive ionizable and aromatic ring sites as the

functional features to describe the antimalarial activity of the compounds. Quan-

tum chemical calculations on the stereoelectronic properties of a few of these com-
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pounds provided a preliminary guidance for the selection of the functional feature

for development of the pharmacophoric model. Pharmacophore generation was
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TABLE I. Determined in vitro activities of tetraoxanes 1 � 27 against P. falciparum D�6

and W�2 strains

Compound D-6 (ng/mL) W-2 (ng/mL)

1 �99.97 �96

2 �99.97 �96

3 �100.31 > 99

4 �100.31 �99

5 23.74 18.79

6 128.58 59.35

7 885.26 417.94

8 254.05 124.62

9 24.3 17.18

10 32.11 13.26

11 13.63 10.77

12 6.48 3.27

13 15.99 8.54

14 18.98 11.93

15 7.33 2.94

16 9.77 4.5

17 15.23 7.45

18 0.97 0.62

19 0.74 0.37

20 3.86 2.34

21 3.84 2.6

22 2.18 2.58

23 19.74 11.26

24 12.7 8.94

25 10.79 7.69

26 10.32 6.57

27 57.41 56.11



carried out by setting the default parameters in the automatic generation procedure

in CATALYST such as function weight 0.302, mapping coefficient 0, resolution

280 pm, and activity uncertainty 3. An uncertainty ”�” in the CATALYST para-

digm indicates an activity value lying somewhere in the interval from ”activity di-

vided by �” to ”activity multiplied by �”. The statistical relevance of the obtained

pharmacophore is assessed on the basis of the cost relative to the null hypothesis

and the correlation coefficient. The pharmacophores are than used to estimate the

activities of the training set. These activities are derived from the best conforma-

tion generation mode of the conformers displaying the smallest root-mean square

(RMS) deviations when projected onto the pharmacophore. HypoGen considers a

pharmacophore that contains features with equal weights and tolerances. Each fea-

ture (e.g., hydrogen-bond acceptor, hydrogen-bond donor, hydrophobic regions,

positive ionizable group, etc.) contributes equally to estimate the activity. Simi-

larly, each chemical feature in the HypoGen pharmacophore requires a match to a
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TABLE II. Estimated and experimentally determined (P. falciparum D6 strain) IC50

(ng/ml) values of the training set compounds

Training set IC50 (expt.) IC50 (predicted) Error*

18 0.97 2.3 2.4

27 57.4 52.0 -1.1

6 128.6 69.0 -1.9

16 9.77 4.1 -2.4

7 885.3 210.0 -4.2

8 254.0 210.0 -1.2

5 23.7 72.0 3.0

10 32.1 30.0 -1.1

9 24.3 15.0 -1.6

1 100 70.0 -1.4

11 13.6 52.0 3.8

Artemisinin 4.7 8.2 1.7

Arteether 2.7 4.5 1.7

19 0.74 2.3 3.1

23 19.7 5.4 -3.6

28 1000 450 -2.2

29 38.0 79.0 2.1

*Values in the error column represent the ratio of the estimated activity to measured activ-

ity, or its negative inverse if the ratio is less than one.



corresponding ligand atom to be within the same distance of tolerance.10 The

method has been documented to perform better than a structure-based pharma-

cophore generation.11

Docking calculations

Docking calculations were performed on the tetraoxanes with heme using the

Affinity module of the Insight II package,12 adopting the ESFF (electrostatic force

field) force field for assigning the potentials of both the ligands and heme. Affinity

is a suite of programs in Insight II for automatic docking of a ligand (guest–19 or

24) to a receptor (host–heme). For a given assembly consisting of a ligand mole-

cule and a receptor molecule, docking procedures in Affinity find out the best bind-

ing structures of the ligand to the receptor based on the energy of the ligand/recep-

tor complex. This is an energy-driven method13 that is particularly useful in struc-

ture-based drug design where the experimentally determined structure of a pro-

tein–ligand complex is unavailable.

The methodology in Affinity uses a combination of Monte Carlo type and sim-

ulated Annealing procedures to dock the guest molecule to the host. A key feature

is that the ”bulk” of the receptor, defined as atoms not in the binding (active) site

specified, is held rigid during the docking process, while the binding site atoms and

ligand atoms are movable. Non-bonded interactions can be calculated in many dif-

ferent ways: a grid based approach developed by Luty et al.,14 a cell multipole ap-

proach, a group based cutoff approach, or a hard sphere steric method without

electrostatics. Furthermore, Affinity allows incorporation of solvation effects by

the method of Stouten et al.15 In addition to the non-bonded interactions, various

empirical penalty terms, a distance based H-bond term, a ligand confining term and

a simple tethering term are included to aid in the process of docking.

The method offers a very flexible and powerful docking protocol that com-

prises elements from Monte Carlo, Simulated Annealing and Minimization. We

present here an overview of how we have carried out the procedure. Firstly, a

roughly docked complex of 19 and its derivative were prepared with heme. Affin-

ity then performs an energy minimization to obtain the starting structure. This step

was designed to remove bad contacts and poor internal geometry in the initial

structure and to obtain a reasonable starting point for subsequent searches.

The ligand is then moved by a random combination of translation, rotation,

and torsional changes. The random movement of the ligand represents both the

conformational space of the ligand and its orientation with respect to the receptor.

This has the advantage of overcoming any energy barrier on the potential energy

surface. Subsequently the method checks the energy of the resulting randomly

moved structure. If it is within the our specified energy tolerance parameter of the

previous minimized structure, it is considered to have passed the first step and the

structure is then subjected to energy minimization, the second step for fine-tuning
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the docking. The final minimized structure is accepted or rejected based on the Me-

tropolis energy criterion as implemented in the software and its similarity to struc-

tures found before. The Metropolis criterion is found to be best suited for finding a

very small number of docked structures with very low energies, while the other en-

ergy range criterion is designed for finding more and diverse structures. In check-

ing structure similarity, the RMS distances between the current structure and struc-

tures found so far are computed for ligand atoms. Since the Affinity module has the

ability to employ different docking methodologies, such as simulated annealing

and dynamics in conjunction with Monte Carlo minimization, after generating ini-

tial structures by the above method, we have further refined these structures with

these procedures.

RESULTS AND DISCUSSION

3D-QSAR pharmacophore development and statistical analysis

The 3D-QSAR pharmacophore model for antimalaral activity of the steroidal

tetraoxanes was found to have two hydrogen bond acceptor (lipid) functions and

one hydrophobic function at a specific geometric location in 3D space (Fig. 1). It

was developed from a set of 17 substituted steroidal tetraoxanes out of 27 deriva-

tives including the parent compound, artemisinin, arteether, and two other tetra-

oxanes as shown in Scheme 1. The biological activity of the 17 compounds covers

a wide range of activity, ranging from an IC50 of 0.74 ng/mL to 1000 ng/mL. Al-

though two P. falciparum malaria parasite clones, designated as Sierra Leone (D6)

and Indochina (W2) were used in the susceptibility testing, we used the IC50 values

obtained from the D6 clones as the activity parameter to develop the phar-

macophore model since the W2 clone results closely paralleled the D6 clones.

The pharmacophore was developed using the CATALYST9 methodology by

placing suitable constraints on the number of available features such as aromatic

hydrophobic or aliphatic hydrophobic interactions, hydrogen bond donors, hydro-

gen bond acceptors, hydrogen bond acceptors (lipid), ionizable sites, aromatic ring

sites, and excluded volume to describe the antimalarial activity of the tetraoxane

336 BHATTACHARJEE et al.

Fig. 1. Pharmacophore for antimala-
rial activity of the steroidal tetraoxa-
nes; two hydrogen bond acceptor func-
tions (green) and one aliphatic hydro-
phobic function (light blue).
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compounds. Quantum chemical calculations on the stereoelectronic properties of a

few of these compounds provided guidance for selection of these physico-chemi-

cal features. During pharmacophore development, the molecules were mapped to

the features with their predetermined conformations generated using the ”fast fit”

techniques in the CATALYST. The procedure resulted in the generation of 10 alter-

native pharmacophores for antimalarial activity of the compounds and appeared to

perform quite well for the training set. The correlation coefficients were found to

be between 0.91 and 0.86 for the ten models, and the RMS values ranged between

0.76 and 0.93. The total costs of the pharmacophores varied over a narrow range

between 79.9 and 81.4 bits. The fixed cost and the null cost for the generation of

the hypothesis are found to be 73.9 and 85.8, respectively, satisfying the acceptable

range recommended in the cost analysis of the CATALYST procedure. However,

due to the low cost range between the first and the tenth model it can be expected

that there is high probability of representing a true correlation of the data. Signifi-

cantly, the best pharmacophore characterized by two hydrogen bond acceptor

(lipid) functions and one hydrophobic function (Fig. 1) is also statistically the most

relevant pharmacophore. The estimated activity values along with the experimen-

tally determined IC50 values for antimalarial activity of the compounds are pre-

sented in Table II. A plot of the experimentally determined IC50 values versus the

calculated activities demonstrates a good correlation (R = 0.91) within the range of

uncertainty 3, indicating the predictive power of the pharmacophore (Fig. 2). The

Fig. 2. Correlation (R = 0.91) line displaying the observed versus estimated IC50 values (ng/mL)

of the training set by using the statistically most significant hypothesis derived from the

W2 activities.



highly potent analogues of the series map all the functional features of the best hy-

pothesis with high scores, whereas the less potent compounds either do not map at

all or map fewer of the features. For example, the more potent analogs of the train-

ing set such as 19 and 24 map well with the statistically most significant pharma-

cophore (Fig. 3a and 3b), whereas the less potent analogues such as 7 and 8 do not

map in the same way as the more potent compounds (Fig. 4a and 4b). It appears

that one of the hydrogen bond acceptors has to be mapped on an oxygen atom of

the tetraoxane moiety in order to be potent. In 7 and 8, although the features of the

pharmacophore map on the molecule, none of the two hydrogen bond acceptors

map on any of the oxygen atoms of the tetraoxane oxygen moiety and perhaps due

to this inadequacy these two tetraoxanes are not as potent as the others.

To cross-validate the observed correlation we prepared a ”test” set of 14 addi-

tional substituted tetraoxanes from the stockroom (Table III, Scheme 1) that were

tested for in vitro antimalarial activity against D6 and W2 clones of P. falciparum

identical to the original training set. However, this set of compounds was not used

for automatic generation of the pharmacophore and thus, was not used in determin-

ing the features of the pharmacophore generated in the original training set.
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Fig. 3. Mapping of the pharma-
cophore on more potent analogu-
es: (a) 19 and (b) 24.

a)

b)



A fairly modest correlation (R = 0.78) was observed when a regression analy-

sis was performed by mapping this test set onto the features of the pharmacophore

(Fig. 5). The estimated and the measured IC50 values for the test set tetraoxanes

along with the respective error ratios are also shown in Fig. 5 and Table III. The ac-

tual activity values are within the limits of uncertainty 3 (Table II), thus demon-

strating the predictive power of the original pharmacophore. As observed in the

training set, the more potent analogues of the test set such as 21 and 22 map well

with the pharmacophore, whereas the less potent analogues of the test set do not

map adequately.

TABLE III. Estimated and experimentally determined (P. falciparum D6 strain) IC50 (ng/ml) values

of the test set compounds

Test set IC50 (expt.) IC50 (predicted) Error*

2 99.9 70.0 -1.4

4 100.3 49.0 -1.1

13 16.0 6.3 -2.5

15 7.3 22.0 3.1
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Fig. 4. Mapping of the pharmaco-
phore on less potent analogues: (a)
7 and (b) 8.

a)

b)



Test set IC50 (expt.) IC50 (predicted) Error*

20 3.8 2.3 -1.7

22 2.2 2.3 1.0

25 10.8 4.4 -2.5

3 100.2 49.0 -2.0

12 6.5 2.3 -2.8

14 19.0 48.0 2.5

17 15.2 24.0 1.6

21 3.8 2.3 -1.7

24 12.7 4.8 -2.7

26 10.3 51.0 4.9

*Values in the error column represent the ratio of the estimated activity to measured activ-

ity, or its negative inverse if the ratio is less than one.

340 BHATTACHARJEE et al.

TABLE III. Continued

Fig. 5. Correlation (R = 0.78) line displaying the observed versus estimated IC50 values (ng/mL)
of the test set compounds by regressing the pharmacophore.



To examine the validity of the pharmacophore against other trioxanes and

tetraoxane containing antimalarials and to derive some insights about the possible

target of action of the compounds, its features were mapped onto artemisinin (Fig.

6), arteether (Fig. 7), and on a tetraoxane, 28 (Fig. 8). Surprisingly, artemisinin and

arteether map completely with the pharmacophore (Figs. 6 and 7) including one

hydrogen bond acceptor feature on an oxygen atom of the trioxane moiety,

whereas the tetraoxane does not map all the features. Interestingly, 28 is the least

potent antimalarial of this series.
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Fig. 6. Mapping of the pharmaco-
phore on artemisinin.

Fig. 7. Mapping of the pharmaco-
phore on arteether.

Fig. 8. Mapping of the pharmaco-
phore on tetraoxane 28.



Docking calculations and analysis of the results

In order to better understand the mechanism of action of these tetraoxanes, we

performed docking calculations with heme to assess the role of electron transfer in

the compounds. By adopting the docking procedure as implemented in the affinity

module of InsightII,12 we calculated the minimum energy of the heme–compound

docked structures of the two more potent analogues such as 19 and 24 and two less

potent analogues such as 7 and 8. The minimum energy values of the heme docked

structures are as follows: 19 = �601.3, 24 = �461.0, 7 = �83.7, and 8 = �192.2
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Fig. 9. Docked heme–19 structure.

Fig. 10. Docked heme–24 struc-
ture.

Fig. 11. Docked heme–7 structure.



kJ/mol, respectively. Clearly, the more potent analogues have much lower energy

minimized docked structures. Although the van der Waals contribution toward the

interaction between 19 and 24 with heme was found to be approximately the same

(152.4 kJ/mol), the electrostatic contribution of 19 toward the interaction is found

to be significantly greater (�754.5 kJ/mol) than 24 (�625.5 kJ/mol). The average

distance between Fe2+ and the oxygen atoms of the tetraoxane moiety in these

docked structures were found to be 5.7 Å for 19, 6.2 Å for 24, 8.0 Å for 7, and 10.1

Å for 8 (Figs. 9�12). These results suggest that proximity of the tetraoxane oxygen

atoms to the heme iron (Figs. 9 and 10) may favor potent antimalarial activity of

these compounds.

We have also investigated the role of the peroxide bonds toward activity by calcu-

lating the hemolytic scission energy of the peroxide bonds on the optimized geometry of

19 and 24. Triplet spin multiplicity state was used to calculate the total energy of this rad-

ical species at UHF/3-21G* (unrestricted split valence basis) level of quantum theory as

described in an earlier study.16 Calculations at higher levels of quantum theory, such as

the UHF/6-31G** level could not be accomplished due to the large size of the mole-

cules. However, our calculations using the UHF/3-21G* basis function indicate that

compound 19 requires 30.6 kJ/mol less energy for scission of one of its peroxide bonds

than 24 conforming to the observation that 19 is more reactive than 24 probably due to

facile electron transfer from the peroxide oxygen atom of one of its peroxide bonds.

CONCLUDING REMARKS

The study organizes the molecular characteristics of a set of diverse steroidal

tetraoxane derivatives that is both statistically and mechanistically significant for

potent antimalarial activity and provides insight into a possible mechanism of ac-

tion of the compounds to guide the search and synthesis for new compounds. In ad-

dition, the QSAR model unravels a possible rationale for the target-specific

antimalarial activity of these compounds. The chemically significant molecular
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Fig. 12. Docked heme–8 structure.



characteristics disposed in a three dimensional space generated a pharmacophore

that is found to be quite satisfactory in correlating true activity with the predicted

activity of the compounds. Two hydrogen bond acceptors and one aliphatic hydro-

phobic site appear to be the required functional features for potent antimalarial ac-

tivity of the compounds. A hydrogen bond acceptor function on at least one oxygen

atom of the trioxane or the tetraoxane moiety appears to be crucial for potent activ-

ity. The observation is also consistent with the docking experiments which demon-

strate that the proximity of these oxygen atoms to the iron of the heme is an impor-

tant criterion for potent activity and electron transfer from tetraoxane oxygen is

perhaps a key step in the mechanism of action of this class of compounds. The va-

lidity of the pharmacophore extends to structurally different classes of trioxanes

and tetraoxanes, and thus provides a powerful template from which novel drug

candidates may be identified for extended study. Since the identity of the target for

antimalarial activity of the tetraoxanes remains unknown, this three-dimensional

QSAR pharmacophore should aid the design of well-tolerated target-specific per-

oxide containing antimalarial agents.
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I Z V O D

QSAR IZU^AVAWE STEROIDNIH 1,2,4,5-TETRAOKSANSKIH

ANTIMALARIKA RA^UNARSKIM MODELOVAWEM

APURBA K. BHATTACHARJEE1, KEITH A. CARVALHO1
, DEJAN OPSENICA

2
,

BOGDAN A. [OLAJA
3

1
Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, U.S.A,
2

Institut za hemiju, tehnologiju i metalurgiju, Beograd, i
3

Hemijski fakultet Univerziteta u

Beogradu, p. pr. 158, Beograd

Izvr{eno je trodimenzionalno modelovawe farmakofore za antimalarijsku

aktivnost steroidnih 1,2,4,5-tetraoksana na osnovu struktura 17 supstituisanih deri-

vata, izdvojenih iz grupe od 27 analoga koji pokazuju izuzetnu in vitro antimalarijsku

aktivnost (ispod 100 ng/mL) prema osetqivim i rezistentnim sojevima Plasmodium

falciparum-a. Utvr|eno je da se farmakofora, koju ~ine dva akceptora vodoni~ne veze

(lipidni) i jedno hidrofobno mesto (alifati~no), dobro preklapa sa strukturama

aktivnih analoga kao i sa strukturama nekih poznatih trioksanskih antimalarika,

ukqu~uju}i artemizinin, arteetar, artesunatnu kiselinu kao i sa strukturama nekih

drugih tetraoksana. Za dobru aktivnost ove klase jediwewa va`no je prisustvo bar

jednog akceptora vodoni~ne veze na trioksanskom ili tetraoksanskom delu strukture.

Izra~unavawa interakcija nekih od ovih jediwewa sa hemom saglasna su sa prethodno

iznetim zakqu~kom da je blizina gvo`|a iz hema i trioksanskog ili tetraoksanskog

atoma kiseonika va`na za dobru aktivnost ovih jediwewa. Izgleda da je prenos

elektrona sa trioksanskog ili tetraoksanskog atoma kiseonika osnova mehanizma
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dejstva ovih jediwewa. Izvr{ena modelovawa farmakofore i interakcija ovih jedi-

wewa se hemom mogu biti od pomo}i u sintezi novih i efikasnijih peroksidnih

antimalarika.

(Primqeno 14. jula 2004)
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