Miljković, Radmila

Link to this page

Authority KeyName Variants
0dddb492-deff-4197-b31c-4a3245551cbe
  • Miljković, Radmila (2)

Author's Bibliography

Recombinant Bet v 1-BanLec chimera modulates functional characteristics of peritoneal murine macrophages by promoting IL-10 secretion

Protić-Rosić, Isidora; Nešić, Andrijana N.; Lukić, Ivana; Miljković, Radmila; Popović, Dragan M.; Atanasković-Marković, Marina; Stojanović, Marijana M.; Gavrović-Jankulović, Marija

(Elsevier, 2021)

TY  - JOUR
AU  - Protić-Rosić, Isidora
AU  - Nešić, Andrijana N.
AU  - Lukić, Ivana
AU  - Miljković, Radmila
AU  - Popović, Dragan M.
AU  - Atanasković-Marković, Marina
AU  - Stojanović, Marijana M.
AU  - Gavrović-Jankulović, Marija
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0161589021001905
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4604
AB  - Allergen-specific immunotherapy (AIT) is a desensitizing treatment for allergic diseases that corrects the underlined pathological immune response to innocuous protein antigens, called allergens. Recombinant allergens employed in the AIT allowed the production of well-defined formulations that possessed consistent quality but were often less efficient than natural allergen extracts. Combining recombinant allergens with an adjuvant or immunomodulatory agent could improve AIT efficacy. This study aimed to perform structural and functional characterization of newly designed recombinant chimera composed of the Bet v 1, the major birch pollen allergen, and Banana Lectin (BanLec), TLR2, and CD14 binding protein, for the application in AIT. rBet v 1-BanLec chimera was designed in silico and expressed as a soluble fraction in Escherichia coli. Purified rBet v 1-BanLec (33.4 kDa) retained BanLec-associated biological activity of carbohydrate-binding and preserved IgE reactive epitopes of Bet v 1. The chimera revealed secondary structures with predominant β sheets. The immunomodulatory capacity of rBet v 1-BanLec tested on macrophages showed changes in myeloperoxidase activity, reduced NO production, and significant alterations in the production of cytokines when compared to both rBanLec and rBet v 1. Comparing to rBet v 1, rBet v 1-BanLec was demonstrated to be more efficient promoter of IL-10 production as well as weaker inducer of NO production and secretion of pro-inflammatory cytokines TNFα, and IL-6. The ability of rBet v 1-BanLec to promote IL-10 in together with the preserved 3D structure of Bet v 1 part implies that the construct might exert a beneficial effect in the allergen-specific immunotherapy.
PB  - Elsevier
T2  - Molecular Immunology
T2  - Molecular ImmunologyMolecular Immunology
T1  - Recombinant Bet v 1-BanLec chimera modulates functional characteristics of peritoneal murine macrophages by promoting IL-10 secretion
VL  - 138
SP  - 58
EP  - 67
DO  - 10.1016/j.molimm.2021.06.015
ER  - 
@article{
author = "Protić-Rosić, Isidora and Nešić, Andrijana N. and Lukić, Ivana and Miljković, Radmila and Popović, Dragan M. and Atanasković-Marković, Marina and Stojanović, Marijana M. and Gavrović-Jankulović, Marija",
year = "2021",
abstract = "Allergen-specific immunotherapy (AIT) is a desensitizing treatment for allergic diseases that corrects the underlined pathological immune response to innocuous protein antigens, called allergens. Recombinant allergens employed in the AIT allowed the production of well-defined formulations that possessed consistent quality but were often less efficient than natural allergen extracts. Combining recombinant allergens with an adjuvant or immunomodulatory agent could improve AIT efficacy. This study aimed to perform structural and functional characterization of newly designed recombinant chimera composed of the Bet v 1, the major birch pollen allergen, and Banana Lectin (BanLec), TLR2, and CD14 binding protein, for the application in AIT. rBet v 1-BanLec chimera was designed in silico and expressed as a soluble fraction in Escherichia coli. Purified rBet v 1-BanLec (33.4 kDa) retained BanLec-associated biological activity of carbohydrate-binding and preserved IgE reactive epitopes of Bet v 1. The chimera revealed secondary structures with predominant β sheets. The immunomodulatory capacity of rBet v 1-BanLec tested on macrophages showed changes in myeloperoxidase activity, reduced NO production, and significant alterations in the production of cytokines when compared to both rBanLec and rBet v 1. Comparing to rBet v 1, rBet v 1-BanLec was demonstrated to be more efficient promoter of IL-10 production as well as weaker inducer of NO production and secretion of pro-inflammatory cytokines TNFα, and IL-6. The ability of rBet v 1-BanLec to promote IL-10 in together with the preserved 3D structure of Bet v 1 part implies that the construct might exert a beneficial effect in the allergen-specific immunotherapy.",
publisher = "Elsevier",
journal = "Molecular Immunology, Molecular ImmunologyMolecular Immunology",
title = "Recombinant Bet v 1-BanLec chimera modulates functional characteristics of peritoneal murine macrophages by promoting IL-10 secretion",
volume = "138",
pages = "58-67",
doi = "10.1016/j.molimm.2021.06.015"
}
Protić-Rosić, I., Nešić, A. N., Lukić, I., Miljković, R., Popović, D. M., Atanasković-Marković, M., Stojanović, M. M.,& Gavrović-Jankulović, M.. (2021). Recombinant Bet v 1-BanLec chimera modulates functional characteristics of peritoneal murine macrophages by promoting IL-10 secretion. in Molecular Immunology
Elsevier., 138, 58-67.
https://doi.org/10.1016/j.molimm.2021.06.015
Protić-Rosić I, Nešić AN, Lukić I, Miljković R, Popović DM, Atanasković-Marković M, Stojanović MM, Gavrović-Jankulović M. Recombinant Bet v 1-BanLec chimera modulates functional characteristics of peritoneal murine macrophages by promoting IL-10 secretion. in Molecular Immunology. 2021;138:58-67.
doi:10.1016/j.molimm.2021.06.015 .
Protić-Rosić, Isidora, Nešić, Andrijana N., Lukić, Ivana, Miljković, Radmila, Popović, Dragan M., Atanasković-Marković, Marina, Stojanović, Marijana M., Gavrović-Jankulović, Marija, "Recombinant Bet v 1-BanLec chimera modulates functional characteristics of peritoneal murine macrophages by promoting IL-10 secretion" in Molecular Immunology, 138 (2021):58-67,
https://doi.org/10.1016/j.molimm.2021.06.015 . .
1
1

Cross-Reactive Effects of Vaccines: Heterologous Immunity between Tetanus and Chlamydia

Stojanović, Marijana M.; Lukić, Ivana; Marinković, Emilija; Kovačević, Ana; Miljković, Radmila; Tobias, Joshua; Schabussova, Irma; Zlatović, Mario; Barisani-Asenbauer, Talin; Wiedermann, Ursula; Inic-Kanada, Aleksandra

(2020)

TY  - JOUR
AU  - Stojanović, Marijana M.
AU  - Lukić, Ivana
AU  - Marinković, Emilija
AU  - Kovačević, Ana
AU  - Miljković, Radmila
AU  - Tobias, Joshua
AU  - Schabussova, Irma
AU  - Zlatović, Mario
AU  - Barisani-Asenbauer, Talin
AU  - Wiedermann, Ursula
AU  - Inic-Kanada, Aleksandra
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4292
AB  - Vaccines can have heterologous effects on the immune system, i.e., effects other than triggering an immune response against the disease targeted by the vaccine. We investigated whether monoclonal antibodies (mAbs) specific for tetanus could cross-react with Chlamydia and confer heterologous protection against chlamydial infection. The capability of two tetanus-specific mAbs, namely mAb26 and mAb51, to prevent chlamydial infection has been assessed: (i) in vitro, by performing a neutralization assay using human conjunctival epithelial (HCjE) cells infected with Chlamydia trachomatis serovar B, and (ii) in vivo, by using a guinea pig model of Chlamydiacaviae-induced inclusion conjunctivitis. The mAb26 has been superior in comparison with mAb51 in the prevention of chlamydial infection in HCjE cells. The mAb26 has conferred ≈40% inhibition of the infection, compared to less than 5% inhibition in the presence of the mAb51. In vivo, mAb26 significantly diminished ocular pathology intensity in guinea pigs infected with C. caviae compared to either the mAb51-treated or sham-treated guinea pigs. Our data provide insights that tetanus immunization generates antibodies which induce heterologous chlamydial immunity and promote protection beyond the intended target pathogen.
T2  - Vaccines
T1  - Cross-Reactive Effects of Vaccines: Heterologous Immunity between Tetanus and Chlamydia
VL  - 8
IS  - 4
SP  - 719
DO  - 10.3390/vaccines8040719
ER  - 
@article{
author = "Stojanović, Marijana M. and Lukić, Ivana and Marinković, Emilija and Kovačević, Ana and Miljković, Radmila and Tobias, Joshua and Schabussova, Irma and Zlatović, Mario and Barisani-Asenbauer, Talin and Wiedermann, Ursula and Inic-Kanada, Aleksandra",
year = "2020",
abstract = "Vaccines can have heterologous effects on the immune system, i.e., effects other than triggering an immune response against the disease targeted by the vaccine. We investigated whether monoclonal antibodies (mAbs) specific for tetanus could cross-react with Chlamydia and confer heterologous protection against chlamydial infection. The capability of two tetanus-specific mAbs, namely mAb26 and mAb51, to prevent chlamydial infection has been assessed: (i) in vitro, by performing a neutralization assay using human conjunctival epithelial (HCjE) cells infected with Chlamydia trachomatis serovar B, and (ii) in vivo, by using a guinea pig model of Chlamydiacaviae-induced inclusion conjunctivitis. The mAb26 has been superior in comparison with mAb51 in the prevention of chlamydial infection in HCjE cells. The mAb26 has conferred ≈40% inhibition of the infection, compared to less than 5% inhibition in the presence of the mAb51. In vivo, mAb26 significantly diminished ocular pathology intensity in guinea pigs infected with C. caviae compared to either the mAb51-treated or sham-treated guinea pigs. Our data provide insights that tetanus immunization generates antibodies which induce heterologous chlamydial immunity and promote protection beyond the intended target pathogen.",
journal = "Vaccines",
title = "Cross-Reactive Effects of Vaccines: Heterologous Immunity between Tetanus and Chlamydia",
volume = "8",
number = "4",
pages = "719",
doi = "10.3390/vaccines8040719"
}
Stojanović, M. M., Lukić, I., Marinković, E., Kovačević, A., Miljković, R., Tobias, J., Schabussova, I., Zlatović, M., Barisani-Asenbauer, T., Wiedermann, U.,& Inic-Kanada, A.. (2020). Cross-Reactive Effects of Vaccines: Heterologous Immunity between Tetanus and Chlamydia. in Vaccines, 8(4), 719.
https://doi.org/10.3390/vaccines8040719
Stojanović MM, Lukić I, Marinković E, Kovačević A, Miljković R, Tobias J, Schabussova I, Zlatović M, Barisani-Asenbauer T, Wiedermann U, Inic-Kanada A. Cross-Reactive Effects of Vaccines: Heterologous Immunity between Tetanus and Chlamydia. in Vaccines. 2020;8(4):719.
doi:10.3390/vaccines8040719 .
Stojanović, Marijana M., Lukić, Ivana, Marinković, Emilija, Kovačević, Ana, Miljković, Radmila, Tobias, Joshua, Schabussova, Irma, Zlatović, Mario, Barisani-Asenbauer, Talin, Wiedermann, Ursula, Inic-Kanada, Aleksandra, "Cross-Reactive Effects of Vaccines: Heterologous Immunity between Tetanus and Chlamydia" in Vaccines, 8, no. 4 (2020):719,
https://doi.org/10.3390/vaccines8040719 . .
2
5
2
4
3