Knežević, Nikola Ž.

Link to this page

Authority KeyName Variants
4446ac49-6af3-4f0b-a24e-e5b80bf1fbee
  • Knežević, Nikola Ž. (1)

Author's Bibliography

Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites

Pergal, Marija V.; Brkljačić, Jelena; Tovilović-Kovačević, Gordana; Špírková, Milena; Kodranov, Igor D.; Manojlović, Dragan D.; Ostojić, Sanja; Knežević, Nikola Ž.

(2021)

TY  - JOUR
AU  - Pergal, Marija V.
AU  - Brkljačić, Jelena
AU  - Tovilović-Kovačević, Gordana
AU  - Špírková, Milena
AU  - Kodranov, Igor D.
AU  - Manojlović, Dragan D.
AU  - Ostojić, Sanja
AU  - Knežević, Nikola Ž.
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4293
AB  - Novel polyurethane nanocomposite (PUN) materials containing different surface-functionalized mesoporous silica nanoparticles (MSNs) were prepared by in situ polymerization methodology. Polyurethane network was formed from poly(dimethylsiloxane)-based macrodiol (PDMS), 4,4′-methylenediphenyldiisocyanate (MDI), and hyperbranched polyester of the second pseudo-generation (BH-20; used as crosslinking agent). PU and PU/MSN nanocomposites contained equal ratios of soft PDMS and hard MDI-BH-20 segments. Non-functionalized and surface-functionalized (with 3-(trihydroxysilyl)propyl methylphosphonate (FOMSN) and 2-[methoxy(polyethyleneoxy)6−9propyl]trimethoxysilane (PEGMSN)) MSNs were used as the nanofillers at a concentration of 1 wt%. Prepared materials were characterized by Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analyses (DMTA), nanoindentation, equilibrium swelling and water absorption measurements. Characteristics of the prepared PUNs when in contact with a biological environment were assessed through testing their biocompatibility, protein adsorption and adhesion of endothelial cells. The favourable influence of MSNs on the physico-chemical and biological characteristics of these novel PUN materials was identified, which evidences their vast applicability potential as coatings for medical devices and implants.
T2  - Progress in Organic Coatings
T1  - Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites
VL  - 151
SP  - 106049
DO  - 10.1016/j.porgcoat.2020.106049
ER  - 
@article{
author = "Pergal, Marija V. and Brkljačić, Jelena and Tovilović-Kovačević, Gordana and Špírková, Milena and Kodranov, Igor D. and Manojlović, Dragan D. and Ostojić, Sanja and Knežević, Nikola Ž.",
year = "2021",
url = "http://cherry.chem.bg.ac.rs/handle/123456789/4293",
abstract = "Novel polyurethane nanocomposite (PUN) materials containing different surface-functionalized mesoporous silica nanoparticles (MSNs) were prepared by in situ polymerization methodology. Polyurethane network was formed from poly(dimethylsiloxane)-based macrodiol (PDMS), 4,4′-methylenediphenyldiisocyanate (MDI), and hyperbranched polyester of the second pseudo-generation (BH-20; used as crosslinking agent). PU and PU/MSN nanocomposites contained equal ratios of soft PDMS and hard MDI-BH-20 segments. Non-functionalized and surface-functionalized (with 3-(trihydroxysilyl)propyl methylphosphonate (FOMSN) and 2-[methoxy(polyethyleneoxy)6−9propyl]trimethoxysilane (PEGMSN)) MSNs were used as the nanofillers at a concentration of 1 wt%. Prepared materials were characterized by Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analyses (DMTA), nanoindentation, equilibrium swelling and water absorption measurements. Characteristics of the prepared PUNs when in contact with a biological environment were assessed through testing their biocompatibility, protein adsorption and adhesion of endothelial cells. The favourable influence of MSNs on the physico-chemical and biological characteristics of these novel PUN materials was identified, which evidences their vast applicability potential as coatings for medical devices and implants.",
journal = "Progress in Organic Coatings",
title = "Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites",
volume = "151",
pages = "106049",
doi = "10.1016/j.porgcoat.2020.106049"
}
Pergal, M. V., Brkljačić, J., Tovilović-Kovačević, G., Špírková, M., Kodranov, I. D., Manojlović, D. D., Ostojić, S.,& Knežević, N. Ž. (2021). Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites.
Progress in Organic Coatings, 151, 106049.
https://doi.org/10.1016/j.porgcoat.2020.106049
Pergal MV, Brkljačić J, Tovilović-Kovačević G, Špírková M, Kodranov ID, Manojlović DD, Ostojić S, Knežević NŽ. Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites. Progress in Organic Coatings. 2021;151:106049
Pergal Marija V., Brkljačić Jelena, Tovilović-Kovačević Gordana, Špírková Milena, Kodranov Igor D., Manojlović Dragan D., Ostojić Sanja, Knežević Nikola Ž., "Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites" 151 (2021):106049,
https://doi.org/10.1016/j.porgcoat.2020.106049 .