Veljović, Đorđe

Link to this page

Authority KeyName Variants
0ab65622-e948-4923-8a01-26ac36a0d6f6
  • Veljović, Đorđe (5)
Projects

Author's Bibliography

Mechanochemical synthesis and characterization of the adsorbents based on natural zeolite and hydroxyapatite

Sokić, Katarina; Dikić, Jelena; Veljović, Đorđe; Đokić, Jovana; Anđić, Zoran; Jevtić, Sanja O.

(Association of Metallurgical Engineers of Serbia (AMES), 2023)

TY  - CONF
AU  - Sokić, Katarina
AU  - Dikić, Jelena
AU  - Veljović, Đorđe
AU  - Đokić, Jovana
AU  - Anđić, Zoran
AU  - Jevtić, Sanja O.
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6243
AB  - Natural zeolite is a good sorbent for many cations due to its specific porous structure. The degree of sorption efficiency depends on the cation type and the availability of exchange positions in the zeolite lattice. The aim of this work is to
examine the synthesis possibility of a new adsorbent based on natural zeolite and hydroxyapatite. The adsorbent was prepared mechanochemically by using clinoptilolite-rich zeolite tuff from the Slanci deposit (Serbia) and hydroxyapatite
obtained by the hydrothermal process. The milling process was performed in a ball mill and optimized regarding contact time and milling speed. For the synthesis of zeolite/hydroxyapatite adsorbent (ZHAp), optimal values for these two parameters were 10 min and 250 rpm, respectively. The resulting sample ZHAp was characterized by X-ray powder diffraction, thermal analysis and scanning electron microscopy. Diffraction analysis of the ZHAp confirmed the presence of the most abundant mineral in zeolite tuff - clinoptilolite and hydroxyapatite. Needle-like crystals of hydroxyapatite on the clinoptilolite surface are observed in SEM images. Zeolite/hydroxyapatite sample is thermally stable at 800 °C. Adsorption properties of ZHAp were examined for nickel and chromium ions, towards which natural zeolite shows a low affinity. The presence of hydroxyapatite on the zeolite surface led to an increase in the adsorption capacity more than two times for both tested ions compared to the initial zeolite tuff.
PB  - Association of Metallurgical Engineers of Serbia (AMES)
C3  - 5th Metallurgical & Materials Engineering Congress of South-East Europe MME SEE Congress 2023, Trebinje, Bosnia and Herzegovina 7-10th June 2023
T1  - Mechanochemical synthesis and characterization of the adsorbents based on natural zeolite and hydroxyapatite
SP  - 395
EP  - 400
UR  - https://hdl.handle.net/21.15107/rcub_cherry_6243
ER  - 
@conference{
author = "Sokić, Katarina and Dikić, Jelena and Veljović, Đorđe and Đokić, Jovana and Anđić, Zoran and Jevtić, Sanja O.",
year = "2023",
abstract = "Natural zeolite is a good sorbent for many cations due to its specific porous structure. The degree of sorption efficiency depends on the cation type and the availability of exchange positions in the zeolite lattice. The aim of this work is to
examine the synthesis possibility of a new adsorbent based on natural zeolite and hydroxyapatite. The adsorbent was prepared mechanochemically by using clinoptilolite-rich zeolite tuff from the Slanci deposit (Serbia) and hydroxyapatite
obtained by the hydrothermal process. The milling process was performed in a ball mill and optimized regarding contact time and milling speed. For the synthesis of zeolite/hydroxyapatite adsorbent (ZHAp), optimal values for these two parameters were 10 min and 250 rpm, respectively. The resulting sample ZHAp was characterized by X-ray powder diffraction, thermal analysis and scanning electron microscopy. Diffraction analysis of the ZHAp confirmed the presence of the most abundant mineral in zeolite tuff - clinoptilolite and hydroxyapatite. Needle-like crystals of hydroxyapatite on the clinoptilolite surface are observed in SEM images. Zeolite/hydroxyapatite sample is thermally stable at 800 °C. Adsorption properties of ZHAp were examined for nickel and chromium ions, towards which natural zeolite shows a low affinity. The presence of hydroxyapatite on the zeolite surface led to an increase in the adsorption capacity more than two times for both tested ions compared to the initial zeolite tuff.",
publisher = "Association of Metallurgical Engineers of Serbia (AMES)",
journal = "5th Metallurgical & Materials Engineering Congress of South-East Europe MME SEE Congress 2023, Trebinje, Bosnia and Herzegovina 7-10th June 2023",
title = "Mechanochemical synthesis and characterization of the adsorbents based on natural zeolite and hydroxyapatite",
pages = "395-400",
url = "https://hdl.handle.net/21.15107/rcub_cherry_6243"
}
Sokić, K., Dikić, J., Veljović, Đ., Đokić, J., Anđić, Z.,& Jevtić, S. O.. (2023). Mechanochemical synthesis and characterization of the adsorbents based on natural zeolite and hydroxyapatite. in 5th Metallurgical & Materials Engineering Congress of South-East Europe MME SEE Congress 2023, Trebinje, Bosnia and Herzegovina 7-10th June 2023
Association of Metallurgical Engineers of Serbia (AMES)., 395-400.
https://hdl.handle.net/21.15107/rcub_cherry_6243
Sokić K, Dikić J, Veljović Đ, Đokić J, Anđić Z, Jevtić SO. Mechanochemical synthesis and characterization of the adsorbents based on natural zeolite and hydroxyapatite. in 5th Metallurgical & Materials Engineering Congress of South-East Europe MME SEE Congress 2023, Trebinje, Bosnia and Herzegovina 7-10th June 2023. 2023;:395-400.
https://hdl.handle.net/21.15107/rcub_cherry_6243 .
Sokić, Katarina, Dikić, Jelena, Veljović, Đorđe, Đokić, Jovana, Anđić, Zoran, Jevtić, Sanja O., "Mechanochemical synthesis and characterization of the adsorbents based on natural zeolite and hydroxyapatite" in 5th Metallurgical & Materials Engineering Congress of South-East Europe MME SEE Congress 2023, Trebinje, Bosnia and Herzegovina 7-10th June 2023 (2023):395-400,
https://hdl.handle.net/21.15107/rcub_cherry_6243 .

Immobilization of Horseradish Peroxidase on Macroporous Glycidyl-Based Copolymers with Different Surface Characteristics for the Removal of Phenol

Pantić, Nevena; Spasojević, Milica; Stojanović, Željko; Veljović, Đorđe; Krstić, Jugoslav; Balaž, Ana Marija; Prodanović, Radivoje; Prodanović, Olivera

(Springer, 2022)

TY  - JOUR
AU  - Pantić, Nevena
AU  - Spasojević, Milica
AU  - Stojanović, Željko
AU  - Veljović, Đorđe
AU  - Krstić, Jugoslav
AU  - Balaž, Ana Marija
AU  - Prodanović, Radivoje
AU  - Prodanović, Olivera
PY  - 2022
UR  - https://link.springer.com/article/10.1007/s10924-021-02364-3
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5205
AB  - Novel macroporous copolymers of glycidyl methacrylate and ethylene glycol dimethacrylate with mean pore size diameters ranging from 150 to 310 nm were synthesized by dispersion polymerization and modified with ethylenediamine. The glutaraldehyde and periodate method were employed to immobilize horseradish peroxidase (HRP) onto these carriers. The activity of the immobilized enzyme was greatly affected by the pore size of the carrier. The highest specific activities of 9.65 and 8.94 U/g of dry weight were obtained for HRP immobilized by the periodate-route onto poly(GMA‐co‐EGDMA) carriers with pore size diameters of 234 and 297 nm, respectively. Stability studies showed an improved operational stability of immobilized peroxidase at 65 °C and in an organic solvent. HRP immobilized on a copolymer with a pore size of 234 nm, showing the highest specific activity and good stability, had higher activities at almost all pH values than the native enzyme and the increased Km value for pyrogallol oxidation. Immobilized HRP retained 80% of its original activity after five consecutive cycles of the pyrogallol oxidation and 98% of its initial activity in a storage stability study. Enzyme immobilized onto the macroporous copolymer with the pore size diameter of 234 nm showed a substantial degree of phenol removal achieved by immobilized peroxidase.
PB  - Springer
T2  - Journal of Polymers and the Environment
T1  - Immobilization of Horseradish Peroxidase on Macroporous Glycidyl-Based Copolymers with Different Surface Characteristics for the Removal of Phenol
VL  - 30
SP  - 3005
EP  - 3020
DO  - 10.1007/s10924-021-02364-3
ER  - 
@article{
author = "Pantić, Nevena and Spasojević, Milica and Stojanović, Željko and Veljović, Đorđe and Krstić, Jugoslav and Balaž, Ana Marija and Prodanović, Radivoje and Prodanović, Olivera",
year = "2022",
abstract = "Novel macroporous copolymers of glycidyl methacrylate and ethylene glycol dimethacrylate with mean pore size diameters ranging from 150 to 310 nm were synthesized by dispersion polymerization and modified with ethylenediamine. The glutaraldehyde and periodate method were employed to immobilize horseradish peroxidase (HRP) onto these carriers. The activity of the immobilized enzyme was greatly affected by the pore size of the carrier. The highest specific activities of 9.65 and 8.94 U/g of dry weight were obtained for HRP immobilized by the periodate-route onto poly(GMA‐co‐EGDMA) carriers with pore size diameters of 234 and 297 nm, respectively. Stability studies showed an improved operational stability of immobilized peroxidase at 65 °C and in an organic solvent. HRP immobilized on a copolymer with a pore size of 234 nm, showing the highest specific activity and good stability, had higher activities at almost all pH values than the native enzyme and the increased Km value for pyrogallol oxidation. Immobilized HRP retained 80% of its original activity after five consecutive cycles of the pyrogallol oxidation and 98% of its initial activity in a storage stability study. Enzyme immobilized onto the macroporous copolymer with the pore size diameter of 234 nm showed a substantial degree of phenol removal achieved by immobilized peroxidase.",
publisher = "Springer",
journal = "Journal of Polymers and the Environment",
title = "Immobilization of Horseradish Peroxidase on Macroporous Glycidyl-Based Copolymers with Different Surface Characteristics for the Removal of Phenol",
volume = "30",
pages = "3005-3020",
doi = "10.1007/s10924-021-02364-3"
}
Pantić, N., Spasojević, M., Stojanović, Ž., Veljović, Đ., Krstić, J., Balaž, A. M., Prodanović, R.,& Prodanović, O.. (2022). Immobilization of Horseradish Peroxidase on Macroporous Glycidyl-Based Copolymers with Different Surface Characteristics for the Removal of Phenol. in Journal of Polymers and the Environment
Springer., 30, 3005-3020.
https://doi.org/10.1007/s10924-021-02364-3
Pantić N, Spasojević M, Stojanović Ž, Veljović Đ, Krstić J, Balaž AM, Prodanović R, Prodanović O. Immobilization of Horseradish Peroxidase on Macroporous Glycidyl-Based Copolymers with Different Surface Characteristics for the Removal of Phenol. in Journal of Polymers and the Environment. 2022;30:3005-3020.
doi:10.1007/s10924-021-02364-3 .
Pantić, Nevena, Spasojević, Milica, Stojanović, Željko, Veljović, Đorđe, Krstić, Jugoslav, Balaž, Ana Marija, Prodanović, Radivoje, Prodanović, Olivera, "Immobilization of Horseradish Peroxidase on Macroporous Glycidyl-Based Copolymers with Different Surface Characteristics for the Removal of Phenol" in Journal of Polymers and the Environment, 30 (2022):3005-3020,
https://doi.org/10.1007/s10924-021-02364-3 . .
5
5
4

In-depth quantitative profiling of post-translational modifications of Timothy grass pollen proteome in relation to environmental pollution and causal oxidative stress

Smiljanić, Katarina; Prodić, Ivana; Apostolović, Danijela; Veljović, Đorđe; Mutić, Jelena; van Hage, Marianne; Burazer, Lidija M.; Ćirković-Veličković, Tanja

(Serbian Proteomic Association - SePA, 2019)

TY  - CONF
AU  - Smiljanić, Katarina
AU  - Prodić, Ivana
AU  - Apostolović, Danijela
AU  - Veljović, Đorđe
AU  - Mutić, Jelena
AU  - van Hage, Marianne
AU  - Burazer, Lidija M.
AU  - Ćirković-Veličković, Tanja
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5724
AB  - Background: An association between pollution (e.g., from traffic emissions) and the increased prevalence of respiratory allergies has been observed. Field-realistic exposure studies provide the most relevant assessment of the effects of the intensity and diversity of urban and industrial contamination on pollen structure and allergenicity. The significance of in-depth post-translational modification (PTM) studies of pollen proteomes, when compared with studies on other aspects of pollution and altered pollen allergenicity, has not yet been appreciated; hence, little progress has been made within this field. Our aim was to show that in-depth PTM profiling has a great importance and deserves to be explored with renewed and simple method with advanced algorithm.
Method: We undertook a comprehensive comparative analysis of multiple polluted and environmentally preserved Phleum pratense (Timothy grass) pollen samples using scanning electron microscopy, in-depth PTM profiling, determination of organic and inorganic pollutants, analysis of the release of sub-pollen particles and phenols/proteins, and analysis of proteome expression using high resolution tandem mass spectrometry. In addition, we used quantitative enzyme-linked immunosorbent assays (ELISA) and immunoglobulin E (IgE) immunoblotting.
Results: An increased phenolic content and release of sub-pollen particles was found in pollen samples from the polluted area, including a significantly higher content of mercury, cadmium, and manganese, with irregular long spines on pollen grain surface structures. Antioxidative defense-related enzymes were significantly upregulated and seven oxidative PTMs were significantly increased (methionine, histidine, lysine, and proline oxidation; tyrosine glycosylation, lysine 4-hydroxy-2-nonenal adduct, and lysine carbamylation) in pollen exposed to the chemical plant and road traffic pollution sources. Oxidative modifications affected several Timothy pollen allergens; Phl p 6, in particular, exhibited several different oxidative modifications. The expression of Phl p 6, 12, and 13 allergens were downregulated in polluted pollen, and IgE binding to pollen extract was substantially lower in the 18 patients studied, as measured by quantitative ELISA.
Conclusion: Quantitative, unrestricted, and detailed PTM searches using an enrichment-free approach pointed that heavy metals are primarily responsible for oxidative stress effects observed in Timothy grass pollen proteome, rather than gaseous pollutants formed during road traffics such as ozone, nitric dioxide or Sulphur di- and/or trioxide.
PB  - Serbian Proteomic Association - SePA
C3  - Book of Abstracts - V SePa Simposium: Proteomics in the analysis of food, envirinmental protection and medical research, Novi Sad 2019
T1  - In-depth quantitative profiling of post-translational modifications of Timothy grass pollen proteome in relation to environmental pollution and causal oxidative stress
IS  - L7
SP  - 13
EP  - 13
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5724
ER  - 
@conference{
author = "Smiljanić, Katarina and Prodić, Ivana and Apostolović, Danijela and Veljović, Đorđe and Mutić, Jelena and van Hage, Marianne and Burazer, Lidija M. and Ćirković-Veličković, Tanja",
year = "2019",
abstract = "Background: An association between pollution (e.g., from traffic emissions) and the increased prevalence of respiratory allergies has been observed. Field-realistic exposure studies provide the most relevant assessment of the effects of the intensity and diversity of urban and industrial contamination on pollen structure and allergenicity. The significance of in-depth post-translational modification (PTM) studies of pollen proteomes, when compared with studies on other aspects of pollution and altered pollen allergenicity, has not yet been appreciated; hence, little progress has been made within this field. Our aim was to show that in-depth PTM profiling has a great importance and deserves to be explored with renewed and simple method with advanced algorithm.
Method: We undertook a comprehensive comparative analysis of multiple polluted and environmentally preserved Phleum pratense (Timothy grass) pollen samples using scanning electron microscopy, in-depth PTM profiling, determination of organic and inorganic pollutants, analysis of the release of sub-pollen particles and phenols/proteins, and analysis of proteome expression using high resolution tandem mass spectrometry. In addition, we used quantitative enzyme-linked immunosorbent assays (ELISA) and immunoglobulin E (IgE) immunoblotting.
Results: An increased phenolic content and release of sub-pollen particles was found in pollen samples from the polluted area, including a significantly higher content of mercury, cadmium, and manganese, with irregular long spines on pollen grain surface structures. Antioxidative defense-related enzymes were significantly upregulated and seven oxidative PTMs were significantly increased (methionine, histidine, lysine, and proline oxidation; tyrosine glycosylation, lysine 4-hydroxy-2-nonenal adduct, and lysine carbamylation) in pollen exposed to the chemical plant and road traffic pollution sources. Oxidative modifications affected several Timothy pollen allergens; Phl p 6, in particular, exhibited several different oxidative modifications. The expression of Phl p 6, 12, and 13 allergens were downregulated in polluted pollen, and IgE binding to pollen extract was substantially lower in the 18 patients studied, as measured by quantitative ELISA.
Conclusion: Quantitative, unrestricted, and detailed PTM searches using an enrichment-free approach pointed that heavy metals are primarily responsible for oxidative stress effects observed in Timothy grass pollen proteome, rather than gaseous pollutants formed during road traffics such as ozone, nitric dioxide or Sulphur di- and/or trioxide.",
publisher = "Serbian Proteomic Association - SePA",
journal = "Book of Abstracts - V SePa Simposium: Proteomics in the analysis of food, envirinmental protection and medical research, Novi Sad 2019",
title = "In-depth quantitative profiling of post-translational modifications of Timothy grass pollen proteome in relation to environmental pollution and causal oxidative stress",
number = "L7",
pages = "13-13",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5724"
}
Smiljanić, K., Prodić, I., Apostolović, D., Veljović, Đ., Mutić, J., van Hage, M., Burazer, L. M.,& Ćirković-Veličković, T.. (2019). In-depth quantitative profiling of post-translational modifications of Timothy grass pollen proteome in relation to environmental pollution and causal oxidative stress. in Book of Abstracts - V SePa Simposium: Proteomics in the analysis of food, envirinmental protection and medical research, Novi Sad 2019
Serbian Proteomic Association - SePA.(L7), 13-13.
https://hdl.handle.net/21.15107/rcub_cherry_5724
Smiljanić K, Prodić I, Apostolović D, Veljović Đ, Mutić J, van Hage M, Burazer LM, Ćirković-Veličković T. In-depth quantitative profiling of post-translational modifications of Timothy grass pollen proteome in relation to environmental pollution and causal oxidative stress. in Book of Abstracts - V SePa Simposium: Proteomics in the analysis of food, envirinmental protection and medical research, Novi Sad 2019. 2019;(L7):13-13.
https://hdl.handle.net/21.15107/rcub_cherry_5724 .
Smiljanić, Katarina, Prodić, Ivana, Apostolović, Danijela, Veljović, Đorđe, Mutić, Jelena, van Hage, Marianne, Burazer, Lidija M., Ćirković-Veličković, Tanja, "In-depth quantitative profiling of post-translational modifications of Timothy grass pollen proteome in relation to environmental pollution and causal oxidative stress" in Book of Abstracts - V SePa Simposium: Proteomics in the analysis of food, envirinmental protection and medical research, Novi Sad 2019, no. L7 (2019):13-13,
https://hdl.handle.net/21.15107/rcub_cherry_5724 .

In-depth quantitative profiling of post-translational modifications of Timothy grass pollen allergome in relation to environmental oxidative stress

Smiljanić, Katarina; Prodić, Ivana; Apostolović, Danijela; Cvetković, Anka; Veljović, Đorđe; Mutić, Jelena; van Hage, Marianne; Burazer, Lidija M.; Ćirković-Veličković, Tanja

(Elsevier, 2019)

TY  - JOUR
AU  - Smiljanić, Katarina
AU  - Prodić, Ivana
AU  - Apostolović, Danijela
AU  - Cvetković, Anka
AU  - Veljović, Đorđe
AU  - Mutić, Jelena
AU  - van Hage, Marianne
AU  - Burazer, Lidija M.
AU  - Ćirković-Veličković, Tanja
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2857
AB  - An association between pollution (e.g., from traffic emissions) and the increased prevalence of respiratory allergies has been observed. Field-realistic exposure studies provide the most relevant assessment of the effects of the intensity and diversity of urban and industrial contamination on pollen structure and allergenicity. The significance of in-depth post-translational modification (PTM) studies of pollen proteomes, when compared with studies on other aspects of pollution and altered pollen allergenicity, has not yet been determined; hence, little progress has been made within this field. We undertook a comprehensive comparative analysis of multiple polluted and environmentally preserved Phleum pratense (Timothy grass) pollen samples using scanning electron microscopy, in-depth PTM profiling, determination of organic and inorganic pollutants, analysis of the release of sub-pollen particles and phenols/proteins, and analysis of proteome expression using high resolution tandem mass spectrometry. In addition, we used quantitative enzyme-linked immunosorbent assays (ELISA) and immunoglobulin E (IgE) immunoblotting. An increased phenolic content and release of sub-pollen particles was found in pollen samples from the polluted area, including a significantly higher content of mercury, cadmium, and manganese, with irregular long spines on pollen grain surface structures. Antioxidative defense-related enzymes were significantly upregulated and seven oxidative PTMs were significantly increased (methionine, histidine, lysine, and proline oxidation; tyrosine glycosylation, lysine 4-hydroxy-2-nonenal adduct, and lysine carbamylation) in pollen exposed to the chemical plant and road traffic pollution sources. Oxidative modifications affected several Timothy pollen allergens; Phl p 6, in particular, exhibited several different oxidative modifications. The expression of Phl p 6, 12, and 13 allergens were downregulated in polluted pollen, and IgE binding to pollen extract was substantially lower in the 18 patients studied, as measured by quantitative ELISA. Quantitative, unrestricted, and detailed PTM searches using an enrichment-free approach pointed to modification of Timothy pollen allergens and suggested that heavy metals are primarily responsible for oxidative stress effects observed in pollen proteins.
PB  - Elsevier
T2  - Environment International
T1  - In-depth quantitative profiling of post-translational modifications of Timothy grass pollen allergome in relation to environmental oxidative stress
VL  - 126
SP  - 644
EP  - 658
DO  - 10.1016/j.envint.2019.03.001
ER  - 
@article{
author = "Smiljanić, Katarina and Prodić, Ivana and Apostolović, Danijela and Cvetković, Anka and Veljović, Đorđe and Mutić, Jelena and van Hage, Marianne and Burazer, Lidija M. and Ćirković-Veličković, Tanja",
year = "2019",
abstract = "An association between pollution (e.g., from traffic emissions) and the increased prevalence of respiratory allergies has been observed. Field-realistic exposure studies provide the most relevant assessment of the effects of the intensity and diversity of urban and industrial contamination on pollen structure and allergenicity. The significance of in-depth post-translational modification (PTM) studies of pollen proteomes, when compared with studies on other aspects of pollution and altered pollen allergenicity, has not yet been determined; hence, little progress has been made within this field. We undertook a comprehensive comparative analysis of multiple polluted and environmentally preserved Phleum pratense (Timothy grass) pollen samples using scanning electron microscopy, in-depth PTM profiling, determination of organic and inorganic pollutants, analysis of the release of sub-pollen particles and phenols/proteins, and analysis of proteome expression using high resolution tandem mass spectrometry. In addition, we used quantitative enzyme-linked immunosorbent assays (ELISA) and immunoglobulin E (IgE) immunoblotting. An increased phenolic content and release of sub-pollen particles was found in pollen samples from the polluted area, including a significantly higher content of mercury, cadmium, and manganese, with irregular long spines on pollen grain surface structures. Antioxidative defense-related enzymes were significantly upregulated and seven oxidative PTMs were significantly increased (methionine, histidine, lysine, and proline oxidation; tyrosine glycosylation, lysine 4-hydroxy-2-nonenal adduct, and lysine carbamylation) in pollen exposed to the chemical plant and road traffic pollution sources. Oxidative modifications affected several Timothy pollen allergens; Phl p 6, in particular, exhibited several different oxidative modifications. The expression of Phl p 6, 12, and 13 allergens were downregulated in polluted pollen, and IgE binding to pollen extract was substantially lower in the 18 patients studied, as measured by quantitative ELISA. Quantitative, unrestricted, and detailed PTM searches using an enrichment-free approach pointed to modification of Timothy pollen allergens and suggested that heavy metals are primarily responsible for oxidative stress effects observed in pollen proteins.",
publisher = "Elsevier",
journal = "Environment International",
title = "In-depth quantitative profiling of post-translational modifications of Timothy grass pollen allergome in relation to environmental oxidative stress",
volume = "126",
pages = "644-658",
doi = "10.1016/j.envint.2019.03.001"
}
Smiljanić, K., Prodić, I., Apostolović, D., Cvetković, A., Veljović, Đ., Mutić, J., van Hage, M., Burazer, L. M.,& Ćirković-Veličković, T.. (2019). In-depth quantitative profiling of post-translational modifications of Timothy grass pollen allergome in relation to environmental oxidative stress. in Environment International
Elsevier., 126, 644-658.
https://doi.org/10.1016/j.envint.2019.03.001
Smiljanić K, Prodić I, Apostolović D, Cvetković A, Veljović Đ, Mutić J, van Hage M, Burazer LM, Ćirković-Veličković T. In-depth quantitative profiling of post-translational modifications of Timothy grass pollen allergome in relation to environmental oxidative stress. in Environment International. 2019;126:644-658.
doi:10.1016/j.envint.2019.03.001 .
Smiljanić, Katarina, Prodić, Ivana, Apostolović, Danijela, Cvetković, Anka, Veljović, Đorđe, Mutić, Jelena, van Hage, Marianne, Burazer, Lidija M., Ćirković-Veličković, Tanja, "In-depth quantitative profiling of post-translational modifications of Timothy grass pollen allergome in relation to environmental oxidative stress" in Environment International, 126 (2019):644-658,
https://doi.org/10.1016/j.envint.2019.03.001 . .
2
15
5
15
11

Deep and quantitative profiling of PTMs in ecologically preserved and polluted pollen proteomes of timothy grass reveals predominant source of contamination

Smiljanić, Katarina; Prodić, Ivana; Aleksić, Ivana; Veljović, Đorđe; Ćirković-Veličković, Tanja; Mutić, Jelena; Burazer, Lidija M.

(Srpsko Udruženje za Proteomiku, SePA; IBISS, 2018)

TY  - CONF
AU  - Smiljanić, Katarina
AU  - Prodić, Ivana
AU  - Aleksić, Ivana
AU  - Veljović, Đorđe
AU  - Ćirković-Veličković, Tanja
AU  - Mutić, Jelena
AU  - Burazer, Lidija M.
PY  - 2018
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5709
AB  - Objective: to create method for unrestrictive deep, relative quantification of post translational
modifications (PTMs) within different proteomes. Pollution field studies of bio indicators such as
pollen are valuable because of realistic situation of target contamination, however they carry the
great extent of uncertainty in attributing and delineating the polluting effect from multiple sources.
Holistic research platform focusing on comprehensively characterized and quantified PTMs of
comparable bio-indicator proteomes could help and overcome these obstacles of field pollution
studies.
Material and Methods: Scanning electron and light microscopy assessed surface and sub pollen
particle (SPP) releasing features of timothy grass (TG) pollen. Inductively coupled atomic emission
spectrometry revealed metal elemental content in pollen while in solution trypsin digested pollen
proteomes analysed with high resolution Orbitrap mass tandem spectrometry and PEAKS Suite 8.5
brought quantitative information on protein expression level and its PTM profiling.
Results: TG polluted pollen samples (P2) collected along regional road and chemical plant,
exposed to air contaminants from road traffics and chemical plants showed 4.5 times higher SPP
releasing capacity, with notable surface changes, as well as significantly higher contents of Mn, Hg
and Cd. Antioxidative enzymes (oxidoreductases, superoxide dismutases and peroxidases),
including actin, were upregulated several times in polluted sample compared to ecologically
preserved pollen (P1). While the level of spontaneous and physiological PTMs including
methylation, acetylation, deamidation and formylation, was similar without significant changes in
P1 and P2 pollens, oxidative PTMs including oxidation of Met, Lys, His, Pro and HNE and hexose
adducts showed several times higher and significant increase in abundancy of P2 compared to P1.
PTMs connected to road traffic such as tyrosine nitration were very rare and low abundant.
Conclusion: Results suggest prominent role of chemical pollution compared to effect of road traffic
pollution, with primary consequences from oxidative properties of mercury (Hg) and cadmium
(Cd).
PB  - Srpsko Udruženje za Proteomiku, SePA; IBISS
C3  - IV Simpozijum srpskog udruženja za proteomiku – SePA, Interaktomika i glikoproteomika: novi pristup u analizi proteina na velikoj skali, 25. maj 2018, Beograd, Srbija
T1  - Deep and quantitative profiling of PTMs in ecologically preserved and polluted pollen proteomes of timothy grass reveals predominant source of contamination
SP  - 13
EP  - 13
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5709
ER  - 
@conference{
author = "Smiljanić, Katarina and Prodić, Ivana and Aleksić, Ivana and Veljović, Đorđe and Ćirković-Veličković, Tanja and Mutić, Jelena and Burazer, Lidija M.",
year = "2018",
abstract = "Objective: to create method for unrestrictive deep, relative quantification of post translational
modifications (PTMs) within different proteomes. Pollution field studies of bio indicators such as
pollen are valuable because of realistic situation of target contamination, however they carry the
great extent of uncertainty in attributing and delineating the polluting effect from multiple sources.
Holistic research platform focusing on comprehensively characterized and quantified PTMs of
comparable bio-indicator proteomes could help and overcome these obstacles of field pollution
studies.
Material and Methods: Scanning electron and light microscopy assessed surface and sub pollen
particle (SPP) releasing features of timothy grass (TG) pollen. Inductively coupled atomic emission
spectrometry revealed metal elemental content in pollen while in solution trypsin digested pollen
proteomes analysed with high resolution Orbitrap mass tandem spectrometry and PEAKS Suite 8.5
brought quantitative information on protein expression level and its PTM profiling.
Results: TG polluted pollen samples (P2) collected along regional road and chemical plant,
exposed to air contaminants from road traffics and chemical plants showed 4.5 times higher SPP
releasing capacity, with notable surface changes, as well as significantly higher contents of Mn, Hg
and Cd. Antioxidative enzymes (oxidoreductases, superoxide dismutases and peroxidases),
including actin, were upregulated several times in polluted sample compared to ecologically
preserved pollen (P1). While the level of spontaneous and physiological PTMs including
methylation, acetylation, deamidation and formylation, was similar without significant changes in
P1 and P2 pollens, oxidative PTMs including oxidation of Met, Lys, His, Pro and HNE and hexose
adducts showed several times higher and significant increase in abundancy of P2 compared to P1.
PTMs connected to road traffic such as tyrosine nitration were very rare and low abundant.
Conclusion: Results suggest prominent role of chemical pollution compared to effect of road traffic
pollution, with primary consequences from oxidative properties of mercury (Hg) and cadmium
(Cd).",
publisher = "Srpsko Udruženje za Proteomiku, SePA; IBISS",
journal = "IV Simpozijum srpskog udruženja za proteomiku – SePA, Interaktomika i glikoproteomika: novi pristup u analizi proteina na velikoj skali, 25. maj 2018, Beograd, Srbija",
title = "Deep and quantitative profiling of PTMs in ecologically preserved and polluted pollen proteomes of timothy grass reveals predominant source of contamination",
pages = "13-13",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5709"
}
Smiljanić, K., Prodić, I., Aleksić, I., Veljović, Đ., Ćirković-Veličković, T., Mutić, J.,& Burazer, L. M.. (2018). Deep and quantitative profiling of PTMs in ecologically preserved and polluted pollen proteomes of timothy grass reveals predominant source of contamination. in IV Simpozijum srpskog udruženja za proteomiku – SePA, Interaktomika i glikoproteomika: novi pristup u analizi proteina na velikoj skali, 25. maj 2018, Beograd, Srbija
Srpsko Udruženje za Proteomiku, SePA; IBISS., 13-13.
https://hdl.handle.net/21.15107/rcub_cherry_5709
Smiljanić K, Prodić I, Aleksić I, Veljović Đ, Ćirković-Veličković T, Mutić J, Burazer LM. Deep and quantitative profiling of PTMs in ecologically preserved and polluted pollen proteomes of timothy grass reveals predominant source of contamination. in IV Simpozijum srpskog udruženja za proteomiku – SePA, Interaktomika i glikoproteomika: novi pristup u analizi proteina na velikoj skali, 25. maj 2018, Beograd, Srbija. 2018;:13-13.
https://hdl.handle.net/21.15107/rcub_cherry_5709 .
Smiljanić, Katarina, Prodić, Ivana, Aleksić, Ivana, Veljović, Đorđe, Ćirković-Veličković, Tanja, Mutić, Jelena, Burazer, Lidija M., "Deep and quantitative profiling of PTMs in ecologically preserved and polluted pollen proteomes of timothy grass reveals predominant source of contamination" in IV Simpozijum srpskog udruženja za proteomiku – SePA, Interaktomika i glikoproteomika: novi pristup u analizi proteina na velikoj skali, 25. maj 2018, Beograd, Srbija (2018):13-13,
https://hdl.handle.net/21.15107/rcub_cherry_5709 .