Miladinović, Jelena

Link to this page

Authority KeyName Variants
41ab5e9d-ca31-4a31-880b-78bdb668ae1c
  • Miladinović, Jelena (4)

Author's Bibliography

2 in 1 versus 1 plus 1 – Outcomes of the transformation of adsorptive stripping method for the Ni2+ and Co2+ determination

Pastor, Ferenc T.; Dojčinović, Biljana P.; Kodranov, Igor D.; Gorjanović, Stanislava; Ivanović, Tijana; Popović, Daniela Ž.; Miladinović, Jelena

TY  - JOUR
AU  - Pastor, Ferenc T.
AU  - Dojčinović, Biljana P.
AU  - Kodranov, Igor D.
AU  - Gorjanović, Stanislava
AU  - Ivanović, Tijana
AU  - Popović, Daniela Ž.
AU  - Miladinović, Jelena
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6390
AB  - Due to the similar chemical properties of Ni2+ and Co2+, several dozens of adsorptive stripping voltammetric (AdSV) methods have been developed for their simultaneous determination. The question was would there be some benefits if a stripping method made for simultaneous determination of Ni2+ and Co2+ will be optimized for the determination of only one of them (Ni2+). It was found that the optimized method has for an order of magnitude lower LOQ (1.89×10−10 M), an order of magnitude lower influence of Co2+, and the applicability of one calibration line for four orders of magnitude of Ni2+ concentration. The influence of some common anions and cations has been examined. The developed method was successfully applied for nickel content determination in real samples. The suitability of the developed method for the determination of Co2+ from the same solution in the second run, upon optimizations of deposition potential and time, was also explored. The LOQ obtained for Co2+ (3.61×10−11 M) is almost two orders of magnitude lower than LOQ of the method for simultaneous determination of both cations and, its LOD and LOQ are among few lowest obtained by AdSV methods for Co2+ determination. The developed method for Ni2+ and Co2+ determination from the same solution in two successive runs has significantly better analytical performances than the starting method for their simultaneous determination in one run.
PB  - Wiley
T2  - Electroanalysis
T1  - 2 in 1 versus 1 plus 1 – Outcomes of the transformation of adsorptive stripping method for the Ni2+ and Co2+ determination
VL  - n/a
IS  - n/a
SP  - e202300259
DO  - 10.1002/elan.202300259
ER  - 
@article{
author = "Pastor, Ferenc T. and Dojčinović, Biljana P. and Kodranov, Igor D. and Gorjanović, Stanislava and Ivanović, Tijana and Popović, Daniela Ž. and Miladinović, Jelena",
abstract = "Due to the similar chemical properties of Ni2+ and Co2+, several dozens of adsorptive stripping voltammetric (AdSV) methods have been developed for their simultaneous determination. The question was would there be some benefits if a stripping method made for simultaneous determination of Ni2+ and Co2+ will be optimized for the determination of only one of them (Ni2+). It was found that the optimized method has for an order of magnitude lower LOQ (1.89×10−10 M), an order of magnitude lower influence of Co2+, and the applicability of one calibration line for four orders of magnitude of Ni2+ concentration. The influence of some common anions and cations has been examined. The developed method was successfully applied for nickel content determination in real samples. The suitability of the developed method for the determination of Co2+ from the same solution in the second run, upon optimizations of deposition potential and time, was also explored. The LOQ obtained for Co2+ (3.61×10−11 M) is almost two orders of magnitude lower than LOQ of the method for simultaneous determination of both cations and, its LOD and LOQ are among few lowest obtained by AdSV methods for Co2+ determination. The developed method for Ni2+ and Co2+ determination from the same solution in two successive runs has significantly better analytical performances than the starting method for their simultaneous determination in one run.",
publisher = "Wiley",
journal = "Electroanalysis",
title = "2 in 1 versus 1 plus 1 – Outcomes of the transformation of adsorptive stripping method for the Ni2+ and Co2+ determination",
volume = "n/a",
number = "n/a",
pages = "e202300259",
doi = "10.1002/elan.202300259"
}
Pastor, F. T., Dojčinović, B. P., Kodranov, I. D., Gorjanović, S., Ivanović, T., Popović, D. Ž.,& Miladinović, J..2 in 1 versus 1 plus 1 – Outcomes of the transformation of adsorptive stripping method for the Ni2+ and Co2+ determination. in Electroanalysis
Wiley., n/a(n/a), e202300259.
https://doi.org/10.1002/elan.202300259
Pastor FT, Dojčinović BP, Kodranov ID, Gorjanović S, Ivanović T, Popović DŽ, Miladinović J. 2 in 1 versus 1 plus 1 – Outcomes of the transformation of adsorptive stripping method for the Ni2+ and Co2+ determination. in Electroanalysis.n/a(n/a):e202300259.
doi:10.1002/elan.202300259 .
Pastor, Ferenc T., Dojčinović, Biljana P., Kodranov, Igor D., Gorjanović, Stanislava, Ivanović, Tijana, Popović, Daniela Ž., Miladinović, Jelena, "2 in 1 versus 1 plus 1 – Outcomes of the transformation of adsorptive stripping method for the Ni2+ and Co2+ determination" in Electroanalysis, n/a, no. n/a:e202300259,
https://doi.org/10.1002/elan.202300259 . .
1

Activity Coefficients of the System {yKCl + (1 – y)KH2PO4}(aq) at T = 298.15 K Determined by Cell Potential Measurements

Ivanović, Tijana; Popović, Daniela Ž.; Miladinović, Jelena; Miladinović, Zoran P.; Pastor, Ferenc

(American Chemical Society, 2023)

TY  - JOUR
AU  - Ivanović, Tijana
AU  - Popović, Daniela Ž.
AU  - Miladinović, Jelena
AU  - Miladinović, Zoran P.
AU  - Pastor, Ferenc
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6090
AB  - Zero-current cell potential measurements were used to determine the solution activity coefficient in a ternary system {yKCl + (1 – y) KH2PO4}(aq) at temperature T = 298.15 K. The cell of the type K–ISE|KCl(mKCl), KH2PO4(mKH2PO4)|Ag|AgCl was used in the total ionic strength range, Im = 0.0886–1.0046 mol kg–1. In order to generate a set of parameters that can be applied in a wide range of mixed solution ionic strengths, the Pitzer, Scatchard, and Clegg–Pitzer–Brimblecombe models were used to fit all available experimental data, including cell potential and isopiestic measurements from the literature. The experimental and calculated values of thermodynamic properties for the studied system are in excellent agreement. Potential interactions and solution structure were discussed by means of the excess free energy of mixing via potential pairs, triplets, or quads for the investigated solution using the Scatchard model mixing parameters.
PB  - American Chemical Society
T2  - Journal of Chemical & Engineering Data
T1  - Activity Coefficients of the System {yKCl + (1 – y)KH2PO4}(aq) at T = 298.15 K Determined by Cell Potential Measurements
VL  - 68
IS  - 2
SP  - 405
EP  - 415
DO  - 10.1021/acs.jced.2c00704
ER  - 
@article{
author = "Ivanović, Tijana and Popović, Daniela Ž. and Miladinović, Jelena and Miladinović, Zoran P. and Pastor, Ferenc",
year = "2023",
abstract = "Zero-current cell potential measurements were used to determine the solution activity coefficient in a ternary system {yKCl + (1 – y) KH2PO4}(aq) at temperature T = 298.15 K. The cell of the type K–ISE|KCl(mKCl), KH2PO4(mKH2PO4)|Ag|AgCl was used in the total ionic strength range, Im = 0.0886–1.0046 mol kg–1. In order to generate a set of parameters that can be applied in a wide range of mixed solution ionic strengths, the Pitzer, Scatchard, and Clegg–Pitzer–Brimblecombe models were used to fit all available experimental data, including cell potential and isopiestic measurements from the literature. The experimental and calculated values of thermodynamic properties for the studied system are in excellent agreement. Potential interactions and solution structure were discussed by means of the excess free energy of mixing via potential pairs, triplets, or quads for the investigated solution using the Scatchard model mixing parameters.",
publisher = "American Chemical Society",
journal = "Journal of Chemical & Engineering Data",
title = "Activity Coefficients of the System {yKCl + (1 – y)KH2PO4}(aq) at T = 298.15 K Determined by Cell Potential Measurements",
volume = "68",
number = "2",
pages = "405-415",
doi = "10.1021/acs.jced.2c00704"
}
Ivanović, T., Popović, D. Ž., Miladinović, J., Miladinović, Z. P.,& Pastor, F.. (2023). Activity Coefficients of the System {yKCl + (1 – y)KH2PO4}(aq) at T = 298.15 K Determined by Cell Potential Measurements. in Journal of Chemical & Engineering Data
American Chemical Society., 68(2), 405-415.
https://doi.org/10.1021/acs.jced.2c00704
Ivanović T, Popović DŽ, Miladinović J, Miladinović ZP, Pastor F. Activity Coefficients of the System {yKCl + (1 – y)KH2PO4}(aq) at T = 298.15 K Determined by Cell Potential Measurements. in Journal of Chemical & Engineering Data. 2023;68(2):405-415.
doi:10.1021/acs.jced.2c00704 .
Ivanović, Tijana, Popović, Daniela Ž., Miladinović, Jelena, Miladinović, Zoran P., Pastor, Ferenc, "Activity Coefficients of the System {yKCl + (1 – y)KH2PO4}(aq) at T = 298.15 K Determined by Cell Potential Measurements" in Journal of Chemical & Engineering Data, 68, no. 2 (2023):405-415,
https://doi.org/10.1021/acs.jced.2c00704 . .
2
1

Isopiestic determination of the osmotic and activity coefficients of {yK2HPO4 + (1 − y)KH2PO4}(aq) at T = 298.15 K

Ivanović, Tijana; Popović, Daniela Ž.; Miladinović, Jelena; Rard, Joseph A.; Miladinović, Zoran P.; Pastor, Ferenc

(Elsevier, 2020)

TY  - JOUR
AU  - Ivanović, Tijana
AU  - Popović, Daniela Ž.
AU  - Miladinović, Jelena
AU  - Rard, Joseph A.
AU  - Miladinović, Zoran P.
AU  - Pastor, Ferenc
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3663
AB  - Isopiestic measurements have been made at 55 compositions of the {yK2HPO4 + (1 − y)KH2PO4}(aq) system at T = (298.15 ± 0.01) K, 11 for each of the limiting binary solutions and 33 for mixture compositions at K2HPO4 stoichiometric ionic strength fractions y = (0.23330, 0.47671, and 0.73177), using KCl(aq) as the reference standard. Model parameters for the binary subsystems were evaluated at this temperature for an extended form of Pitzer's ion-interaction model and also for the Clegg, Pitzer and Brimblecombe model based on the mole-fraction-composition scale, using the present isopiestic results along with critically-assessed osmotic coefficients for both of these aqueous electrolytes as extracted from the published literature. The thermodynamic models for KH2PO4(aq) extend to slightly above the saturated solution molality at T = (298.15 ± 0.01) K, whereas those for K2HPO4(aq) extend to m = 9.7429 mol·kg−1, which is the molality of the saturated solution, also at T = (298.15 ± 0.01) K. These results yield the CODATA-compatible standard Gibbs energy of formation ΔfGmo(K2HPO4·3H2O,cr,298.15K)=-2367.70±1.60kJ·mol-1. The 33 osmotic coefficients for the ternary mixtures were likewise represented with these models, using both the usual Pitzer mixing terms and also Scatchard's neutral-electrolyte model mixing terms for the extended ion-interaction model. Two mixing parameters are needed for each of the three models for {yK2HPO4 + (1 − y)KH2PO4}(aq), and both of these ion-interaction models give similar high-quality representations of the experimental results. However, the Clegg, Pitzer and Brimblecombe model had more difficulty in representing the osmotic coefficients of K2HPO4(aq), especially below 3 mol·kg−1, and consequently the corresponding mixture model with two mixing parameters is slightly less accurate for representing the osmotic coefficients. The maximum difference in calculated values of the mean molality-based activity coefficients for the two recommended extended Pitzer models with the different types of mixing terms are 0.0061 for the trace activity coefficient of K2HPO4(aq) in KH2PO4(aq) but with much better agreement at most mixture compositions.
PB  - Elsevier
T2  - Journal of Chemical Thermodynamics
T1  - Isopiestic determination of the osmotic and activity coefficients of {yK2HPO4 + (1 − y)KH2PO4}(aq) at T = 298.15 K
VL  - 142
SP  - 105945
DO  - 10.1016/j.jct.2019.105945
ER  - 
@article{
author = "Ivanović, Tijana and Popović, Daniela Ž. and Miladinović, Jelena and Rard, Joseph A. and Miladinović, Zoran P. and Pastor, Ferenc",
year = "2020",
abstract = "Isopiestic measurements have been made at 55 compositions of the {yK2HPO4 + (1 − y)KH2PO4}(aq) system at T = (298.15 ± 0.01) K, 11 for each of the limiting binary solutions and 33 for mixture compositions at K2HPO4 stoichiometric ionic strength fractions y = (0.23330, 0.47671, and 0.73177), using KCl(aq) as the reference standard. Model parameters for the binary subsystems were evaluated at this temperature for an extended form of Pitzer's ion-interaction model and also for the Clegg, Pitzer and Brimblecombe model based on the mole-fraction-composition scale, using the present isopiestic results along with critically-assessed osmotic coefficients for both of these aqueous electrolytes as extracted from the published literature. The thermodynamic models for KH2PO4(aq) extend to slightly above the saturated solution molality at T = (298.15 ± 0.01) K, whereas those for K2HPO4(aq) extend to m = 9.7429 mol·kg−1, which is the molality of the saturated solution, also at T = (298.15 ± 0.01) K. These results yield the CODATA-compatible standard Gibbs energy of formation ΔfGmo(K2HPO4·3H2O,cr,298.15K)=-2367.70±1.60kJ·mol-1. The 33 osmotic coefficients for the ternary mixtures were likewise represented with these models, using both the usual Pitzer mixing terms and also Scatchard's neutral-electrolyte model mixing terms for the extended ion-interaction model. Two mixing parameters are needed for each of the three models for {yK2HPO4 + (1 − y)KH2PO4}(aq), and both of these ion-interaction models give similar high-quality representations of the experimental results. However, the Clegg, Pitzer and Brimblecombe model had more difficulty in representing the osmotic coefficients of K2HPO4(aq), especially below 3 mol·kg−1, and consequently the corresponding mixture model with two mixing parameters is slightly less accurate for representing the osmotic coefficients. The maximum difference in calculated values of the mean molality-based activity coefficients for the two recommended extended Pitzer models with the different types of mixing terms are 0.0061 for the trace activity coefficient of K2HPO4(aq) in KH2PO4(aq) but with much better agreement at most mixture compositions.",
publisher = "Elsevier",
journal = "Journal of Chemical Thermodynamics",
title = "Isopiestic determination of the osmotic and activity coefficients of {yK2HPO4 + (1 − y)KH2PO4}(aq) at T = 298.15 K",
volume = "142",
pages = "105945",
doi = "10.1016/j.jct.2019.105945"
}
Ivanović, T., Popović, D. Ž., Miladinović, J., Rard, J. A., Miladinović, Z. P.,& Pastor, F.. (2020). Isopiestic determination of the osmotic and activity coefficients of {yK2HPO4 + (1 − y)KH2PO4}(aq) at T = 298.15 K. in Journal of Chemical Thermodynamics
Elsevier., 142, 105945.
https://doi.org/10.1016/j.jct.2019.105945
Ivanović T, Popović DŽ, Miladinović J, Rard JA, Miladinović ZP, Pastor F. Isopiestic determination of the osmotic and activity coefficients of {yK2HPO4 + (1 − y)KH2PO4}(aq) at T = 298.15 K. in Journal of Chemical Thermodynamics. 2020;142:105945.
doi:10.1016/j.jct.2019.105945 .
Ivanović, Tijana, Popović, Daniela Ž., Miladinović, Jelena, Rard, Joseph A., Miladinović, Zoran P., Pastor, Ferenc, "Isopiestic determination of the osmotic and activity coefficients of {yK2HPO4 + (1 − y)KH2PO4}(aq) at T = 298.15 K" in Journal of Chemical Thermodynamics, 142 (2020):105945,
https://doi.org/10.1016/j.jct.2019.105945 . .
6
1
6
3

Isopiestic Determination of Osmotic and Activity Coefficients of the { yNaH2PO4+ (1 - Y)Na2HPO4}(aq) System at T = 298.15 K

Ivanović, Tijana; Popović, Daniela Ž.; Miladinović, Jelena; Rard, Joseph A.; Miladinović, Zoran P.; Pastor, Ferenc

(Amer Chemical Soc, Washington, 2020)

TY  - JOUR
AU  - Ivanović, Tijana
AU  - Popović, Daniela Ž.
AU  - Miladinović, Jelena
AU  - Rard, Joseph A.
AU  - Miladinović, Zoran P.
AU  - Pastor, Ferenc
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4775
AB  - Isopiestic measurements have been made for aqueous solutions of the common sodium cation mixtures of NaH2PO4and Na2HPO4at T = 298.15 ± 0.01 K, at NaH2PO4ionic strength fractions y = (0, 0.24851, 0.49862, 0.74544, and 1), where the ionic strength fractions were calculated by assuming complete electrolytic dissociation of NaH2PO4as 1:1 and Na2HPO4as 2:1 electrolytes; CaCl2(aq) was used as the reference standard solution. Model parameters for an extended form of Pitzer's ion-interaction model and also for the Clegg-Pitzer-Brimblecombe equations based on the mole-fraction-composition scale were evaluated at T = 298.15 K for both NaH2PO4(aq) and Na2HPO4(aq) using the isopiestic results from this study (17 values each) together with numerous critically assessed osmotic coefficients for both electrolytes taken from the published literature. The thermodynamic models for NaH2PO4(aq) extend to m = 7.5 mol·kg-1, whereas those for Na2HPO4(aq) extend to m = 2.6050 mol·kg-1, which is well above the solubility limit for the thermodynamically stable phase Na2HPO4·12H2O(cr). The 51 osmotic coefficients for the ternary mixtures were treated with these two models together with Scatchard's neutral-electrolyte model; one previous set of osmotic coefficient values for {yNaH2PO4+ (1 - y)Na2HPO4}(aq) mixtures was found in the literature [ Scharge, T.; et al. J. Chem. Thermodyn. 2015, 80, 172-183 ], and hence an analysis and comparison were made of our results with theirs.
PB  - Amer Chemical Soc, Washington
T2  - Journal of Chemical and Engineering Data
T1  - Isopiestic Determination of Osmotic and Activity Coefficients of the { yNaH2PO4+ (1 - Y)Na2HPO4}(aq) System at T = 298.15 K
VL  - 65
IS  - 11
SP  - 5137
EP  - 5153
DO  - 10.1021/acs.jced.0c00281
ER  - 
@article{
author = "Ivanović, Tijana and Popović, Daniela Ž. and Miladinović, Jelena and Rard, Joseph A. and Miladinović, Zoran P. and Pastor, Ferenc",
year = "2020",
abstract = "Isopiestic measurements have been made for aqueous solutions of the common sodium cation mixtures of NaH2PO4and Na2HPO4at T = 298.15 ± 0.01 K, at NaH2PO4ionic strength fractions y = (0, 0.24851, 0.49862, 0.74544, and 1), where the ionic strength fractions were calculated by assuming complete electrolytic dissociation of NaH2PO4as 1:1 and Na2HPO4as 2:1 electrolytes; CaCl2(aq) was used as the reference standard solution. Model parameters for an extended form of Pitzer's ion-interaction model and also for the Clegg-Pitzer-Brimblecombe equations based on the mole-fraction-composition scale were evaluated at T = 298.15 K for both NaH2PO4(aq) and Na2HPO4(aq) using the isopiestic results from this study (17 values each) together with numerous critically assessed osmotic coefficients for both electrolytes taken from the published literature. The thermodynamic models for NaH2PO4(aq) extend to m = 7.5 mol·kg-1, whereas those for Na2HPO4(aq) extend to m = 2.6050 mol·kg-1, which is well above the solubility limit for the thermodynamically stable phase Na2HPO4·12H2O(cr). The 51 osmotic coefficients for the ternary mixtures were treated with these two models together with Scatchard's neutral-electrolyte model; one previous set of osmotic coefficient values for {yNaH2PO4+ (1 - y)Na2HPO4}(aq) mixtures was found in the literature [ Scharge, T.; et al. J. Chem. Thermodyn. 2015, 80, 172-183 ], and hence an analysis and comparison were made of our results with theirs.",
publisher = "Amer Chemical Soc, Washington",
journal = "Journal of Chemical and Engineering Data",
title = "Isopiestic Determination of Osmotic and Activity Coefficients of the { yNaH2PO4+ (1 - Y)Na2HPO4}(aq) System at T = 298.15 K",
volume = "65",
number = "11",
pages = "5137-5153",
doi = "10.1021/acs.jced.0c00281"
}
Ivanović, T., Popović, D. Ž., Miladinović, J., Rard, J. A., Miladinović, Z. P.,& Pastor, F.. (2020). Isopiestic Determination of Osmotic and Activity Coefficients of the { yNaH2PO4+ (1 - Y)Na2HPO4}(aq) System at T = 298.15 K. in Journal of Chemical and Engineering Data
Amer Chemical Soc, Washington., 65(11), 5137-5153.
https://doi.org/10.1021/acs.jced.0c00281
Ivanović T, Popović DŽ, Miladinović J, Rard JA, Miladinović ZP, Pastor F. Isopiestic Determination of Osmotic and Activity Coefficients of the { yNaH2PO4+ (1 - Y)Na2HPO4}(aq) System at T = 298.15 K. in Journal of Chemical and Engineering Data. 2020;65(11):5137-5153.
doi:10.1021/acs.jced.0c00281 .
Ivanović, Tijana, Popović, Daniela Ž., Miladinović, Jelena, Rard, Joseph A., Miladinović, Zoran P., Pastor, Ferenc, "Isopiestic Determination of Osmotic and Activity Coefficients of the { yNaH2PO4+ (1 - Y)Na2HPO4}(aq) System at T = 298.15 K" in Journal of Chemical and Engineering Data, 65, no. 11 (2020):5137-5153,
https://doi.org/10.1021/acs.jced.0c00281 . .
6
1
4
3