Polović, Natalija

Link to this page

Authority KeyName Variants
87c5385c-1847-4ae8-81ab-4bf634b8d1f4
  • Polović, Natalija (3)
Projects

Author's Bibliography

Supplementary material for: Stanković, M., Prokopijević, M., Šikoparija, B., Nedić, N., Andrić, F., Polović, N., Natić, M.,& Radotić, K.. (2023). Using Front-Face Fluorescence Spectroscopy and Biochemical Analysis of Honey to Assess a Marker for the Level of Varroa destructor Infestation of Honey Bee (Apis mellifera) Colonies. in Foods, 12(3), 629. https://doi.org/10.3390/foods12030629

Stanković, Mira; Prokopijević, Miloš; Šikoparija, Branko; Nedić, Nebojša; Andrić, Filip; Polović, Natalija; Natić, Maja; Radotić, Ksenija

(2023)

TY  - DATA
AU  - Stanković, Mira
AU  - Prokopijević, Miloš
AU  - Šikoparija, Branko
AU  - Nedić, Nebojša
AU  - Andrić, Filip
AU  - Polović, Natalija
AU  - Natić, Maja
AU  - Radotić, Ksenija
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5848
AB  - Varroa destructor is a parasitic mite responsible for the loss of honey bee (Apis mellifera) colonies. This study aimed to find a promising marker in honey for the bee colony infestation level using fluorescence spectroscopy and biochemical analyses. We examined whether the parameters of the honey samples’ fluorescence spectra and biochemical parameters, both related to proteins and phenolics, may be connected with the level of honey bee colonies’ infestation. The infestation level was highly positively correlated with the catalase activity in honey (r = 0.936). Additionally, the infestation level was positively correlated with the phenolic spectral component (r = 0.656), which was tentatively related to the phenolics in honey. No correlation was found between the diastase activity in honey and the colonies’ infestation level. The results indicate that the catalase activity in honey and the PFC1 spectral component may be reliable markers for the V. destructor infestation level of the colonies. The obtained data may be related to the honey yield obtained from the apiaries.
T2  - Foods
T2  - Foods
T1  - Supplementary material for: Stanković, M., Prokopijević, M., Šikoparija, B., Nedić, N., Andrić, F., Polović, N., Natić, M.,& Radotić, K.. (2023). Using Front-Face Fluorescence Spectroscopy and Biochemical
Analysis of Honey to Assess a Marker for the Level of Varroa
destructor Infestation of Honey Bee (Apis mellifera) Colonies. in Foods, 12(3), 629.
https://doi.org/10.3390/foods12030629
VL  - 12
IS  - 3
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5848
ER  - 
@misc{
author = "Stanković, Mira and Prokopijević, Miloš and Šikoparija, Branko and Nedić, Nebojša and Andrić, Filip and Polović, Natalija and Natić, Maja and Radotić, Ksenija",
year = "2023",
abstract = "Varroa destructor is a parasitic mite responsible for the loss of honey bee (Apis mellifera) colonies. This study aimed to find a promising marker in honey for the bee colony infestation level using fluorescence spectroscopy and biochemical analyses. We examined whether the parameters of the honey samples’ fluorescence spectra and biochemical parameters, both related to proteins and phenolics, may be connected with the level of honey bee colonies’ infestation. The infestation level was highly positively correlated with the catalase activity in honey (r = 0.936). Additionally, the infestation level was positively correlated with the phenolic spectral component (r = 0.656), which was tentatively related to the phenolics in honey. No correlation was found between the diastase activity in honey and the colonies’ infestation level. The results indicate that the catalase activity in honey and the PFC1 spectral component may be reliable markers for the V. destructor infestation level of the colonies. The obtained data may be related to the honey yield obtained from the apiaries.",
journal = "Foods, Foods",
title = "Supplementary material for: Stanković, M., Prokopijević, M., Šikoparija, B., Nedić, N., Andrić, F., Polović, N., Natić, M.,& Radotić, K.. (2023). Using Front-Face Fluorescence Spectroscopy and Biochemical
Analysis of Honey to Assess a Marker for the Level of Varroa
destructor Infestation of Honey Bee (Apis mellifera) Colonies. in Foods, 12(3), 629.
https://doi.org/10.3390/foods12030629",
volume = "12",
number = "3",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5848"
}
Stanković, M., Prokopijević, M., Šikoparija, B., Nedić, N., Andrić, F., Polović, N., Natić, M.,& Radotić, K.. (2023). Supplementary material for: Stanković, M., Prokopijević, M., Šikoparija, B., Nedić, N., Andrić, F., Polović, N., Natić, M.,& Radotić, K.. (2023). Using Front-Face Fluorescence Spectroscopy and Biochemical
Analysis of Honey to Assess a Marker for the Level of Varroa
destructor Infestation of Honey Bee (Apis mellifera) Colonies. in Foods, 12(3), 629.
https://doi.org/10.3390/foods12030629. in Foods, 12(3).
https://hdl.handle.net/21.15107/rcub_cherry_5848
Stanković M, Prokopijević M, Šikoparija B, Nedić N, Andrić F, Polović N, Natić M, Radotić K. Supplementary material for: Stanković, M., Prokopijević, M., Šikoparija, B., Nedić, N., Andrić, F., Polović, N., Natić, M.,& Radotić, K.. (2023). Using Front-Face Fluorescence Spectroscopy and Biochemical
Analysis of Honey to Assess a Marker for the Level of Varroa
destructor Infestation of Honey Bee (Apis mellifera) Colonies. in Foods, 12(3), 629.
https://doi.org/10.3390/foods12030629. in Foods. 2023;12(3).
https://hdl.handle.net/21.15107/rcub_cherry_5848 .
Stanković, Mira, Prokopijević, Miloš, Šikoparija, Branko, Nedić, Nebojša, Andrić, Filip, Polović, Natalija, Natić, Maja, Radotić, Ksenija, "Supplementary material for: Stanković, M., Prokopijević, M., Šikoparija, B., Nedić, N., Andrić, F., Polović, N., Natić, M.,& Radotić, K.. (2023). Using Front-Face Fluorescence Spectroscopy and Biochemical
Analysis of Honey to Assess a Marker for the Level of Varroa
destructor Infestation of Honey Bee (Apis mellifera) Colonies. in Foods, 12(3), 629.
https://doi.org/10.3390/foods12030629" in Foods, 12, no. 3 (2023),
https://hdl.handle.net/21.15107/rcub_cherry_5848 .

Using Front-Face Fluorescence Spectroscopy and Biochemical Analysis of Honey to Assess a Marker for the Level of Varroa destructor Infestation of Honey Bee (Apis mellifera) Colonies

Stanković, Mira; Prokopijević, Miloš; Šikoparija, Branko; Nedić, Nebojša; Andrić, Filip; Polović, Natalija; Natić, Maja; Radotić, Ksenija

(2023)

TY  - JOUR
AU  - Stanković, Mira
AU  - Prokopijević, Miloš
AU  - Šikoparija, Branko
AU  - Nedić, Nebojša
AU  - Andrić, Filip
AU  - Polović, Natalija
AU  - Natić, Maja
AU  - Radotić, Ksenija
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5847
AB  - Varroa destructor is a parasitic mite responsible for the loss of honey bee (Apis mellifera) colonies. This study aimed to find a promising marker in honey for the bee colony infestation level using fluorescence spectroscopy and biochemical analyses. We examined whether the parameters of the honey samples’ fluorescence spectra and biochemical parameters, both related to proteins and phenolics, may be connected with the level of honey bee colonies’ infestation. The infestation level was highly positively correlated with the catalase activity in honey (r = 0.936). Additionally, the infestation level was positively correlated with the phenolic spectral component (r = 0.656), which was tentatively related to the phenolics in honey. No correlation was found between the diastase activity in honey and the colonies’ infestation level. The results indicate that the catalase activity in honey and the PFC1 spectral component may be reliable markers for the V. destructor infestation level of the colonies. The obtained data may be related to the honey yield obtained from the apiaries.
T2  - Foods
T2  - Foods
T1  - Using Front-Face Fluorescence Spectroscopy and Biochemical
Analysis of Honey to Assess a Marker for the Level of Varroa
destructor Infestation of Honey Bee (Apis mellifera) Colonies
VL  - 12
IS  - 3
SP  - 629
DO  - 10.3390/foods12030629
ER  - 
@article{
author = "Stanković, Mira and Prokopijević, Miloš and Šikoparija, Branko and Nedić, Nebojša and Andrić, Filip and Polović, Natalija and Natić, Maja and Radotić, Ksenija",
year = "2023",
abstract = "Varroa destructor is a parasitic mite responsible for the loss of honey bee (Apis mellifera) colonies. This study aimed to find a promising marker in honey for the bee colony infestation level using fluorescence spectroscopy and biochemical analyses. We examined whether the parameters of the honey samples’ fluorescence spectra and biochemical parameters, both related to proteins and phenolics, may be connected with the level of honey bee colonies’ infestation. The infestation level was highly positively correlated with the catalase activity in honey (r = 0.936). Additionally, the infestation level was positively correlated with the phenolic spectral component (r = 0.656), which was tentatively related to the phenolics in honey. No correlation was found between the diastase activity in honey and the colonies’ infestation level. The results indicate that the catalase activity in honey and the PFC1 spectral component may be reliable markers for the V. destructor infestation level of the colonies. The obtained data may be related to the honey yield obtained from the apiaries.",
journal = "Foods, Foods",
title = "Using Front-Face Fluorescence Spectroscopy and Biochemical
Analysis of Honey to Assess a Marker for the Level of Varroa
destructor Infestation of Honey Bee (Apis mellifera) Colonies",
volume = "12",
number = "3",
pages = "629",
doi = "10.3390/foods12030629"
}
Stanković, M., Prokopijević, M., Šikoparija, B., Nedić, N., Andrić, F., Polović, N., Natić, M.,& Radotić, K.. (2023). Using Front-Face Fluorescence Spectroscopy and Biochemical
Analysis of Honey to Assess a Marker for the Level of Varroa
destructor Infestation of Honey Bee (Apis mellifera) Colonies. in Foods, 12(3), 629.
https://doi.org/10.3390/foods12030629
Stanković M, Prokopijević M, Šikoparija B, Nedić N, Andrić F, Polović N, Natić M, Radotić K. Using Front-Face Fluorescence Spectroscopy and Biochemical
Analysis of Honey to Assess a Marker for the Level of Varroa
destructor Infestation of Honey Bee (Apis mellifera) Colonies. in Foods. 2023;12(3):629.
doi:10.3390/foods12030629 .
Stanković, Mira, Prokopijević, Miloš, Šikoparija, Branko, Nedić, Nebojša, Andrić, Filip, Polović, Natalija, Natić, Maja, Radotić, Ksenija, "Using Front-Face Fluorescence Spectroscopy and Biochemical
Analysis of Honey to Assess a Marker for the Level of Varroa
destructor Infestation of Honey Bee (Apis mellifera) Colonies" in Foods, 12, no. 3 (2023):629,
https://doi.org/10.3390/foods12030629 . .
1
2
1
1

Amyloid-like aggregation influenced by lead(II) and cadmium(II) ions in hen egg white ovalbumin

Mijin, Nemanja; Milošević, Jelica; Stevanović, Sanja; Petrović, Predrag; Lolić, Aleksandar; Urbic, Tomaz; Polović, Natalija

(Elsevier B.V., 2023)

TY  - JOUR
AU  - Mijin, Nemanja
AU  - Milošević, Jelica
AU  - Stevanović, Sanja
AU  - Petrović, Predrag
AU  - Lolić, Aleksandar
AU  - Urbic, Tomaz
AU  - Polović, Natalija
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5987
AB  - The aggregation of proteins into fibrillar, amyloid-like aggregates generally results in an improved, positive effect on various techno-functional properties within food products, such as gelation, emulsification, and foam stabilization. These highly stable structures, characterized by their repetitive, β-sheet rich motifs, may develop as the result of the thermal treatment of protein-rich food products. Heavy metal ions can influence amyloid-like aggregation of food proteins. Lead(II) and cadmium(II) represent some of the most abundant and common environmental water and food pollutants. In this work, the influence of heavy metal ions, lead and cadmium on amyloid-like aggregation of ovalbumin at high temperatures (90 °C) and under acidic conditions (pH 2.0) was investigated. Ovalbumin is used as a general model for how heavy metals can affect amyloid-like aggregation of a food protein. Structural changes were monitored via Thioflavin T and 8-Anilino-1-naphthalenesulfonic acid fluorescence, Fourier-Transform infrared spectroscopy, atomic force microscopy, dynamic light scattering, as well as computational analyses. The obtained results indicate that the added heavy metal ions bind to different sites within ovalbumin prior to thermal treatment. Lead binding sites are closer to the hydrophobic regions of an protein, while cadmium ion binding sites are more exposed. This specific binding of metal ions affects the morphologies of amyloid-like aggregates, resulting in lead-induced branching of amyloid-like fibrils, or cadmium-induced tangling of fibrils into dense amyloid clusters. This additive effect of heavy metal ions is most evident in ovalbumin samples which contain a mixture of both heavy metal ions.
PB  - Elsevier B.V.
T2  - Food Hydrocolloids
T1  - Amyloid-like aggregation influenced by lead(II) and cadmium(II) ions in hen egg white ovalbumin
VL  - 136
SP  - 108292
DO  - 10.1016/j.foodhyd.2022.108292
ER  - 
@article{
author = "Mijin, Nemanja and Milošević, Jelica and Stevanović, Sanja and Petrović, Predrag and Lolić, Aleksandar and Urbic, Tomaz and Polović, Natalija",
year = "2023",
abstract = "The aggregation of proteins into fibrillar, amyloid-like aggregates generally results in an improved, positive effect on various techno-functional properties within food products, such as gelation, emulsification, and foam stabilization. These highly stable structures, characterized by their repetitive, β-sheet rich motifs, may develop as the result of the thermal treatment of protein-rich food products. Heavy metal ions can influence amyloid-like aggregation of food proteins. Lead(II) and cadmium(II) represent some of the most abundant and common environmental water and food pollutants. In this work, the influence of heavy metal ions, lead and cadmium on amyloid-like aggregation of ovalbumin at high temperatures (90 °C) and under acidic conditions (pH 2.0) was investigated. Ovalbumin is used as a general model for how heavy metals can affect amyloid-like aggregation of a food protein. Structural changes were monitored via Thioflavin T and 8-Anilino-1-naphthalenesulfonic acid fluorescence, Fourier-Transform infrared spectroscopy, atomic force microscopy, dynamic light scattering, as well as computational analyses. The obtained results indicate that the added heavy metal ions bind to different sites within ovalbumin prior to thermal treatment. Lead binding sites are closer to the hydrophobic regions of an protein, while cadmium ion binding sites are more exposed. This specific binding of metal ions affects the morphologies of amyloid-like aggregates, resulting in lead-induced branching of amyloid-like fibrils, or cadmium-induced tangling of fibrils into dense amyloid clusters. This additive effect of heavy metal ions is most evident in ovalbumin samples which contain a mixture of both heavy metal ions.",
publisher = "Elsevier B.V.",
journal = "Food Hydrocolloids",
title = "Amyloid-like aggregation influenced by lead(II) and cadmium(II) ions in hen egg white ovalbumin",
volume = "136",
pages = "108292",
doi = "10.1016/j.foodhyd.2022.108292"
}
Mijin, N., Milošević, J., Stevanović, S., Petrović, P., Lolić, A., Urbic, T.,& Polović, N.. (2023). Amyloid-like aggregation influenced by lead(II) and cadmium(II) ions in hen egg white ovalbumin. in Food Hydrocolloids
Elsevier B.V.., 136, 108292.
https://doi.org/10.1016/j.foodhyd.2022.108292
Mijin N, Milošević J, Stevanović S, Petrović P, Lolić A, Urbic T, Polović N. Amyloid-like aggregation influenced by lead(II) and cadmium(II) ions in hen egg white ovalbumin. in Food Hydrocolloids. 2023;136:108292.
doi:10.1016/j.foodhyd.2022.108292 .
Mijin, Nemanja, Milošević, Jelica, Stevanović, Sanja, Petrović, Predrag, Lolić, Aleksandar, Urbic, Tomaz, Polović, Natalija, "Amyloid-like aggregation influenced by lead(II) and cadmium(II) ions in hen egg white ovalbumin" in Food Hydrocolloids, 136 (2023):108292,
https://doi.org/10.1016/j.foodhyd.2022.108292 . .
5
5
1