Kenny, Shane T.

Link to this page

Authority KeyName Variants
39ad280f-4306-4ee2-96ed-fdf26142012c
  • Kenny, Shane T. (4)
Projects

Author's Bibliography

Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds

Radivojević, Jelena; Škaro, Sanja; Šenerović, Lidija; Vasiljević, Branka; Guzik, Maciej; Kenny, Shane T.; Maslak, Veselin; Nikodinović-Runić, Jasmina; O'Connor, Kevin E.

(Springer, New York, 2016)

TY  - JOUR
AU  - Radivojević, Jelena
AU  - Škaro, Sanja
AU  - Šenerović, Lidija
AU  - Vasiljević, Branka
AU  - Guzik, Maciej
AU  - Kenny, Shane T.
AU  - Maslak, Veselin
AU  - Nikodinović-Runić, Jasmina
AU  - O'Connor, Kevin E.
PY  - 2016
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2025
AB  - A library of 18 different compounds was synthesized starting from (R)-3-hydroxyoctanoic acid which is derived from the bacterial polymer polyhydroxyalkanoate (PHA). Ten derivatives, including halo and unsaturated methyl and benzyl esters, were synthesized and characterized for the first time. Given that (R)-3-hydroxyalkanoic acids are known to have biological activity, the new compounds were evaluated for antimicrobial activity and in vitro antiproliferative effect with mammalian cell lines. The presence of the carboxylic group was essential for the antimicrobial activity, with minimal inhibitory concentrations against a panel of bacteria (Gram-positive and Gram-negative) and fungi (Candida albicans and Microsporum gypseum) in the range 2.8-7.0 mM and 0.1-6.3 mM, respectively. 3-Halogenated octanoic acids exhibited the ability to inhibit C. albicans hyphae formation. In addition, (R)-3-hydroxyoctanoic and (E)-oct-2-enoic acids inhibited quorum sensing-regulated pyocyanin production in the opportunistic pathogen Pseudomonas aeruginosa PAO1. Generally, derivatives did not inhibit mammalian cell proliferation even at 3-mM concentrations, while only (E)-oct-2-enoic and 3-oxooctanoic acid had IC50 values of 1.7 and 1.6 mM with the human lung fibroblast cell line.
PB  - Springer, New York
T2  - Applied Microbiology and Biotechnology
T1  - Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds
VL  - 100
IS  - 1
SP  - 161
EP  - 172
DO  - 10.1007/s00253-015-6984-4
ER  - 
@article{
author = "Radivojević, Jelena and Škaro, Sanja and Šenerović, Lidija and Vasiljević, Branka and Guzik, Maciej and Kenny, Shane T. and Maslak, Veselin and Nikodinović-Runić, Jasmina and O'Connor, Kevin E.",
year = "2016",
abstract = "A library of 18 different compounds was synthesized starting from (R)-3-hydroxyoctanoic acid which is derived from the bacterial polymer polyhydroxyalkanoate (PHA). Ten derivatives, including halo and unsaturated methyl and benzyl esters, were synthesized and characterized for the first time. Given that (R)-3-hydroxyalkanoic acids are known to have biological activity, the new compounds were evaluated for antimicrobial activity and in vitro antiproliferative effect with mammalian cell lines. The presence of the carboxylic group was essential for the antimicrobial activity, with minimal inhibitory concentrations against a panel of bacteria (Gram-positive and Gram-negative) and fungi (Candida albicans and Microsporum gypseum) in the range 2.8-7.0 mM and 0.1-6.3 mM, respectively. 3-Halogenated octanoic acids exhibited the ability to inhibit C. albicans hyphae formation. In addition, (R)-3-hydroxyoctanoic and (E)-oct-2-enoic acids inhibited quorum sensing-regulated pyocyanin production in the opportunistic pathogen Pseudomonas aeruginosa PAO1. Generally, derivatives did not inhibit mammalian cell proliferation even at 3-mM concentrations, while only (E)-oct-2-enoic and 3-oxooctanoic acid had IC50 values of 1.7 and 1.6 mM with the human lung fibroblast cell line.",
publisher = "Springer, New York",
journal = "Applied Microbiology and Biotechnology",
title = "Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds",
volume = "100",
number = "1",
pages = "161-172",
doi = "10.1007/s00253-015-6984-4"
}
Radivojević, J., Škaro, S., Šenerović, L., Vasiljević, B., Guzik, M., Kenny, S. T., Maslak, V., Nikodinović-Runić, J.,& O'Connor, K. E.. (2016). Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds. in Applied Microbiology and Biotechnology
Springer, New York., 100(1), 161-172.
https://doi.org/10.1007/s00253-015-6984-4
Radivojević J, Škaro S, Šenerović L, Vasiljević B, Guzik M, Kenny ST, Maslak V, Nikodinović-Runić J, O'Connor KE. Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds. in Applied Microbiology and Biotechnology. 2016;100(1):161-172.
doi:10.1007/s00253-015-6984-4 .
Radivojević, Jelena, Škaro, Sanja, Šenerović, Lidija, Vasiljević, Branka, Guzik, Maciej, Kenny, Shane T., Maslak, Veselin, Nikodinović-Runić, Jasmina, O'Connor, Kevin E., "Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds" in Applied Microbiology and Biotechnology, 100, no. 1 (2016):161-172,
https://doi.org/10.1007/s00253-015-6984-4 . .
2
50
28
47
44

Supplementary data for article: Szwej, E.; Devocelle, M.; Kenny, S.; Guzik, M.; O’Connor, S.; Nikodinović-Runić, J.; Radivojevic, J.; Maslak, V.; Byrne, A. T.; Gallagher, W. M.; et al. The Chain Length of Biologically Produced (R)-3-Hydroxyalkanoic Acid Affects Biological Activity and Structure of Anti-Cancer Peptides. Journal of Biotechnology 2015, 204, 7–12. https://doi.org/10.1016/j.jbiotec.2015.02.036

Szwej, Emilia; Devocelle, Marc; Kenny, Shane T.; Guzik, Maciej; O'Connor, Stephen; Nikodinović-Runić, Jasmina; Radivojević, Jelena; Maslak, Veselin; Byrne, Annete T.; Gallagher, William M.; Zulian, Qun Ren; Zinn, Manfred; O'Connor, Kevin E.

(Elsevier Science Bv, Amsterdam, 2015)

TY  - DATA
AU  - Szwej, Emilia
AU  - Devocelle, Marc
AU  - Kenny, Shane T.
AU  - Guzik, Maciej
AU  - O'Connor, Stephen
AU  - Nikodinović-Runić, Jasmina
AU  - Radivojević, Jelena
AU  - Maslak, Veselin
AU  - Byrne, Annete T.
AU  - Gallagher, William M.
AU  - Zulian, Qun Ren
AU  - Zinn, Manfred
AU  - O'Connor, Kevin E.
PY  - 2015
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3451
PB  - Elsevier Science Bv, Amsterdam
T2  - Journal of Biotechnology
T1  - Supplementary data for article: Szwej, E.; Devocelle, M.; Kenny, S.; Guzik, M.; O’Connor, S.; Nikodinović-Runić, J.; Radivojevic, J.; Maslak, V.; Byrne, A. T.; Gallagher, W. M.; et al. The Chain Length of Biologically Produced (R)-3-Hydroxyalkanoic Acid Affects Biological Activity and Structure of Anti-Cancer Peptides. Journal of Biotechnology 2015, 204, 7–12. https://doi.org/10.1016/j.jbiotec.2015.02.036
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3451
ER  - 
@misc{
author = "Szwej, Emilia and Devocelle, Marc and Kenny, Shane T. and Guzik, Maciej and O'Connor, Stephen and Nikodinović-Runić, Jasmina and Radivojević, Jelena and Maslak, Veselin and Byrne, Annete T. and Gallagher, William M. and Zulian, Qun Ren and Zinn, Manfred and O'Connor, Kevin E.",
year = "2015",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Journal of Biotechnology",
title = "Supplementary data for article: Szwej, E.; Devocelle, M.; Kenny, S.; Guzik, M.; O’Connor, S.; Nikodinović-Runić, J.; Radivojevic, J.; Maslak, V.; Byrne, A. T.; Gallagher, W. M.; et al. The Chain Length of Biologically Produced (R)-3-Hydroxyalkanoic Acid Affects Biological Activity and Structure of Anti-Cancer Peptides. Journal of Biotechnology 2015, 204, 7–12. https://doi.org/10.1016/j.jbiotec.2015.02.036",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3451"
}
Szwej, E., Devocelle, M., Kenny, S. T., Guzik, M., O'Connor, S., Nikodinović-Runić, J., Radivojević, J., Maslak, V., Byrne, A. T., Gallagher, W. M., Zulian, Q. R., Zinn, M.,& O'Connor, K. E.. (2015). Supplementary data for article: Szwej, E.; Devocelle, M.; Kenny, S.; Guzik, M.; O’Connor, S.; Nikodinović-Runić, J.; Radivojevic, J.; Maslak, V.; Byrne, A. T.; Gallagher, W. M.; et al. The Chain Length of Biologically Produced (R)-3-Hydroxyalkanoic Acid Affects Biological Activity and Structure of Anti-Cancer Peptides. Journal of Biotechnology 2015, 204, 7–12. https://doi.org/10.1016/j.jbiotec.2015.02.036. in Journal of Biotechnology
Elsevier Science Bv, Amsterdam..
https://hdl.handle.net/21.15107/rcub_cherry_3451
Szwej E, Devocelle M, Kenny ST, Guzik M, O'Connor S, Nikodinović-Runić J, Radivojević J, Maslak V, Byrne AT, Gallagher WM, Zulian QR, Zinn M, O'Connor KE. Supplementary data for article: Szwej, E.; Devocelle, M.; Kenny, S.; Guzik, M.; O’Connor, S.; Nikodinović-Runić, J.; Radivojevic, J.; Maslak, V.; Byrne, A. T.; Gallagher, W. M.; et al. The Chain Length of Biologically Produced (R)-3-Hydroxyalkanoic Acid Affects Biological Activity and Structure of Anti-Cancer Peptides. Journal of Biotechnology 2015, 204, 7–12. https://doi.org/10.1016/j.jbiotec.2015.02.036. in Journal of Biotechnology. 2015;.
https://hdl.handle.net/21.15107/rcub_cherry_3451 .
Szwej, Emilia, Devocelle, Marc, Kenny, Shane T., Guzik, Maciej, O'Connor, Stephen, Nikodinović-Runić, Jasmina, Radivojević, Jelena, Maslak, Veselin, Byrne, Annete T., Gallagher, William M., Zulian, Qun Ren, Zinn, Manfred, O'Connor, Kevin E., "Supplementary data for article: Szwej, E.; Devocelle, M.; Kenny, S.; Guzik, M.; O’Connor, S.; Nikodinović-Runić, J.; Radivojevic, J.; Maslak, V.; Byrne, A. T.; Gallagher, W. M.; et al. The Chain Length of Biologically Produced (R)-3-Hydroxyalkanoic Acid Affects Biological Activity and Structure of Anti-Cancer Peptides. Journal of Biotechnology 2015, 204, 7–12. https://doi.org/10.1016/j.jbiotec.2015.02.036" in Journal of Biotechnology (2015),
https://hdl.handle.net/21.15107/rcub_cherry_3451 .

Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate

Guzik, Maciej; Kenny, Shane T.; Duane, Gearoid F.; Casey, Eoin; Woods, Trevor; Babu, Ramesh P.; Nikodinović-Runić, Jasmina; Murray, Michael; O'Connor, Kevin E.

(Springer, New York, 2014)

TY  - JOUR
AU  - Guzik, Maciej
AU  - Kenny, Shane T.
AU  - Duane, Gearoid F.
AU  - Casey, Eoin
AU  - Woods, Trevor
AU  - Babu, Ramesh P.
AU  - Nikodinović-Runić, Jasmina
AU  - Murray, Michael
AU  - O'Connor, Kevin E.
PY  - 2014
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/1764
AB  - A process for the conversion of post consumer (agricultural) polyethylene (PE) waste to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) is reported here. The thermal treatment of PE in the absence of air (pyrolysis) generated a complex mixture of low molecular weight paraffins with carbon chain lengths from C8 to C32 (PE pyrolysis wax). Several bacterial strains were able to grow and produce PHA from this PE pyrolysis wax. The addition of biosurfactant (rhamnolipids) allowed for greater bacterial growth and PHA accumulation of the tested strains. Some strains were only capable of growth and PHA accumulation in the presence of the biosurfactant. Pseudomonas aeruginosa PAO-1 accumulated the highest level of PHA with almost 25 % of the cell dry weight as PHA when supplied with the PE pyrolysis wax in the presence of rhamnolipids. The change of nitrogen source from ammonium chloride to ammonium nitrate resulted in faster bacterial growth and the earlier onset of PHA accumulation. To our knowledge, this is the first report where PE is used as a starting material for production of a biodegradable polymer.
PB  - Springer, New York
T2  - Applied Microbiology and Biotechnology
T1  - Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate
VL  - 98
IS  - 9
SP  - 4223
EP  - 4232
DO  - 10.1007/s00253-013-5489-2
ER  - 
@article{
author = "Guzik, Maciej and Kenny, Shane T. and Duane, Gearoid F. and Casey, Eoin and Woods, Trevor and Babu, Ramesh P. and Nikodinović-Runić, Jasmina and Murray, Michael and O'Connor, Kevin E.",
year = "2014",
abstract = "A process for the conversion of post consumer (agricultural) polyethylene (PE) waste to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) is reported here. The thermal treatment of PE in the absence of air (pyrolysis) generated a complex mixture of low molecular weight paraffins with carbon chain lengths from C8 to C32 (PE pyrolysis wax). Several bacterial strains were able to grow and produce PHA from this PE pyrolysis wax. The addition of biosurfactant (rhamnolipids) allowed for greater bacterial growth and PHA accumulation of the tested strains. Some strains were only capable of growth and PHA accumulation in the presence of the biosurfactant. Pseudomonas aeruginosa PAO-1 accumulated the highest level of PHA with almost 25 % of the cell dry weight as PHA when supplied with the PE pyrolysis wax in the presence of rhamnolipids. The change of nitrogen source from ammonium chloride to ammonium nitrate resulted in faster bacterial growth and the earlier onset of PHA accumulation. To our knowledge, this is the first report where PE is used as a starting material for production of a biodegradable polymer.",
publisher = "Springer, New York",
journal = "Applied Microbiology and Biotechnology",
title = "Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate",
volume = "98",
number = "9",
pages = "4223-4232",
doi = "10.1007/s00253-013-5489-2"
}
Guzik, M., Kenny, S. T., Duane, G. F., Casey, E., Woods, T., Babu, R. P., Nikodinović-Runić, J., Murray, M.,& O'Connor, K. E.. (2014). Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate. in Applied Microbiology and Biotechnology
Springer, New York., 98(9), 4223-4232.
https://doi.org/10.1007/s00253-013-5489-2
Guzik M, Kenny ST, Duane GF, Casey E, Woods T, Babu RP, Nikodinović-Runić J, Murray M, O'Connor KE. Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate. in Applied Microbiology and Biotechnology. 2014;98(9):4223-4232.
doi:10.1007/s00253-013-5489-2 .
Guzik, Maciej, Kenny, Shane T., Duane, Gearoid F., Casey, Eoin, Woods, Trevor, Babu, Ramesh P., Nikodinović-Runić, Jasmina, Murray, Michael, O'Connor, Kevin E., "Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate" in Applied Microbiology and Biotechnology, 98, no. 9 (2014):4223-4232,
https://doi.org/10.1007/s00253-013-5489-2 . .
4
102
44
88
87

Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids

Guzik, Maciej; Narančić, Tanja; Ilić-Tomić, Tatjana; Vojnović, Sandra; Kenny, Shane T.; Casey, William T.; Duane, Gearoid F.; Casey, Eoin; Woods, Trevor; Babu, Ramesh P.; Nikodinović-Runić, Jasmina; O'Connor, Kevin E.

(Soc General Microbiology, Reading, 2014)

TY  - JOUR
AU  - Guzik, Maciej
AU  - Narančić, Tanja
AU  - Ilić-Tomić, Tatjana
AU  - Vojnović, Sandra
AU  - Kenny, Shane T.
AU  - Casey, William T.
AU  - Duane, Gearoid F.
AU  - Casey, Eoin
AU  - Woods, Trevor
AU  - Babu, Ramesh P.
AU  - Nikodinović-Runić, Jasmina
AU  - O'Connor, Kevin E.
PY  - 2014
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/1846
AB  - Diverse and elaborate pathways for nutrient utilization, as well as mechanisms to combat unfavourable nutrient conditions make Pseudomonas putida KT2440 a versatile micro-organism able to occupy a range of ecological niches. The fatty acid degradation pathway of P. putida is complex and correlated with biopolymer medium chain length polyhydroxyalkanoate (mcl-PHA) biosynthesis. Little is known about the second step of fatty acid degradation (beta-oxidation) in this strain. In silico analysis of its genome sequence revealed 21 putative acyl-CoA dehydrogenases (ACADs), four of which were functionally characterized through mutagenesis studies. Four mutants with insertionally inactivated ACADs (PP_1893, PP_2039, PP_2048 and PP_2437) grew and accumulated mcl-PHA on a range of fatty acids as the sole source of carbon and energy. Their ability to grow and accumulate biopolymer was differentially negatively affected on various fatty acids, in comparison to the wild-type strain. Inactive PP_2437 exhibited a pattern of reduced growth and PHA accumulation when fatty acids with lengths of 10 to 14 carbon chains were used as substrates. Recombinant expression and biochemical characterization of the purified protein allowed functional annotation in P. putida KT2440 as an ACAD showing clear preference for dodecanoyl-CoA ester as a substrate and optimum activity at 30 degrees C and pH 6.5-7.
PB  - Soc General Microbiology, Reading
T2  - Microbiology, SGM / Society for General Microbiology
T1  - Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids
VL  - 160
SP  - 1760
EP  - 1771
DO  - 10.1099/mic.0.078758-0
ER  - 
@article{
author = "Guzik, Maciej and Narančić, Tanja and Ilić-Tomić, Tatjana and Vojnović, Sandra and Kenny, Shane T. and Casey, William T. and Duane, Gearoid F. and Casey, Eoin and Woods, Trevor and Babu, Ramesh P. and Nikodinović-Runić, Jasmina and O'Connor, Kevin E.",
year = "2014",
abstract = "Diverse and elaborate pathways for nutrient utilization, as well as mechanisms to combat unfavourable nutrient conditions make Pseudomonas putida KT2440 a versatile micro-organism able to occupy a range of ecological niches. The fatty acid degradation pathway of P. putida is complex and correlated with biopolymer medium chain length polyhydroxyalkanoate (mcl-PHA) biosynthesis. Little is known about the second step of fatty acid degradation (beta-oxidation) in this strain. In silico analysis of its genome sequence revealed 21 putative acyl-CoA dehydrogenases (ACADs), four of which were functionally characterized through mutagenesis studies. Four mutants with insertionally inactivated ACADs (PP_1893, PP_2039, PP_2048 and PP_2437) grew and accumulated mcl-PHA on a range of fatty acids as the sole source of carbon and energy. Their ability to grow and accumulate biopolymer was differentially negatively affected on various fatty acids, in comparison to the wild-type strain. Inactive PP_2437 exhibited a pattern of reduced growth and PHA accumulation when fatty acids with lengths of 10 to 14 carbon chains were used as substrates. Recombinant expression and biochemical characterization of the purified protein allowed functional annotation in P. putida KT2440 as an ACAD showing clear preference for dodecanoyl-CoA ester as a substrate and optimum activity at 30 degrees C and pH 6.5-7.",
publisher = "Soc General Microbiology, Reading",
journal = "Microbiology, SGM / Society for General Microbiology",
title = "Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids",
volume = "160",
pages = "1760-1771",
doi = "10.1099/mic.0.078758-0"
}
Guzik, M., Narančić, T., Ilić-Tomić, T., Vojnović, S., Kenny, S. T., Casey, W. T., Duane, G. F., Casey, E., Woods, T., Babu, R. P., Nikodinović-Runić, J.,& O'Connor, K. E.. (2014). Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids. in Microbiology, SGM / Society for General Microbiology
Soc General Microbiology, Reading., 160, 1760-1771.
https://doi.org/10.1099/mic.0.078758-0
Guzik M, Narančić T, Ilić-Tomić T, Vojnović S, Kenny ST, Casey WT, Duane GF, Casey E, Woods T, Babu RP, Nikodinović-Runić J, O'Connor KE. Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids. in Microbiology, SGM / Society for General Microbiology. 2014;160:1760-1771.
doi:10.1099/mic.0.078758-0 .
Guzik, Maciej, Narančić, Tanja, Ilić-Tomić, Tatjana, Vojnović, Sandra, Kenny, Shane T., Casey, William T., Duane, Gearoid F., Casey, Eoin, Woods, Trevor, Babu, Ramesh P., Nikodinović-Runić, Jasmina, O'Connor, Kevin E., "Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids" in Microbiology, SGM / Society for General Microbiology, 160 (2014):1760-1771,
https://doi.org/10.1099/mic.0.078758-0 . .
22
13
17
14