Dimitrijević, Milena S.

Link to this page

Authority KeyName Variants
4d9ff511-09f0-430d-921b-98286fd3fb86
  • Dimitrijević, Milena S. (5)

Author's Bibliography

The formation of Fe3+-doxycycline complex is pH dependent: implications to doxycycline bioavailability

Korać Jačić, Jelena; Dimitrijević, Milena S.; Bajuk-Bogdanović, Danica V.; Stanković, Dalibor; Savić, Slađana D.; Spasojević, Ivan B.; MIlenković, Milica R.

(Springer, 2023)

TY  - JOUR
AU  - Korać Jačić, Jelena
AU  - Dimitrijević, Milena S.
AU  - Bajuk-Bogdanović, Danica V.
AU  - Stanković, Dalibor
AU  - Savić, Slađana D.
AU  - Spasojević, Ivan B.
AU  - MIlenković, Milica R.
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6043
AB  - The interactions of drugs with iron are of interest in relation to the potential effects of iron-rich foods and iron supplements on sorption and bioavailability. Doxycycline (DOX), a member of the tetracycline class of broad-spectrum antibiotics, is frequently administered by oral route. In the digestive tract, DOX can be exposed to iron at different pH values (stomach pH 1.5–4, duodenum pH 5–6, distal jejunum and ileum pH 7–8). In relation to this, we analyzed the impact of pH on Fe3+-DOX complex formation. The optimal conditions for Fe3+-DOX complex formation are pH = 4 and [Fe3+]/[DOX] = 6 molar ratio. HESI-MS showed that Fe3+-DOX complex has 1:1 stoichiometry. Raman spectra of Fe3+-DOX complex indicate the presence of two Fe3+-binding sites in DOX structure: tricarbonylamide group of ring A and phenolic-diketone oxygens of BCD rings. The Fe3+-DOX complex formed at pH = 4 is less susceptible to oxidation than DOX at this pH. The increase of pH induces the decomposition of Fe3+-DOX complex without oxidative degradation of DOX. The pH dependence of Fe3+-DOX complex formation may promote unwanted effects of DOX, impeding the absorption that mainly takes place in duodenum. This could further result in higher concentrations in the digestive tract and to pronounced impact on gut microbiota.
PB  - Springer
T2  - Journal of Biological Inorganic Chemistry
T1  - The formation of Fe3+-doxycycline complex is pH dependent: implications to doxycycline bioavailability
VL  - 28
SP  - 679
EP  - 687
DO  - 10.1007/s00775-023-02018-w
ER  - 
@article{
author = "Korać Jačić, Jelena and Dimitrijević, Milena S. and Bajuk-Bogdanović, Danica V. and Stanković, Dalibor and Savić, Slađana D. and Spasojević, Ivan B. and MIlenković, Milica R.",
year = "2023",
abstract = "The interactions of drugs with iron are of interest in relation to the potential effects of iron-rich foods and iron supplements on sorption and bioavailability. Doxycycline (DOX), a member of the tetracycline class of broad-spectrum antibiotics, is frequently administered by oral route. In the digestive tract, DOX can be exposed to iron at different pH values (stomach pH 1.5–4, duodenum pH 5–6, distal jejunum and ileum pH 7–8). In relation to this, we analyzed the impact of pH on Fe3+-DOX complex formation. The optimal conditions for Fe3+-DOX complex formation are pH = 4 and [Fe3+]/[DOX] = 6 molar ratio. HESI-MS showed that Fe3+-DOX complex has 1:1 stoichiometry. Raman spectra of Fe3+-DOX complex indicate the presence of two Fe3+-binding sites in DOX structure: tricarbonylamide group of ring A and phenolic-diketone oxygens of BCD rings. The Fe3+-DOX complex formed at pH = 4 is less susceptible to oxidation than DOX at this pH. The increase of pH induces the decomposition of Fe3+-DOX complex without oxidative degradation of DOX. The pH dependence of Fe3+-DOX complex formation may promote unwanted effects of DOX, impeding the absorption that mainly takes place in duodenum. This could further result in higher concentrations in the digestive tract and to pronounced impact on gut microbiota.",
publisher = "Springer",
journal = "Journal of Biological Inorganic Chemistry",
title = "The formation of Fe3+-doxycycline complex is pH dependent: implications to doxycycline bioavailability",
volume = "28",
pages = "679-687",
doi = "10.1007/s00775-023-02018-w"
}
Korać Jačić, J., Dimitrijević, M. S., Bajuk-Bogdanović, D. V., Stanković, D., Savić, S. D., Spasojević, I. B.,& MIlenković, M. R.. (2023). The formation of Fe3+-doxycycline complex is pH dependent: implications to doxycycline bioavailability. in Journal of Biological Inorganic Chemistry
Springer., 28, 679-687.
https://doi.org/10.1007/s00775-023-02018-w
Korać Jačić J, Dimitrijević MS, Bajuk-Bogdanović DV, Stanković D, Savić SD, Spasojević IB, MIlenković MR. The formation of Fe3+-doxycycline complex is pH dependent: implications to doxycycline bioavailability. in Journal of Biological Inorganic Chemistry. 2023;28:679-687.
doi:10.1007/s00775-023-02018-w .
Korać Jačić, Jelena, Dimitrijević, Milena S., Bajuk-Bogdanović, Danica V., Stanković, Dalibor, Savić, Slađana D., Spasojević, Ivan B., MIlenković, Milica R., "The formation of Fe3+-doxycycline complex is pH dependent: implications to doxycycline bioavailability" in Journal of Biological Inorganic Chemistry, 28 (2023):679-687,
https://doi.org/10.1007/s00775-023-02018-w . .

The formation of Fe3+-doxycycline complex is pH dependent: implications to doxycycline bioavailability

Korać Jačić, Jelena; Dimitrijević, Milena S.; Bajuk-Bogdanović, Danica V.; Stanković, Dalibor; Savić, Slađana D.; Spasojević, Ivan B.; MIlenković, Milica R.

(Springer, 2023)

TY  - JOUR
AU  - Korać Jačić, Jelena
AU  - Dimitrijević, Milena S.
AU  - Bajuk-Bogdanović, Danica V.
AU  - Stanković, Dalibor
AU  - Savić, Slađana D.
AU  - Spasojević, Ivan B.
AU  - MIlenković, Milica R.
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6044
AB  - The interactions of drugs with iron are of interest in relation to the potential effects of iron-rich foods and iron supplements on sorption and bioavailability. Doxycycline (DOX), a member of the tetracycline class of broad-spectrum antibiotics, is frequently administered by oral route. In the digestive tract, DOX can be exposed to iron at different pH values (stomach pH 1.5–4, duodenum pH 5–6, distal jejunum and ileum pH 7–8). In relation to this, we analyzed the impact of pH on Fe3+-DOX complex formation. The optimal conditions for Fe3+-DOX complex formation are pH = 4 and [Fe3+]/[DOX] = 6 molar ratio. HESI-MS showed that Fe3+-DOX complex has 1:1 stoichiometry. Raman spectra of Fe3+-DOX complex indicate the presence of two Fe3+-binding sites in DOX structure: tricarbonylamide group of ring A and phenolic-diketone oxygens of BCD rings. The Fe3+-DOX complex formed at pH = 4 is less susceptible to oxidation than DOX at this pH. The increase of pH induces the decomposition of Fe3+-DOX complex without oxidative degradation of DOX. The pH dependence of Fe3+-DOX complex formation may promote unwanted effects of DOX, impeding the absorption that mainly takes place in duodenum. This could further result in higher concentrations in the digestive tract and to pronounced impact on gut microbiota.
PB  - Springer
T2  - Journal of Biological Inorganic Chemistry
T1  - The formation of Fe3+-doxycycline complex is pH dependent: implications to doxycycline bioavailability
VL  - 28
SP  - 679
EP  - 687
DO  - 10.1007/s00775-023-02018-w
ER  - 
@article{
author = "Korać Jačić, Jelena and Dimitrijević, Milena S. and Bajuk-Bogdanović, Danica V. and Stanković, Dalibor and Savić, Slađana D. and Spasojević, Ivan B. and MIlenković, Milica R.",
year = "2023",
abstract = "The interactions of drugs with iron are of interest in relation to the potential effects of iron-rich foods and iron supplements on sorption and bioavailability. Doxycycline (DOX), a member of the tetracycline class of broad-spectrum antibiotics, is frequently administered by oral route. In the digestive tract, DOX can be exposed to iron at different pH values (stomach pH 1.5–4, duodenum pH 5–6, distal jejunum and ileum pH 7–8). In relation to this, we analyzed the impact of pH on Fe3+-DOX complex formation. The optimal conditions for Fe3+-DOX complex formation are pH = 4 and [Fe3+]/[DOX] = 6 molar ratio. HESI-MS showed that Fe3+-DOX complex has 1:1 stoichiometry. Raman spectra of Fe3+-DOX complex indicate the presence of two Fe3+-binding sites in DOX structure: tricarbonylamide group of ring A and phenolic-diketone oxygens of BCD rings. The Fe3+-DOX complex formed at pH = 4 is less susceptible to oxidation than DOX at this pH. The increase of pH induces the decomposition of Fe3+-DOX complex without oxidative degradation of DOX. The pH dependence of Fe3+-DOX complex formation may promote unwanted effects of DOX, impeding the absorption that mainly takes place in duodenum. This could further result in higher concentrations in the digestive tract and to pronounced impact on gut microbiota.",
publisher = "Springer",
journal = "Journal of Biological Inorganic Chemistry",
title = "The formation of Fe3+-doxycycline complex is pH dependent: implications to doxycycline bioavailability",
volume = "28",
pages = "679-687",
doi = "10.1007/s00775-023-02018-w"
}
Korać Jačić, J., Dimitrijević, M. S., Bajuk-Bogdanović, D. V., Stanković, D., Savić, S. D., Spasojević, I. B.,& MIlenković, M. R.. (2023). The formation of Fe3+-doxycycline complex is pH dependent: implications to doxycycline bioavailability. in Journal of Biological Inorganic Chemistry
Springer., 28, 679-687.
https://doi.org/10.1007/s00775-023-02018-w
Korać Jačić J, Dimitrijević MS, Bajuk-Bogdanović DV, Stanković D, Savić SD, Spasojević IB, MIlenković MR. The formation of Fe3+-doxycycline complex is pH dependent: implications to doxycycline bioavailability. in Journal of Biological Inorganic Chemistry. 2023;28:679-687.
doi:10.1007/s00775-023-02018-w .
Korać Jačić, Jelena, Dimitrijević, Milena S., Bajuk-Bogdanović, Danica V., Stanković, Dalibor, Savić, Slađana D., Spasojević, Ivan B., MIlenković, Milica R., "The formation of Fe3+-doxycycline complex is pH dependent: implications to doxycycline bioavailability" in Journal of Biological Inorganic Chemistry, 28 (2023):679-687,
https://doi.org/10.1007/s00775-023-02018-w . .

Supplementary data for article: Dimitrijević, M. S.; Bogdanović Pristov, J.; Žižić, M.; Stanković, D. M.; Bajuk-Bogdanović, D.; Stanić, M.; Spasić, S.; Hagen, W.; Spasojević, I. Biliverdin-Copper Complex at Physiological PH. Dalton Transactions 2019, 48 (18), 6061–6070. https://doi.org/10.1039/c8dt04724c

Dimitrijević, Milena S.; Bogdanović Pristov, Jelena; Žižić, Milan; Stanković, Dalibor; Bajuk-Bogdanović, Danica; Stanić, Marina; Spasić, Snežana; Hagen, Wilfred; Spasojević, Ivan

(2019)

TY  - DATA
AU  - Dimitrijević, Milena S.
AU  - Bogdanović Pristov, Jelena
AU  - Žižić, Milan
AU  - Stanković, Dalibor
AU  - Bajuk-Bogdanović, Danica
AU  - Stanić, Marina
AU  - Spasić, Snežana
AU  - Hagen, Wilfred
AU  - Spasojević, Ivan
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3069
T2  - Dalton Transactions
T1  - Supplementary data for article:
Dimitrijević, M. S.; Bogdanović Pristov, J.; Žižić, M.; Stanković, D. M.; Bajuk-Bogdanović, D.; Stanić, M.; Spasić, S.; Hagen, W.; Spasojević, I. Biliverdin-Copper Complex at Physiological PH. Dalton Transactions 2019, 48 (18), 6061–6070. https://doi.org/10.1039/c8dt04724c
VL  - 48
IS  - 18
SP  - 6061
EP  - 6070
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3069
ER  - 
@misc{
author = "Dimitrijević, Milena S. and Bogdanović Pristov, Jelena and Žižić, Milan and Stanković, Dalibor and Bajuk-Bogdanović, Danica and Stanić, Marina and Spasić, Snežana and Hagen, Wilfred and Spasojević, Ivan",
year = "2019",
journal = "Dalton Transactions",
title = "Supplementary data for article:
Dimitrijević, M. S.; Bogdanović Pristov, J.; Žižić, M.; Stanković, D. M.; Bajuk-Bogdanović, D.; Stanić, M.; Spasić, S.; Hagen, W.; Spasojević, I. Biliverdin-Copper Complex at Physiological PH. Dalton Transactions 2019, 48 (18), 6061–6070. https://doi.org/10.1039/c8dt04724c",
volume = "48",
number = "18",
pages = "6061-6070",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3069"
}
Dimitrijević, M. S., Bogdanović Pristov, J., Žižić, M., Stanković, D., Bajuk-Bogdanović, D., Stanić, M., Spasić, S., Hagen, W.,& Spasojević, I.. (2019). Supplementary data for article:
Dimitrijević, M. S.; Bogdanović Pristov, J.; Žižić, M.; Stanković, D. M.; Bajuk-Bogdanović, D.; Stanić, M.; Spasić, S.; Hagen, W.; Spasojević, I. Biliverdin-Copper Complex at Physiological PH. Dalton Transactions 2019, 48 (18), 6061–6070. https://doi.org/10.1039/c8dt04724c. in Dalton Transactions, 48(18), 6061-6070.
https://hdl.handle.net/21.15107/rcub_cherry_3069
Dimitrijević MS, Bogdanović Pristov J, Žižić M, Stanković D, Bajuk-Bogdanović D, Stanić M, Spasić S, Hagen W, Spasojević I. Supplementary data for article:
Dimitrijević, M. S.; Bogdanović Pristov, J.; Žižić, M.; Stanković, D. M.; Bajuk-Bogdanović, D.; Stanić, M.; Spasić, S.; Hagen, W.; Spasojević, I. Biliverdin-Copper Complex at Physiological PH. Dalton Transactions 2019, 48 (18), 6061–6070. https://doi.org/10.1039/c8dt04724c. in Dalton Transactions. 2019;48(18):6061-6070.
https://hdl.handle.net/21.15107/rcub_cherry_3069 .
Dimitrijević, Milena S., Bogdanović Pristov, Jelena, Žižić, Milan, Stanković, Dalibor, Bajuk-Bogdanović, Danica, Stanić, Marina, Spasić, Snežana, Hagen, Wilfred, Spasojević, Ivan, "Supplementary data for article:
Dimitrijević, M. S.; Bogdanović Pristov, J.; Žižić, M.; Stanković, D. M.; Bajuk-Bogdanović, D.; Stanić, M.; Spasić, S.; Hagen, W.; Spasojević, I. Biliverdin-Copper Complex at Physiological PH. Dalton Transactions 2019, 48 (18), 6061–6070. https://doi.org/10.1039/c8dt04724c" in Dalton Transactions, 48, no. 18 (2019):6061-6070,
https://hdl.handle.net/21.15107/rcub_cherry_3069 .

Biliverdin-copper complex at physiological pH

Dimitrijević, Milena S.; Bogdanović Pristov, Jelena; Žižić, Milan; Stanković, Dalibor; Bajuk-Bogdanović, Danica; Stanić, Marina; Spasić, Snežana; Hagen, Wilfred; Spasojević, Ivan

(2019)

TY  - JOUR
AU  - Dimitrijević, Milena S.
AU  - Bogdanović Pristov, Jelena
AU  - Žižić, Milan
AU  - Stanković, Dalibor
AU  - Bajuk-Bogdanović, Danica
AU  - Stanić, Marina
AU  - Spasić, Snežana
AU  - Hagen, Wilfred
AU  - Spasojević, Ivan
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3068
AB  - Biliverdin (BV), a product of heme catabolism, is known to interact with transition metals, but the details of such interactions under physiological conditions are scarce. Herein, we examined coordinate/redox interactions of BV with Cu2+ in phosphate buffer at pH 7.4, using spectrophotometry, HESI-MS, Raman spectroscopy, 1 H NMR, EPR, fluorimetry, and electrochemical methods. BV formed a stable coordination complex with copper in 1 : 1 stoichiometry. The structure of BV was more planar and energetically stable in the complex. The complex showed strong paramagnetic effects that were attributed to an unpaired delocalized e−. The delocalized electron may come from BV or Cu2+, so the complex is formally composed either of BV radical cation and Cu1+ or of BV radical anion and Cu3+. The complex underwent oxidation only in the presence of both O2 and an excess of Cu2+, or a strong oxidizing agent, and it was resistant to reducing agents. The biological effects of the stable BV metallocomplex containing a delocalized unpaired electron should be further examined, and may provide an answer to the long-standing question of high energy investment in the catabolism of BV, which represents a relatively harmless molecule per se.
T2  - Dalton Transactions
T1  - Biliverdin-copper complex at physiological pH
VL  - 48
IS  - 18
SP  - 6061
EP  - 6070
DO  - 10.1039/c8dt04724c
ER  - 
@article{
author = "Dimitrijević, Milena S. and Bogdanović Pristov, Jelena and Žižić, Milan and Stanković, Dalibor and Bajuk-Bogdanović, Danica and Stanić, Marina and Spasić, Snežana and Hagen, Wilfred and Spasojević, Ivan",
year = "2019",
abstract = "Biliverdin (BV), a product of heme catabolism, is known to interact with transition metals, but the details of such interactions under physiological conditions are scarce. Herein, we examined coordinate/redox interactions of BV with Cu2+ in phosphate buffer at pH 7.4, using spectrophotometry, HESI-MS, Raman spectroscopy, 1 H NMR, EPR, fluorimetry, and electrochemical methods. BV formed a stable coordination complex with copper in 1 : 1 stoichiometry. The structure of BV was more planar and energetically stable in the complex. The complex showed strong paramagnetic effects that were attributed to an unpaired delocalized e−. The delocalized electron may come from BV or Cu2+, so the complex is formally composed either of BV radical cation and Cu1+ or of BV radical anion and Cu3+. The complex underwent oxidation only in the presence of both O2 and an excess of Cu2+, or a strong oxidizing agent, and it was resistant to reducing agents. The biological effects of the stable BV metallocomplex containing a delocalized unpaired electron should be further examined, and may provide an answer to the long-standing question of high energy investment in the catabolism of BV, which represents a relatively harmless molecule per se.",
journal = "Dalton Transactions",
title = "Biliverdin-copper complex at physiological pH",
volume = "48",
number = "18",
pages = "6061-6070",
doi = "10.1039/c8dt04724c"
}
Dimitrijević, M. S., Bogdanović Pristov, J., Žižić, M., Stanković, D., Bajuk-Bogdanović, D., Stanić, M., Spasić, S., Hagen, W.,& Spasojević, I.. (2019). Biliverdin-copper complex at physiological pH. in Dalton Transactions, 48(18), 6061-6070.
https://doi.org/10.1039/c8dt04724c
Dimitrijević MS, Bogdanović Pristov J, Žižić M, Stanković D, Bajuk-Bogdanović D, Stanić M, Spasić S, Hagen W, Spasojević I. Biliverdin-copper complex at physiological pH. in Dalton Transactions. 2019;48(18):6061-6070.
doi:10.1039/c8dt04724c .
Dimitrijević, Milena S., Bogdanović Pristov, Jelena, Žižić, Milan, Stanković, Dalibor, Bajuk-Bogdanović, Danica, Stanić, Marina, Spasić, Snežana, Hagen, Wilfred, Spasojević, Ivan, "Biliverdin-copper complex at physiological pH" in Dalton Transactions, 48, no. 18 (2019):6061-6070,
https://doi.org/10.1039/c8dt04724c . .
10
6
9
8

Biliverdin-copper complex at physiological pH

Dimitrijević, Milena S.; Bogdanović Pristov, Jelena; Žižić, Milan; Stanković, Dalibor; Bajuk-Bogdanović, Danica; Stanić, Marina; Spasić, Snežana; Hagen, Wilfred; Spasojević, Ivan

(2019)

TY  - JOUR
AU  - Dimitrijević, Milena S.
AU  - Bogdanović Pristov, Jelena
AU  - Žižić, Milan
AU  - Stanković, Dalibor
AU  - Bajuk-Bogdanović, Danica
AU  - Stanić, Marina
AU  - Spasić, Snežana
AU  - Hagen, Wilfred
AU  - Spasojević, Ivan
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3066
AB  - Biliverdin (BV), a product of heme catabolism, is known to interact with transition metals, but the details of such interactions under physiological conditions are scarce. Herein, we examined coordinate/redox interactions of BV with Cu2+ in phosphate buffer at pH 7.4, using spectrophotometry, HESI-MS, Raman spectroscopy, 1 H NMR, EPR, fluorimetry, and electrochemical methods. BV formed a stable coordination complex with copper in 1 : 1 stoichiometry. The structure of BV was more planar and energetically stable in the complex. The complex showed strong paramagnetic effects that were attributed to an unpaired delocalized e−. The delocalized electron may come from BV or Cu2+, so the complex is formally composed either of BV radical cation and Cu1+ or of BV radical anion and Cu3+. The complex underwent oxidation only in the presence of both O2 and an excess of Cu2+, or a strong oxidizing agent, and it was resistant to reducing agents. The biological effects of the stable BV metallocomplex containing a delocalized unpaired electron should be further examined, and may provide an answer to the long-standing question of high energy investment in the catabolism of BV, which represents a relatively harmless molecule per se.
T2  - Dalton Transactions
T1  - Biliverdin-copper complex at physiological pH
VL  - 48
IS  - 18
SP  - 6061
EP  - 6070
DO  - 10.1039/c8dt04724c
ER  - 
@article{
author = "Dimitrijević, Milena S. and Bogdanović Pristov, Jelena and Žižić, Milan and Stanković, Dalibor and Bajuk-Bogdanović, Danica and Stanić, Marina and Spasić, Snežana and Hagen, Wilfred and Spasojević, Ivan",
year = "2019",
abstract = "Biliverdin (BV), a product of heme catabolism, is known to interact with transition metals, but the details of such interactions under physiological conditions are scarce. Herein, we examined coordinate/redox interactions of BV with Cu2+ in phosphate buffer at pH 7.4, using spectrophotometry, HESI-MS, Raman spectroscopy, 1 H NMR, EPR, fluorimetry, and electrochemical methods. BV formed a stable coordination complex with copper in 1 : 1 stoichiometry. The structure of BV was more planar and energetically stable in the complex. The complex showed strong paramagnetic effects that were attributed to an unpaired delocalized e−. The delocalized electron may come from BV or Cu2+, so the complex is formally composed either of BV radical cation and Cu1+ or of BV radical anion and Cu3+. The complex underwent oxidation only in the presence of both O2 and an excess of Cu2+, or a strong oxidizing agent, and it was resistant to reducing agents. The biological effects of the stable BV metallocomplex containing a delocalized unpaired electron should be further examined, and may provide an answer to the long-standing question of high energy investment in the catabolism of BV, which represents a relatively harmless molecule per se.",
journal = "Dalton Transactions",
title = "Biliverdin-copper complex at physiological pH",
volume = "48",
number = "18",
pages = "6061-6070",
doi = "10.1039/c8dt04724c"
}
Dimitrijević, M. S., Bogdanović Pristov, J., Žižić, M., Stanković, D., Bajuk-Bogdanović, D., Stanić, M., Spasić, S., Hagen, W.,& Spasojević, I.. (2019). Biliverdin-copper complex at physiological pH. in Dalton Transactions, 48(18), 6061-6070.
https://doi.org/10.1039/c8dt04724c
Dimitrijević MS, Bogdanović Pristov J, Žižić M, Stanković D, Bajuk-Bogdanović D, Stanić M, Spasić S, Hagen W, Spasojević I. Biliverdin-copper complex at physiological pH. in Dalton Transactions. 2019;48(18):6061-6070.
doi:10.1039/c8dt04724c .
Dimitrijević, Milena S., Bogdanović Pristov, Jelena, Žižić, Milan, Stanković, Dalibor, Bajuk-Bogdanović, Danica, Stanić, Marina, Spasić, Snežana, Hagen, Wilfred, Spasojević, Ivan, "Biliverdin-copper complex at physiological pH" in Dalton Transactions, 48, no. 18 (2019):6061-6070,
https://doi.org/10.1039/c8dt04724c . .
10
6
9
8