Todorović, Tamara

Link to this page

Authority KeyName Variants
orcid::0000-0002-7740-3639
  • Todorović, Tamara (110)
Projects
Interactions of natural products, their derivatives and coordination compounds with proteins and nucleic acids Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry)
SYMBIOSIS - Controllable Design of Efficient Enzyme"Mof Composites for Biocatalysis Study of the Synthesis, Structure and Activity of Natural and Synthetic Organic Compounds
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200116 (University of Belgrade, Faculty of Agriculture) Modulation of intracellular energy balance-controlling signalling pathways in therapy of cancer and neuro-immuno-endocrine disorders
Directed synthesis, structure and properties of multifunctional materials Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200288 (Innovation Center of the Faculty of Chemistry)
Pharmacodynamic and pharmacogenomic research of new drugs in the treatment of solid tumors Interakcije prirodnih proizvoda i njihovih analoga sa proteinima i nukleinskim kiselinama
Sinteza, analiza i aktivnost novih organskih polidentatnih liganada i njihovih kompleksa sa d-metalima COST Action CM1106 StemChem - Chemical Approaches to Targeting Drug Resistance in Cancer Stem Cells
Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200125 (University of Novi Sad, Faculty of Science)
Max Planck Society The DGI(MEC)/FEDER (CTQ2016-75816-C02-02-P) project is acknowledged for financial support. B.B.H. and N.R.F. gratefully acknowledge help from Prof. Katalin Mészáros Szécsényi, University of Novi Sad, Faculty of Sciences, for her support and valuable advices in TG analysis.
CMST COST Action [CM1106] COST
COST Action [CA15135] COST Actions CA15135 and CA16119 supported by COST . The work was founded by grants PRIN 2015 no. 2015FCHJ8E (to R.S.)
Estonian Ministry for Education and Research [IUT34-14] Estonian Ministry of Education and Research [IUT34-14]
EU COST Action [CM1307, CA15135] European Commission
FEDER Fundo Europeu de Desenvolvimento Regional, through COMPETE2020-Programa Operacional Competitividade e Internacionalizacao (POCI) and Programa Operacional Regional do Norte (NORTE2020) [NORTE-01-0145-FEDER-000005-LEPABE-2-ECO-INNOVATION] FEDER funds through COMPETE2020 Programa Operacional Competitividade e Internacionalizacao (POCI)
German Research Foundation (DFG) [INST 208/664-1 FUGG] Modeling and Numerical Simulations of Complex Many-Body Systems
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade)

Author's Bibliography

Zn(II) complex with pyridine based 1,3-selenazolyl-hydrazone

Ristić, Predrag; Višnjevac, Aleksandar; Araškov, Jovana; Filipović, Nenad; Todorović, Tamara

(Belgrade : Serbian Crystallographic Society, 2023)

TY  - CONF
AU  - Ristić, Predrag
AU  - Višnjevac, Aleksandar
AU  - Araškov, Jovana
AU  - Filipović, Nenad
AU  - Todorović, Tamara
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6004
AB  - Због своје могућности да оствари координационе бројеве од 2 до 9, високе биодоступност и афинитета према N, O, S-донорским атомима, Zn(II) се користи за синтезе комплекса у циљу њихове специфичне примене. У Кембричкој структурној бази података је депоновано само осам кристалних структура комплекса Zn(II), Cd(II) и Co(III) са 
N-хетероароматичним 1,3-селеназолил-хидразонским лигандима. У овом раду је  фокус био на кристалној структури комплекса Zn(II) са лигандом HLSe2 (2-Cl-Se; Слика 1). Молекулска и кристална структура новог комплекса 2-Cl-Se је упоређена са претходно објављеним Zn(II) комплексом са лигандом HLS2 (2-Cl), структурним аналогом лиганда HLSe2 [1]. Праћен утицај изостерне S/Se замене на топологију и енергетску дистрибуцију интермолекулских интеракција у Zn(II) комплексима са 1,3-селеназолил/тиазолил-хидразонима на бази пиридина.
AB  - Due to its ability to achieve coordination numbers from 2 to 9, high bioavail-ability, and affinity to N, O, and S-donor atoms, Zn(II) is used for the syn-thesis of complexes with the aim of their specific application. Only eight crystal structures of Zn(II), Cd(II), and Co(III) complexes with N-heteroaromatic 1,3-selenazolyl-hydrazone ligands are deposited in the Cam-bridge Structural Database. This work focused on the crystal structure of the Zn(II) complex with the HLSe2 ligand (2-Cl-Se; Figure 1). The molecular and crystal structure of the new 2-Cl-Se complex was compared with the previ-ously published Zn(II) complex with the HLS2 ligand (2-Cl), a structural analog of the HLSe2 ligand [1]. The influence of isosteric S/Se substitution on the topology and energy distribution of intermolecular interactions in Zn(II) complexes with pyridine-based 1,3-selenazolyl/thiazolyl-hydrazones was monitored [1].
PB  - Belgrade : Serbian Crystallographic Society
C3  - 28th Conference of the Serbian Crystallographic Society, Čačak, Serbia, June 14–15, 2023
T1  - Zn(II) complex with pyridine based 1,3-selenazolyl-hydrazone
SP  - 74
EP  - 75
UR  - https://hdl.handle.net/21.15107/rcub_cherry_6004
ER  - 
@conference{
author = "Ristić, Predrag and Višnjevac, Aleksandar and Araškov, Jovana and Filipović, Nenad and Todorović, Tamara",
year = "2023",
abstract = "Због своје могућности да оствари координационе бројеве од 2 до 9, високе биодоступност и афинитета према N, O, S-донорским атомима, Zn(II) се користи за синтезе комплекса у циљу њихове специфичне примене. У Кембричкој структурној бази података је депоновано само осам кристалних структура комплекса Zn(II), Cd(II) и Co(III) са 
N-хетероароматичним 1,3-селеназолил-хидразонским лигандима. У овом раду је  фокус био на кристалној структури комплекса Zn(II) са лигандом HLSe2 (2-Cl-Se; Слика 1). Молекулска и кристална структура новог комплекса 2-Cl-Se је упоређена са претходно објављеним Zn(II) комплексом са лигандом HLS2 (2-Cl), структурним аналогом лиганда HLSe2 [1]. Праћен утицај изостерне S/Se замене на топологију и енергетску дистрибуцију интермолекулских интеракција у Zn(II) комплексима са 1,3-селеназолил/тиазолил-хидразонима на бази пиридина., Due to its ability to achieve coordination numbers from 2 to 9, high bioavail-ability, and affinity to N, O, and S-donor atoms, Zn(II) is used for the syn-thesis of complexes with the aim of their specific application. Only eight crystal structures of Zn(II), Cd(II), and Co(III) complexes with N-heteroaromatic 1,3-selenazolyl-hydrazone ligands are deposited in the Cam-bridge Structural Database. This work focused on the crystal structure of the Zn(II) complex with the HLSe2 ligand (2-Cl-Se; Figure 1). The molecular and crystal structure of the new 2-Cl-Se complex was compared with the previ-ously published Zn(II) complex with the HLS2 ligand (2-Cl), a structural analog of the HLSe2 ligand [1]. The influence of isosteric S/Se substitution on the topology and energy distribution of intermolecular interactions in Zn(II) complexes with pyridine-based 1,3-selenazolyl/thiazolyl-hydrazones was monitored [1].",
publisher = "Belgrade : Serbian Crystallographic Society",
journal = "28th Conference of the Serbian Crystallographic Society, Čačak, Serbia, June 14–15, 2023",
title = "Zn(II) complex with pyridine based 1,3-selenazolyl-hydrazone",
pages = "74-75",
url = "https://hdl.handle.net/21.15107/rcub_cherry_6004"
}
Ristić, P., Višnjevac, A., Araškov, J., Filipović, N.,& Todorović, T.. (2023). Zn(II) complex with pyridine based 1,3-selenazolyl-hydrazone. in 28th Conference of the Serbian Crystallographic Society, Čačak, Serbia, June 14–15, 2023
Belgrade : Serbian Crystallographic Society., 74-75.
https://hdl.handle.net/21.15107/rcub_cherry_6004
Ristić P, Višnjevac A, Araškov J, Filipović N, Todorović T. Zn(II) complex with pyridine based 1,3-selenazolyl-hydrazone. in 28th Conference of the Serbian Crystallographic Society, Čačak, Serbia, June 14–15, 2023. 2023;:74-75.
https://hdl.handle.net/21.15107/rcub_cherry_6004 .
Ristić, Predrag, Višnjevac, Aleksandar, Araškov, Jovana, Filipović, Nenad, Todorović, Tamara, "Zn(II) complex with pyridine based 1,3-selenazolyl-hydrazone" in 28th Conference of the Serbian Crystallographic Society, Čačak, Serbia, June 14–15, 2023 (2023):74-75,
https://hdl.handle.net/21.15107/rcub_cherry_6004 .

Zn(II) complexes with pyridyl-based 1,3-selen/thiazolyl-hydrazones: A comparative study

Višnjevac, Aleksandar; Araškov, Jovana; Nikolić, Milan; Bojić-Trbojević, Žanka; Pirković, Andrea; Dekanski, Dragana; Mitić, Dragana; Blagojević, Vladimir A.; Filipović, Nenad R.; Todorović, Tamara

(Elsevier, 2023)

TY  - JOUR
AU  - Višnjevac, Aleksandar
AU  - Araškov, Jovana
AU  - Nikolić, Milan
AU  - Bojić-Trbojević, Žanka
AU  - Pirković, Andrea
AU  - Dekanski, Dragana
AU  - Mitić, Dragana
AU  - Blagojević, Vladimir A.
AU  - Filipović, Nenad R.
AU  - Todorović, Tamara
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5877
AB  - The Zn(II) complexes [Zn(HLSe2)2](NO3)2∙CH3OH (2-NO3-Se) and [Zn(HLSe3)2](NO3)2·DMF (3-NO3-Se) with selenazolyl-hydrazone ligands 4-(4-methoxyphenyl)-2-(2-(pyridin-2-ylmethylene)hydrazinyl)-1,3-selenazole (HLSe2) and 4-(4-methylphenyl)-2-(2-(pyridin-2-ylmethylene)hydrazinyl)-1,3-selenazole (HLSe3) have been synthesized and characterized using singe crystal X-ray diffraction analysis. Antiproliferative activities of 2-NO3-Se and 3-NO3-Se, the corresponding ligands and sulphur isosteres of the complexes and the ligands were determined on non-malignant HTR-8/SVneo extravillous trophoblast cell line and malignant JEG-3 and JAr choriocarcinoma cell lines. All Zn complexes exhibited cytotoxic effect, comparable to that of a reference metal-based drug, cisplatin. The antioxidant activity of all compounds was determined in three antioxidant assays: ORAC (Oxygen Radical Absorbance Capacity), ABTS [(2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt] and CERAC [Ce(IV)-based reducing capacity]. As a result of synergy between Zn(II) and selenazolyl-hydrazone ligands, the complexes 2-NO3-Se and 3-NO3-Se appeared to be more active than Trolox, which is not the case for their sulfur counterparts. In-silico calculations of ADME properties pointed that the compounds possess some of desirable Lipinski rule principles. Applied algorithms did not report the compounds as potential PAINS or covalent inhibitors, although due to high molecular weight none of the compounds represent a potential lead compound. Toxicity prediction of the compounds is performed using machine learning models. The complexation of the ligands most likely reduces their toxicity or reduces their negative metabolic effects.
PB  - Elsevier
T2  - Journal of Molecular Structure
T2  - Journal of Molecular StructureJournal of Molecular Structure
T1  - Zn(II) complexes with pyridyl-based 1,3-selen/thiazolyl-hydrazones: A comparative study
VL  - 1281
SP  - 135193
DO  - 10.1016/j.molstruc.2023.135193
ER  - 
@article{
author = "Višnjevac, Aleksandar and Araškov, Jovana and Nikolić, Milan and Bojić-Trbojević, Žanka and Pirković, Andrea and Dekanski, Dragana and Mitić, Dragana and Blagojević, Vladimir A. and Filipović, Nenad R. and Todorović, Tamara",
year = "2023",
abstract = "The Zn(II) complexes [Zn(HLSe2)2](NO3)2∙CH3OH (2-NO3-Se) and [Zn(HLSe3)2](NO3)2·DMF (3-NO3-Se) with selenazolyl-hydrazone ligands 4-(4-methoxyphenyl)-2-(2-(pyridin-2-ylmethylene)hydrazinyl)-1,3-selenazole (HLSe2) and 4-(4-methylphenyl)-2-(2-(pyridin-2-ylmethylene)hydrazinyl)-1,3-selenazole (HLSe3) have been synthesized and characterized using singe crystal X-ray diffraction analysis. Antiproliferative activities of 2-NO3-Se and 3-NO3-Se, the corresponding ligands and sulphur isosteres of the complexes and the ligands were determined on non-malignant HTR-8/SVneo extravillous trophoblast cell line and malignant JEG-3 and JAr choriocarcinoma cell lines. All Zn complexes exhibited cytotoxic effect, comparable to that of a reference metal-based drug, cisplatin. The antioxidant activity of all compounds was determined in three antioxidant assays: ORAC (Oxygen Radical Absorbance Capacity), ABTS [(2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt] and CERAC [Ce(IV)-based reducing capacity]. As a result of synergy between Zn(II) and selenazolyl-hydrazone ligands, the complexes 2-NO3-Se and 3-NO3-Se appeared to be more active than Trolox, which is not the case for their sulfur counterparts. In-silico calculations of ADME properties pointed that the compounds possess some of desirable Lipinski rule principles. Applied algorithms did not report the compounds as potential PAINS or covalent inhibitors, although due to high molecular weight none of the compounds represent a potential lead compound. Toxicity prediction of the compounds is performed using machine learning models. The complexation of the ligands most likely reduces their toxicity or reduces their negative metabolic effects.",
publisher = "Elsevier",
journal = "Journal of Molecular Structure, Journal of Molecular StructureJournal of Molecular Structure",
title = "Zn(II) complexes with pyridyl-based 1,3-selen/thiazolyl-hydrazones: A comparative study",
volume = "1281",
pages = "135193",
doi = "10.1016/j.molstruc.2023.135193"
}
Višnjevac, A., Araškov, J., Nikolić, M., Bojić-Trbojević, Ž., Pirković, A., Dekanski, D., Mitić, D., Blagojević, V. A., Filipović, N. R.,& Todorović, T.. (2023). Zn(II) complexes with pyridyl-based 1,3-selen/thiazolyl-hydrazones: A comparative study. in Journal of Molecular Structure
Elsevier., 1281, 135193.
https://doi.org/10.1016/j.molstruc.2023.135193
Višnjevac A, Araškov J, Nikolić M, Bojić-Trbojević Ž, Pirković A, Dekanski D, Mitić D, Blagojević VA, Filipović NR, Todorović T. Zn(II) complexes with pyridyl-based 1,3-selen/thiazolyl-hydrazones: A comparative study. in Journal of Molecular Structure. 2023;1281:135193.
doi:10.1016/j.molstruc.2023.135193 .
Višnjevac, Aleksandar, Araškov, Jovana, Nikolić, Milan, Bojić-Trbojević, Žanka, Pirković, Andrea, Dekanski, Dragana, Mitić, Dragana, Blagojević, Vladimir A., Filipović, Nenad R., Todorović, Tamara, "Zn(II) complexes with pyridyl-based 1,3-selen/thiazolyl-hydrazones: A comparative study" in Journal of Molecular Structure, 1281 (2023):135193,
https://doi.org/10.1016/j.molstruc.2023.135193 . .
1
1

Zn(II) complex with pyridine based 1,3-selenazolyl-hydrazone: Synthesis, structural characterization and DFT study

Araškov, Jovana; Ristić, Predrag; Višnjevac, Aleksandar; Mitić, Dragana; Andrej, Milivojac; Filipović, Nenad; Todorović, Tamara

(Belgrade : Serbian Chemical Society, 2023)

TY  - JOUR
AU  - Araškov, Jovana
AU  - Ristić, Predrag
AU  - Višnjevac, Aleksandar
AU  - Mitić, Dragana
AU  - Andrej, Milivojac
AU  - Filipović, Nenad
AU  - Todorović, Tamara
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6317
AB  - An octahedral complex of Zn(II) with a ligand from a class of pyridine-based 1,3-selenazolyl-hydrazones was synthesized and characterized by IR and NMR spectroscopy and single crystal X-ray diffraction analysis. The purity of the complex was confirmed by elemental analysis. Two ligands are coordinated in the neutral NNN-tridentate form forming a complex cation, while the positive charge is neutralized by [ZnCl4]2–. Complex crystallizes in monoclinic C2/c space group with the Zn atoms situated in a special position. The packing features of the novel complex were analyzed using Hirshfeld surfaces, construction of 2D pseudosymmetric plot and DFT quantum mechanical calculations and compared with the previously published sulfur-based isostere. The key difference in the structures, imposed by replacement of sulfur with selenium, were identified.
PB  - Belgrade : Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - Zn(II) complex with pyridine based 1,3-selenazolyl-hydrazone: Synthesis, structural characterization and DFT study
VL  - n/a
DO  - 10.2298/JSC230831079A
ER  - 
@article{
author = "Araškov, Jovana and Ristić, Predrag and Višnjevac, Aleksandar and Mitić, Dragana and Andrej, Milivojac and Filipović, Nenad and Todorović, Tamara",
year = "2023",
abstract = "An octahedral complex of Zn(II) with a ligand from a class of pyridine-based 1,3-selenazolyl-hydrazones was synthesized and characterized by IR and NMR spectroscopy and single crystal X-ray diffraction analysis. The purity of the complex was confirmed by elemental analysis. Two ligands are coordinated in the neutral NNN-tridentate form forming a complex cation, while the positive charge is neutralized by [ZnCl4]2–. Complex crystallizes in monoclinic C2/c space group with the Zn atoms situated in a special position. The packing features of the novel complex were analyzed using Hirshfeld surfaces, construction of 2D pseudosymmetric plot and DFT quantum mechanical calculations and compared with the previously published sulfur-based isostere. The key difference in the structures, imposed by replacement of sulfur with selenium, were identified.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "Zn(II) complex with pyridine based 1,3-selenazolyl-hydrazone: Synthesis, structural characterization and DFT study",
volume = "n/a",
doi = "10.2298/JSC230831079A"
}
Araškov, J., Ristić, P., Višnjevac, A., Mitić, D., Andrej, M., Filipović, N.,& Todorović, T.. (2023). Zn(II) complex with pyridine based 1,3-selenazolyl-hydrazone: Synthesis, structural characterization and DFT study. in Journal of the Serbian Chemical Society
Belgrade : Serbian Chemical Society., n/a.
https://doi.org/10.2298/JSC230831079A
Araškov J, Ristić P, Višnjevac A, Mitić D, Andrej M, Filipović N, Todorović T. Zn(II) complex with pyridine based 1,3-selenazolyl-hydrazone: Synthesis, structural characterization and DFT study. in Journal of the Serbian Chemical Society. 2023;n/a.
doi:10.2298/JSC230831079A .
Araškov, Jovana, Ristić, Predrag, Višnjevac, Aleksandar, Mitić, Dragana, Andrej, Milivojac, Filipović, Nenad, Todorović, Tamara, "Zn(II) complex with pyridine based 1,3-selenazolyl-hydrazone: Synthesis, structural characterization and DFT study" in Journal of the Serbian Chemical Society, n/a (2023),
https://doi.org/10.2298/JSC230831079A . .

A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones

Kokanov, Sanja B.; Filipović, Nenad R.; Višnjevac, Aleksandar; Nikolić, Milan; Novaković, Irena T.; Janjić, Goran; Holló, Berta Barta; Ramotowska, Sandra; Nowicka, Paulina; Makowski, Mariusz; Uğuz, Özlem; Koca, Atıf; Todorović, Tamara

(Wiley, 2023)

TY  - JOUR
AU  - Kokanov, Sanja B.
AU  - Filipović, Nenad R.
AU  - Višnjevac, Aleksandar
AU  - Nikolić, Milan
AU  - Novaković, Irena T.
AU  - Janjić, Goran
AU  - Holló, Berta Barta
AU  - Ramotowska, Sandra
AU  - Nowicka, Paulina
AU  - Makowski, Mariusz
AU  - Uğuz, Özlem
AU  - Koca, Atıf
AU  - Todorović, Tamara
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5986
AB  - Interest in Cd complexes has been growing in recent years. Cd complexes are considered a potential solution in the search for novel antibiotics that can fight antimicrobial resistance. In addition, Cd complexes draw attention to material chemistry. The main objective of this work was to prepare the first Cd(II) complexes with anionic forms of pyridine-based thiazolyl hydrazone (THs) ligands HLS2 [(E)-4-(4-methoxyphenyl)-2-(2-[pyridine-2-ylmethylene]hydrazinyl)thiazole] and HLS3 [(E)-2-(2-[pyridine-2-ylmethylene]hydrazinyl)-4-(p-tolyl)thiazole] and perform their structural and spectroscopic characterization, as well as stability in solution and upon heating. Studies related to their biological activities and possible electrochromic applications are also being conducted. Complexes [Cd(HLS2)2] (1) and [Cd(HLS3)2] (2) have been characterized by a single-crystal X-ray diffraction and computational analysis of intermolecular interactions responsible for their solid-state structures was performed. Thermal stability of 1 and 2 in the solid-state was analyzed by TGA/MS, where as their solution stability was determined by the spectrophotometric titration method. Electrochemical and in situ UV–Vis spectroelectrochemical analyses of 1 and 2 were carried out to determine redox mechanisms and the influence of the substituents and electrolytes on their redox responses. The antioxidant capacity of both complexes was tested in antioxidant assays, while their antimicrobial activity was tested against five Gram-positive and four Gram-negative bacteria, as well as against three fungi. The obtained results indicate their potent antioxidant capacity. The antimicrobial activity of investigated compounds on almost all tested bacterial strains was stronger than that of the standard antibiotic erythromycin. The results of docking studies indicate that the minor groove DNA is the possible biological target of 1 and 2.
PB  - Wiley
T2  - Applied Organometallic Chemistry
T1  - A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones
VL  - 37
IS  - 1
DO  - 10.1002/aoc.6942
ER  - 
@article{
author = "Kokanov, Sanja B. and Filipović, Nenad R. and Višnjevac, Aleksandar and Nikolić, Milan and Novaković, Irena T. and Janjić, Goran and Holló, Berta Barta and Ramotowska, Sandra and Nowicka, Paulina and Makowski, Mariusz and Uğuz, Özlem and Koca, Atıf and Todorović, Tamara",
year = "2023",
abstract = "Interest in Cd complexes has been growing in recent years. Cd complexes are considered a potential solution in the search for novel antibiotics that can fight antimicrobial resistance. In addition, Cd complexes draw attention to material chemistry. The main objective of this work was to prepare the first Cd(II) complexes with anionic forms of pyridine-based thiazolyl hydrazone (THs) ligands HLS2 [(E)-4-(4-methoxyphenyl)-2-(2-[pyridine-2-ylmethylene]hydrazinyl)thiazole] and HLS3 [(E)-2-(2-[pyridine-2-ylmethylene]hydrazinyl)-4-(p-tolyl)thiazole] and perform their structural and spectroscopic characterization, as well as stability in solution and upon heating. Studies related to their biological activities and possible electrochromic applications are also being conducted. Complexes [Cd(HLS2)2] (1) and [Cd(HLS3)2] (2) have been characterized by a single-crystal X-ray diffraction and computational analysis of intermolecular interactions responsible for their solid-state structures was performed. Thermal stability of 1 and 2 in the solid-state was analyzed by TGA/MS, where as their solution stability was determined by the spectrophotometric titration method. Electrochemical and in situ UV–Vis spectroelectrochemical analyses of 1 and 2 were carried out to determine redox mechanisms and the influence of the substituents and electrolytes on their redox responses. The antioxidant capacity of both complexes was tested in antioxidant assays, while their antimicrobial activity was tested against five Gram-positive and four Gram-negative bacteria, as well as against three fungi. The obtained results indicate their potent antioxidant capacity. The antimicrobial activity of investigated compounds on almost all tested bacterial strains was stronger than that of the standard antibiotic erythromycin. The results of docking studies indicate that the minor groove DNA is the possible biological target of 1 and 2.",
publisher = "Wiley",
journal = "Applied Organometallic Chemistry",
title = "A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones",
volume = "37",
number = "1",
doi = "10.1002/aoc.6942"
}
Kokanov, S. B., Filipović, N. R., Višnjevac, A., Nikolić, M., Novaković, I. T., Janjić, G., Holló, B. B., Ramotowska, S., Nowicka, P., Makowski, M., Uğuz, Ö., Koca, A.,& Todorović, T.. (2023). A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones. in Applied Organometallic Chemistry
Wiley., 37(1).
https://doi.org/10.1002/aoc.6942
Kokanov SB, Filipović NR, Višnjevac A, Nikolić M, Novaković IT, Janjić G, Holló BB, Ramotowska S, Nowicka P, Makowski M, Uğuz Ö, Koca A, Todorović T. A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones. in Applied Organometallic Chemistry. 2023;37(1).
doi:10.1002/aoc.6942 .
Kokanov, Sanja B., Filipović, Nenad R., Višnjevac, Aleksandar, Nikolić, Milan, Novaković, Irena T., Janjić, Goran, Holló, Berta Barta, Ramotowska, Sandra, Nowicka, Paulina, Makowski, Mariusz, Uğuz, Özlem, Koca, Atıf, Todorović, Tamara, "A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones" in Applied Organometallic Chemistry, 37, no. 1 (2023),
https://doi.org/10.1002/aoc.6942 . .

The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure

Mijin, Nemanja D.; Milošević, Jelica; Filipović, Nenad R.; Mitić, Dragana; Anđelković, Katarina K.; Polović, Natalija; Todorović, Tamara

(Serbian Chemical Society, 2022)

TY  - JOUR
AU  - Mijin, Nemanja D.
AU  - Milošević, Jelica
AU  - Filipović, Nenad R.
AU  - Mitić, Dragana
AU  - Anđelković, Katarina K.
AU  - Polović, Natalija
AU  - Todorović, Tamara
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5686
AB  - Previously, the cytotoxic actions of five Pd(II) complexes with bidentate N-heteroaromatic chelators (complexes 1–5) on a palette of several cancer
cell lines were investigated. However, the results of the cytotoxic activity did
not correlate with the hydrophobic character of the complexes. To gain further
insight into the structure–activity relationship, essential for the design of novel
potential drugs, other factors, such as non-specific interactions with cellular
proteins, have to be taken into account. To explore the potential non-specific
influence of the complexes on protein structures, ovalbumin (OVA) was
chosen as a model system to mimic cellular non-specific crowding environments with high protein concentrations. A Fourier-transform infrared spectroscopy study implied that the binding of 3 and 4 led to only moderate alternations in the secondary structures of the protein, without the possibility to penetrate into hydrophobic core of the protein and disruption of protein native fold.
Contrary, the effect of complex 5 on OVA secondary structures was concentration-dependent. While the lower concentration of complex 5 had no effect
on OVA structure, a doubled concentration of complex 5 led to complete disruption of the content native-like secondary structures. The concentration-dependent effect of complex 5 on the changes in secondary structures and considerable increase in the exposure of OVA hydrophobic surfaces to water may
be related to a potential crosslinking that leads to OVA aggregation.
PB  - Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure
VL  - 87
IS  - 10
SP  - 1143
SP  - 1156
DO  - 10.2298/JSC220518050M
ER  - 
@article{
author = "Mijin, Nemanja D. and Milošević, Jelica and Filipović, Nenad R. and Mitić, Dragana and Anđelković, Katarina K. and Polović, Natalija and Todorović, Tamara",
year = "2022",
abstract = "Previously, the cytotoxic actions of five Pd(II) complexes with bidentate N-heteroaromatic chelators (complexes 1–5) on a palette of several cancer
cell lines were investigated. However, the results of the cytotoxic activity did
not correlate with the hydrophobic character of the complexes. To gain further
insight into the structure–activity relationship, essential for the design of novel
potential drugs, other factors, such as non-specific interactions with cellular
proteins, have to be taken into account. To explore the potential non-specific
influence of the complexes on protein structures, ovalbumin (OVA) was
chosen as a model system to mimic cellular non-specific crowding environments with high protein concentrations. A Fourier-transform infrared spectroscopy study implied that the binding of 3 and 4 led to only moderate alternations in the secondary structures of the protein, without the possibility to penetrate into hydrophobic core of the protein and disruption of protein native fold.
Contrary, the effect of complex 5 on OVA secondary structures was concentration-dependent. While the lower concentration of complex 5 had no effect
on OVA structure, a doubled concentration of complex 5 led to complete disruption of the content native-like secondary structures. The concentration-dependent effect of complex 5 on the changes in secondary structures and considerable increase in the exposure of OVA hydrophobic surfaces to water may
be related to a potential crosslinking that leads to OVA aggregation.",
publisher = "Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure",
volume = "87",
number = "10",
pages = "1143-1156",
doi = "10.2298/JSC220518050M"
}
Mijin, N. D., Milošević, J., Filipović, N. R., Mitić, D., Anđelković, K. K., Polović, N.,& Todorović, T.. (2022). The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure. in Journal of the Serbian Chemical Society
Serbian Chemical Society., 87(10), 1143.
https://doi.org/10.2298/JSC220518050M
Mijin ND, Milošević J, Filipović NR, Mitić D, Anđelković KK, Polović N, Todorović T. The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure. in Journal of the Serbian Chemical Society. 2022;87(10):1143.
doi:10.2298/JSC220518050M .
Mijin, Nemanja D., Milošević, Jelica, Filipović, Nenad R., Mitić, Dragana, Anđelković, Katarina K., Polović, Natalija, Todorović, Tamara, "The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure" in Journal of the Serbian Chemical Society, 87, no. 10 (2022):1143,
https://doi.org/10.2298/JSC220518050M . .

Supplementary material for: Mijin, N. D., Milošević, J., Filipović, N. R., Mitić, D., Anđelković, K., Polović, N. Đ., & Todorović, T. R. (2022). The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure. Journal of the Serbian Chemical Society, 87(10), 1143. https://doi.org/10.2298/JSC220518050M

Mijin, Nemanja D.; Milošević, Jelica; Filipović, Nenad R.; Mitić, Dragana; Anđelković, Katarina K.; Polović, Natalija; Todorović, Tamara

(Serbian Chemical Society, 2022)

TY  - DATA
AU  - Mijin, Nemanja D.
AU  - Milošević, Jelica
AU  - Filipović, Nenad R.
AU  - Mitić, Dragana
AU  - Anđelković, Katarina K.
AU  - Polović, Natalija
AU  - Todorović, Tamara
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5707
AB  - Previously, the cytotoxic actions of five Pd(II) complexes with bidentate N-heteroaromatic chelators (complexes 1–5) on a palette of several cancercell lines were investigated. However, the results of the cytotoxic activity didnot correlate with the hydrophobic character of the complexes. To gain furtherinsight into the structure–activity relationship, essential for the design of novelpotential drugs, other factors, such as non-specific interactions with cellularproteins, have to be taken into account. To explore the potential non-specificinfluence of the complexes on protein structures, ovalbumin (OVA) waschosen as a model system to mimic cellular non-specific crowding environments with high protein concentrations. A Fourier-transform infrared spectroscopy study implied that the binding of 3 and 4 led to only moderate alternations in the secondary structures of the protein, without the possibility to penetrate into hydrophobic core of the protein and disruption of protein native fold.Contrary, the effect of complex 5 on OVA secondary structures was concentration-dependent. While the lower concentration of complex 5 had no effecton OVA structure, a doubled concentration of complex 5 led to complete disruption of the content native-like secondary structures. The concentration-dependent effect of complex 5 on the changes in secondary structures and considerable increase in the exposure of OVA hydrophobic surfaces to water maybe related to a potential crosslinking that leads to OVA aggregation.
PB  - Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - Supplementary material for: Mijin, N. D., Milošević, J., Filipović, N. R., Mitić, D., Anđelković, K., Polović, N. Đ., & Todorović, T. R. (2022). The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure. Journal of the Serbian Chemical Society, 87(10), 1143. https://doi.org/10.2298/JSC220518050M
VL  - 87
IS  - 10
SP  - 1143
SP  - 1156
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5707
ER  - 
@misc{
author = "Mijin, Nemanja D. and Milošević, Jelica and Filipović, Nenad R. and Mitić, Dragana and Anđelković, Katarina K. and Polović, Natalija and Todorović, Tamara",
year = "2022",
abstract = "Previously, the cytotoxic actions of five Pd(II) complexes with bidentate N-heteroaromatic chelators (complexes 1–5) on a palette of several cancercell lines were investigated. However, the results of the cytotoxic activity didnot correlate with the hydrophobic character of the complexes. To gain furtherinsight into the structure–activity relationship, essential for the design of novelpotential drugs, other factors, such as non-specific interactions with cellularproteins, have to be taken into account. To explore the potential non-specificinfluence of the complexes on protein structures, ovalbumin (OVA) waschosen as a model system to mimic cellular non-specific crowding environments with high protein concentrations. A Fourier-transform infrared spectroscopy study implied that the binding of 3 and 4 led to only moderate alternations in the secondary structures of the protein, without the possibility to penetrate into hydrophobic core of the protein and disruption of protein native fold.Contrary, the effect of complex 5 on OVA secondary structures was concentration-dependent. While the lower concentration of complex 5 had no effecton OVA structure, a doubled concentration of complex 5 led to complete disruption of the content native-like secondary structures. The concentration-dependent effect of complex 5 on the changes in secondary structures and considerable increase in the exposure of OVA hydrophobic surfaces to water maybe related to a potential crosslinking that leads to OVA aggregation.",
publisher = "Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "Supplementary material for: Mijin, N. D., Milošević, J., Filipović, N. R., Mitić, D., Anđelković, K., Polović, N. Đ., & Todorović, T. R. (2022). The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure. Journal of the Serbian Chemical Society, 87(10), 1143. https://doi.org/10.2298/JSC220518050M",
volume = "87",
number = "10",
pages = "1143-1156",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5707"
}
Mijin, N. D., Milošević, J., Filipović, N. R., Mitić, D., Anđelković, K. K., Polović, N.,& Todorović, T.. (2022). Supplementary material for: Mijin, N. D., Milošević, J., Filipović, N. R., Mitić, D., Anđelković, K., Polović, N. Đ., & Todorović, T. R. (2022). The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure. Journal of the Serbian Chemical Society, 87(10), 1143. https://doi.org/10.2298/JSC220518050M. in Journal of the Serbian Chemical Society
Serbian Chemical Society., 87(10), 1143.
https://hdl.handle.net/21.15107/rcub_cherry_5707
Mijin ND, Milošević J, Filipović NR, Mitić D, Anđelković KK, Polović N, Todorović T. Supplementary material for: Mijin, N. D., Milošević, J., Filipović, N. R., Mitić, D., Anđelković, K., Polović, N. Đ., & Todorović, T. R. (2022). The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure. Journal of the Serbian Chemical Society, 87(10), 1143. https://doi.org/10.2298/JSC220518050M. in Journal of the Serbian Chemical Society. 2022;87(10):1143.
https://hdl.handle.net/21.15107/rcub_cherry_5707 .
Mijin, Nemanja D., Milošević, Jelica, Filipović, Nenad R., Mitić, Dragana, Anđelković, Katarina K., Polović, Natalija, Todorović, Tamara, "Supplementary material for: Mijin, N. D., Milošević, J., Filipović, N. R., Mitić, D., Anđelković, K., Polović, N. Đ., & Todorović, T. R. (2022). The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure. Journal of the Serbian Chemical Society, 87(10), 1143. https://doi.org/10.2298/JSC220518050M" in Journal of the Serbian Chemical Society, 87, no. 10 (2022):1143,
https://hdl.handle.net/21.15107/rcub_cherry_5707 .

Efficient enzyme@MOF composites for biocatalysis

Stanišić, Marija D.; Ristić, Predrag; Balaž, Ana Marija; Senćanski, Milan; Mitić, Dragana; Prodanović, Radivoje; Todorović, Tamara

(2022)

TY  - CONF
AU  - Stanišić, Marija D.
AU  - Ristić, Predrag
AU  - Balaž, Ana Marija
AU  - Senćanski, Milan
AU  - Mitić, Dragana
AU  - Prodanović, Radivoje
AU  - Todorović, Tamara
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5751
AB  - Novel industrial biocatalysts are needed which can offer advantages over traditional chemical processes with respect to sustainability, process efficiency, and reduced negative impact on the environment. Implementation of either native or mutated enzymes for various industrial applications is currently limited due to a lack of protein stability in harsh conditions. Metal-organic frameworks (MOFs), known for their ultra-high porosity and crystallinity, are perfect host materials that can protect guest enzymes from inhospitable external environments. Herein we show that the surface charge and chemistry of a protein determine its ability to seed MOF growth. We demonstrate that chemical modification of carbohydrate parts on the protein surface is an effective method for controlling biomimetic mineralization by zeolitic imidazolate framework-8 (ZIF-8). Protein charge, mixing of reactants, and stirring speed have been demonstrated to play important roles in controlling biomineralization reaction rate, particle shape, and morphology. This study highlights the important role played by protein surface chemistry in encapsulation and outlines a general method for facilitating the biomimetic mineralization of glycoproteins.
C3  - EUROBIOTECH 8th Central European Congress of Life Sciences, 20-22 June 2022, Krakow, Poland
T1  - Efficient enzyme@MOF composites for biocatalysis
SP  - 138
EP  - 138
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5751
ER  - 
@conference{
author = "Stanišić, Marija D. and Ristić, Predrag and Balaž, Ana Marija and Senćanski, Milan and Mitić, Dragana and Prodanović, Radivoje and Todorović, Tamara",
year = "2022",
abstract = "Novel industrial biocatalysts are needed which can offer advantages over traditional chemical processes with respect to sustainability, process efficiency, and reduced negative impact on the environment. Implementation of either native or mutated enzymes for various industrial applications is currently limited due to a lack of protein stability in harsh conditions. Metal-organic frameworks (MOFs), known for their ultra-high porosity and crystallinity, are perfect host materials that can protect guest enzymes from inhospitable external environments. Herein we show that the surface charge and chemistry of a protein determine its ability to seed MOF growth. We demonstrate that chemical modification of carbohydrate parts on the protein surface is an effective method for controlling biomimetic mineralization by zeolitic imidazolate framework-8 (ZIF-8). Protein charge, mixing of reactants, and stirring speed have been demonstrated to play important roles in controlling biomineralization reaction rate, particle shape, and morphology. This study highlights the important role played by protein surface chemistry in encapsulation and outlines a general method for facilitating the biomimetic mineralization of glycoproteins.",
journal = "EUROBIOTECH 8th Central European Congress of Life Sciences, 20-22 June 2022, Krakow, Poland",
title = "Efficient enzyme@MOF composites for biocatalysis",
pages = "138-138",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5751"
}
Stanišić, M. D., Ristić, P., Balaž, A. M., Senćanski, M., Mitić, D., Prodanović, R.,& Todorović, T.. (2022). Efficient enzyme@MOF composites for biocatalysis. in EUROBIOTECH 8th Central European Congress of Life Sciences, 20-22 June 2022, Krakow, Poland, 138-138.
https://hdl.handle.net/21.15107/rcub_cherry_5751
Stanišić MD, Ristić P, Balaž AM, Senćanski M, Mitić D, Prodanović R, Todorović T. Efficient enzyme@MOF composites for biocatalysis. in EUROBIOTECH 8th Central European Congress of Life Sciences, 20-22 June 2022, Krakow, Poland. 2022;:138-138.
https://hdl.handle.net/21.15107/rcub_cherry_5751 .
Stanišić, Marija D., Ristić, Predrag, Balaž, Ana Marija, Senćanski, Milan, Mitić, Dragana, Prodanović, Radivoje, Todorović, Tamara, "Efficient enzyme@MOF composites for biocatalysis" in EUROBIOTECH 8th Central European Congress of Life Sciences, 20-22 June 2022, Krakow, Poland (2022):138-138,
https://hdl.handle.net/21.15107/rcub_cherry_5751 .

Periodate oxidized glucose oxidase@ZIF-8 nanocomposite

Ristić, Predrag; Stanišić, Marija D.; Đokić, Veljko; Balaž, Ana Marija; Mitić, Dragana; Prodanović, Radivoje; Todorović, Tamara

(2022)

TY  - CONF
AU  - Ristić, Predrag
AU  - Stanišić, Marija D.
AU  - Đokić, Veljko
AU  - Balaž, Ana Marija
AU  - Mitić, Dragana
AU  - Prodanović, Radivoje
AU  - Todorović, Tamara
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5753
AB  - The durability of enzymes in harsh conditions can be enhanced by immobilization within metal-organic frameworks
(MOFs) via a process called biomimetic mineralisation. Zeolitic imidazolate framework-8 (ZIF-8) is widely used as a
protective coating to encapsulate proteins. The formation of nucleation centres and further biocomposite particle
growth is entirely governed by the pure electrostatic interactions between the protein’s surface and positively charged
Zn(II) metal ions. It was previously shown that enhancing these electrostatic interactions by a chemical modification
of surface amino acid residues can lead to a rapid biocomposite formation. However, a chemical modification of
carbohydrate components by periodate oxidation for glycoproteins can serve as an alternative strategy. In the present
study, an industrially important enzyme glucose oxidase (GOx) was selected as a model system. Periodate oxidation
of GOx by 2.5 mM sodium periodate increased negative charge on the enzyme molecule. Biomineralization
experiments with oxidized GOx resulted in higher specific activity, effectiveness factor, and higher thermostability of
the ZIF-8 biocomposites.
C3  - 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece
T1  - Periodate oxidized glucose oxidase@ZIF-8 nanocomposite
SP  - 138
EP  - 138
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5753
ER  - 
@conference{
author = "Ristić, Predrag and Stanišić, Marija D. and Đokić, Veljko and Balaž, Ana Marija and Mitić, Dragana and Prodanović, Radivoje and Todorović, Tamara",
year = "2022",
abstract = "The durability of enzymes in harsh conditions can be enhanced by immobilization within metal-organic frameworks
(MOFs) via a process called biomimetic mineralisation. Zeolitic imidazolate framework-8 (ZIF-8) is widely used as a
protective coating to encapsulate proteins. The formation of nucleation centres and further biocomposite particle
growth is entirely governed by the pure electrostatic interactions between the protein’s surface and positively charged
Zn(II) metal ions. It was previously shown that enhancing these electrostatic interactions by a chemical modification
of surface amino acid residues can lead to a rapid biocomposite formation. However, a chemical modification of
carbohydrate components by periodate oxidation for glycoproteins can serve as an alternative strategy. In the present
study, an industrially important enzyme glucose oxidase (GOx) was selected as a model system. Periodate oxidation
of GOx by 2.5 mM sodium periodate increased negative charge on the enzyme molecule. Biomineralization
experiments with oxidized GOx resulted in higher specific activity, effectiveness factor, and higher thermostability of
the ZIF-8 biocomposites.",
journal = "19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece",
title = "Periodate oxidized glucose oxidase@ZIF-8 nanocomposite",
pages = "138-138",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5753"
}
Ristić, P., Stanišić, M. D., Đokić, V., Balaž, A. M., Mitić, D., Prodanović, R.,& Todorović, T.. (2022). Periodate oxidized glucose oxidase@ZIF-8 nanocomposite. in 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece, 138-138.
https://hdl.handle.net/21.15107/rcub_cherry_5753
Ristić P, Stanišić MD, Đokić V, Balaž AM, Mitić D, Prodanović R, Todorović T. Periodate oxidized glucose oxidase@ZIF-8 nanocomposite. in 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece. 2022;:138-138.
https://hdl.handle.net/21.15107/rcub_cherry_5753 .
Ristić, Predrag, Stanišić, Marija D., Đokić, Veljko, Balaž, Ana Marija, Mitić, Dragana, Prodanović, Radivoje, Todorović, Tamara, "Periodate oxidized glucose oxidase@ZIF-8 nanocomposite" in 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece (2022):138-138,
https://hdl.handle.net/21.15107/rcub_cherry_5753 .

Identification of SARS-CoV-2 Papain-like Protease (PLpro) Inhibitors Using Combined Computational Approach

Senćanski, Milan; Perović, Vladimir; Milićević, Jelena; Todorović, Tamara; Prodanović, Radivoje; Veljković, Veljko; Paessler, Slobodan; Glišić, Sanja

(Wiley-VCH, 2022)

TY  - JOUR
AU  - Senćanski, Milan
AU  - Perović, Vladimir
AU  - Milićević, Jelena
AU  - Todorović, Tamara
AU  - Prodanović, Radivoje
AU  - Veljković, Veljko
AU  - Paessler, Slobodan
AU  - Glišić, Sanja
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5041
AB  - In the currentpandemic,findingan effectivedrugto preventortreatthe infectionis the highestpriority.A rapidand safeapproachto counteractCOVID-19is in silicodrugrepurposing.The SARS-CoV-2PLpropromotesviral replicationand modu-latesthe hostimmunesystem,resultingin inhibitionof thehostantiviralinnateimmuneresponse,and thereforeis anattractivedrugtarget.In this study,we useda combinedinsilicovirtualscreeningfor candidatesfor SARS-CoV-2PLproproteaseinhibitors.We usedthe Informationalspectrummethodappliedfor SmallMoleculesfor searchingthe Drugbankdatabasefollowedby moleculardocking.Afterin silicoscreen-ing of drugspace,we identified44 drugsas potentialSARS-CoV-2PLproinhibitorsthat we proposefor furtherexperimentaltesting.
PB  - Wiley-VCH
T2  - ChemistryOpen
T1  - Identification of SARS-CoV-2 Papain-like Protease (PLpro) Inhibitors Using Combined Computational Approach
VL  - 11
IS  - 2
SP  - e202100248
DO  - 10.1002/open.202100248
ER  - 
@article{
author = "Senćanski, Milan and Perović, Vladimir and Milićević, Jelena and Todorović, Tamara and Prodanović, Radivoje and Veljković, Veljko and Paessler, Slobodan and Glišić, Sanja",
year = "2022",
abstract = "In the currentpandemic,findingan effectivedrugto preventortreatthe infectionis the highestpriority.A rapidand safeapproachto counteractCOVID-19is in silicodrugrepurposing.The SARS-CoV-2PLpropromotesviral replicationand modu-latesthe hostimmunesystem,resultingin inhibitionof thehostantiviralinnateimmuneresponse,and thereforeis anattractivedrugtarget.In this study,we useda combinedinsilicovirtualscreeningfor candidatesfor SARS-CoV-2PLproproteaseinhibitors.We usedthe Informationalspectrummethodappliedfor SmallMoleculesfor searchingthe Drugbankdatabasefollowedby moleculardocking.Afterin silicoscreen-ing of drugspace,we identified44 drugsas potentialSARS-CoV-2PLproinhibitorsthat we proposefor furtherexperimentaltesting.",
publisher = "Wiley-VCH",
journal = "ChemistryOpen",
title = "Identification of SARS-CoV-2 Papain-like Protease (PLpro) Inhibitors Using Combined Computational Approach",
volume = "11",
number = "2",
pages = "e202100248",
doi = "10.1002/open.202100248"
}
Senćanski, M., Perović, V., Milićević, J., Todorović, T., Prodanović, R., Veljković, V., Paessler, S.,& Glišić, S.. (2022). Identification of SARS-CoV-2 Papain-like Protease (PLpro) Inhibitors Using Combined Computational Approach. in ChemistryOpen
Wiley-VCH., 11(2), e202100248.
https://doi.org/10.1002/open.202100248
Senćanski M, Perović V, Milićević J, Todorović T, Prodanović R, Veljković V, Paessler S, Glišić S. Identification of SARS-CoV-2 Papain-like Protease (PLpro) Inhibitors Using Combined Computational Approach. in ChemistryOpen. 2022;11(2):e202100248.
doi:10.1002/open.202100248 .
Senćanski, Milan, Perović, Vladimir, Milićević, Jelena, Todorović, Tamara, Prodanović, Radivoje, Veljković, Veljko, Paessler, Slobodan, Glišić, Sanja, "Identification of SARS-CoV-2 Papain-like Protease (PLpro) Inhibitors Using Combined Computational Approach" in ChemistryOpen, 11, no. 2 (2022):e202100248,
https://doi.org/10.1002/open.202100248 . .
1
9
8
6

The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance

Stanišić, Marija D.; Popović Kokar, Nikolina; Ristić, Predrag; Balaž, Ana Marija; Ognjanović, Miloš; Đokić, Veljko R.; Prodanović, Radivoje; Todorović, Tamara

(MDPI, 2022)

TY  - JOUR
AU  - Stanišić, Marija D.
AU  - Popović Kokar, Nikolina
AU  - Ristić, Predrag
AU  - Balaž, Ana Marija
AU  - Ognjanović, Miloš
AU  - Đokić, Veljko R.
AU  - Prodanović, Radivoje
AU  - Todorović, Tamara
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5678
AB  - Many articles in the literature deal with horseradish peroxidase (HRP) biomineralization, but none pay attention to the isoenzyme composition of commercial HRP or the influence of the carbohydrate component of the protein molecule on the biomineralization process. To study the impact of these factors, we performed periodate oxidation of commercial HRP and a purified HRP-C isoform for biomineralization within ZIF-8. With purified HRP, enzyme@ZIF-8 biocomposites with higher activity were obtained, while periodate oxidation of the carbohydrate component of both commercial HRP and purified HRP-C yields biocomposites with very high activity in acetate buffer that does not degrade the ZIF-8 structure. Using acetate instead of phosphate buffer can prevent the false high activity of HRP@ZIF-8 biocomposites caused by the degradation of ZIF-8 coating. At the same time, purification and especially oxidation of the carbohydrate component of enzymes prior to biomineralization lead to significantly improved activity of the biocomposites.
PB  - MDPI
T2  - Polymers
T1  - The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance
VL  - 14
IS  - 22
SP  - 4834
DO  - 10.3390/polym14224834
ER  - 
@article{
author = "Stanišić, Marija D. and Popović Kokar, Nikolina and Ristić, Predrag and Balaž, Ana Marija and Ognjanović, Miloš and Đokić, Veljko R. and Prodanović, Radivoje and Todorović, Tamara",
year = "2022",
abstract = "Many articles in the literature deal with horseradish peroxidase (HRP) biomineralization, but none pay attention to the isoenzyme composition of commercial HRP or the influence of the carbohydrate component of the protein molecule on the biomineralization process. To study the impact of these factors, we performed periodate oxidation of commercial HRP and a purified HRP-C isoform for biomineralization within ZIF-8. With purified HRP, enzyme@ZIF-8 biocomposites with higher activity were obtained, while periodate oxidation of the carbohydrate component of both commercial HRP and purified HRP-C yields biocomposites with very high activity in acetate buffer that does not degrade the ZIF-8 structure. Using acetate instead of phosphate buffer can prevent the false high activity of HRP@ZIF-8 biocomposites caused by the degradation of ZIF-8 coating. At the same time, purification and especially oxidation of the carbohydrate component of enzymes prior to biomineralization lead to significantly improved activity of the biocomposites.",
publisher = "MDPI",
journal = "Polymers",
title = "The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance",
volume = "14",
number = "22",
pages = "4834",
doi = "10.3390/polym14224834"
}
Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2022). The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance. in Polymers
MDPI., 14(22), 4834.
https://doi.org/10.3390/polym14224834
Stanišić MD, Popović Kokar N, Ristić P, Balaž AM, Ognjanović M, Đokić VR, Prodanović R, Todorović T. The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance. in Polymers. 2022;14(22):4834.
doi:10.3390/polym14224834 .
Stanišić, Marija D., Popović Kokar, Nikolina, Ristić, Predrag, Balaž, Ana Marija, Ognjanović, Miloš, Đokić, Veljko R., Prodanović, Radivoje, Todorović, Tamara, "The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance" in Polymers, 14, no. 22 (2022):4834,
https://doi.org/10.3390/polym14224834 . .
4
2
1

Primary research data for the article: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T. R.. (2022). The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance. in Polymers MDPI., 14(22), 4834. https://doi.org/10.3390/polym14224834

Stanišić, Marija D.; Popović Kokar, Nikolina; Ristić, Predrag; Balaž, Ana Marija; Ognjanović, Miloš; Đokić, Veljko R.; Prodanović, Radivoje; Todorović, Tamara

(2022)

TY  - DATA
AU  - Stanišić, Marija D.
AU  - Popović Kokar, Nikolina
AU  - Ristić, Predrag
AU  - Balaž, Ana Marija
AU  - Ognjanović, Miloš
AU  - Đokić, Veljko R.
AU  - Prodanović, Radivoje
AU  - Todorović, Tamara
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5740
T1  - Primary research data for the article: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T. R.. (2022). The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance. in Polymers
MDPI., 14(22), 4834.
https://doi.org/10.3390/polym14224834
VL  - 14
IS  - 22
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5740
ER  - 
@misc{
author = "Stanišić, Marija D. and Popović Kokar, Nikolina and Ristić, Predrag and Balaž, Ana Marija and Ognjanović, Miloš and Đokić, Veljko R. and Prodanović, Radivoje and Todorović, Tamara",
year = "2022",
title = "Primary research data for the article: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T. R.. (2022). The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance. in Polymers
MDPI., 14(22), 4834.
https://doi.org/10.3390/polym14224834",
volume = "14",
number = "22",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5740"
}
Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2022). Primary research data for the article: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T. R.. (2022). The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance. in Polymers
MDPI., 14(22), 4834.
https://doi.org/10.3390/polym14224834. , 14(22).
https://hdl.handle.net/21.15107/rcub_cherry_5740
Stanišić MD, Popović Kokar N, Ristić P, Balaž AM, Ognjanović M, Đokić VR, Prodanović R, Todorović T. Primary research data for the article: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T. R.. (2022). The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance. in Polymers
MDPI., 14(22), 4834.
https://doi.org/10.3390/polym14224834. 2022;14(22).
https://hdl.handle.net/21.15107/rcub_cherry_5740 .
Stanišić, Marija D., Popović Kokar, Nikolina, Ristić, Predrag, Balaž, Ana Marija, Ognjanović, Miloš, Đokić, Veljko R., Prodanović, Radivoje, Todorović, Tamara, "Primary research data for the article: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T. R.. (2022). The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance. in Polymers
MDPI., 14(22), 4834.
https://doi.org/10.3390/polym14224834", 14, no. 22 (2022),
https://hdl.handle.net/21.15107/rcub_cherry_5740 .

Periodate oxidized horseradish peroxidase@ZIF-8 nanocomposite

Stanišić, Marija D.; Ristić, Predrag; Đokić, Veljko; Balaž, Ana Marija; Prodanović, Radivoje; Todorović, Tamara

(2022)

TY  - CONF
AU  - Stanišić, Marija D.
AU  - Ristić, Predrag
AU  - Đokić, Veljko
AU  - Balaž, Ana Marija
AU  - Prodanović, Radivoje
AU  - Todorović, Tamara
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5752
AB  - Metal-organic frameworks (MOFs) are a class of materials well-known for their high degree of crystallinity and
ultrahigh porosity. Modular synthesis from organic linkers and metal nodes allows for precise control of structure,
pore size and chemical functionality of MOFs. Recently, MOFs have been explored for their potential to form novel
biocomposites with proteins by a process termed biomimetic mineralization. These novel MOF biocomposites show
great promise for application to industrial biocatalysis where strategies for enhancing enzyme stability are of
significant interest. The protective capacity and applications of biomimetically mineralized biomacromolecule zeolitic
imidazolate framework (ZIF-8) composites are likely dependent on the charge of the biomolecule and the topology
of the mineralized ZIF-8 coating. Herein, we identify conditions to reliably yield the porous periodate oxidized
horseradish peroxidase@ZIF-8 sodalite topology biocomposite in preference to other more dense phases.
C3  - 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece
T1  - Periodate oxidized horseradish peroxidase@ZIF-8 nanocomposite
SP  - 138
EP  - 138
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5752
ER  - 
@conference{
author = "Stanišić, Marija D. and Ristić, Predrag and Đokić, Veljko and Balaž, Ana Marija and Prodanović, Radivoje and Todorović, Tamara",
year = "2022",
abstract = "Metal-organic frameworks (MOFs) are a class of materials well-known for their high degree of crystallinity and
ultrahigh porosity. Modular synthesis from organic linkers and metal nodes allows for precise control of structure,
pore size and chemical functionality of MOFs. Recently, MOFs have been explored for their potential to form novel
biocomposites with proteins by a process termed biomimetic mineralization. These novel MOF biocomposites show
great promise for application to industrial biocatalysis where strategies for enhancing enzyme stability are of
significant interest. The protective capacity and applications of biomimetically mineralized biomacromolecule zeolitic
imidazolate framework (ZIF-8) composites are likely dependent on the charge of the biomolecule and the topology
of the mineralized ZIF-8 coating. Herein, we identify conditions to reliably yield the porous periodate oxidized
horseradish peroxidase@ZIF-8 sodalite topology biocomposite in preference to other more dense phases.",
journal = "19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece",
title = "Periodate oxidized horseradish peroxidase@ZIF-8 nanocomposite",
pages = "138-138",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5752"
}
Stanišić, M. D., Ristić, P., Đokić, V., Balaž, A. M., Prodanović, R.,& Todorović, T.. (2022). Periodate oxidized horseradish peroxidase@ZIF-8 nanocomposite. in 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece, 138-138.
https://hdl.handle.net/21.15107/rcub_cherry_5752
Stanišić MD, Ristić P, Đokić V, Balaž AM, Prodanović R, Todorović T. Periodate oxidized horseradish peroxidase@ZIF-8 nanocomposite. in 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece. 2022;:138-138.
https://hdl.handle.net/21.15107/rcub_cherry_5752 .
Stanišić, Marija D., Ristić, Predrag, Đokić, Veljko, Balaž, Ana Marija, Prodanović, Radivoje, Todorović, Tamara, "Periodate oxidized horseradish peroxidase@ZIF-8 nanocomposite" in 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece (2022):138-138,
https://hdl.handle.net/21.15107/rcub_cherry_5752 .

Materijal za studente sa seminara projekta SYMBIOSIS

Todorović, Tamara; Prodanović, Radivoje; Senćanski, Milan; Balaž, Ana Marija; Ristić, Predrag; Stanišić, Marija D.

(2022)

TY  - GEN
AU  - Todorović, Tamara
AU  - Prodanović, Radivoje
AU  - Senćanski, Milan
AU  - Balaž, Ana Marija
AU  - Ristić, Predrag
AU  - Stanišić, Marija D.
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5755
T2  - Seminar za studente, Beograd, 28. maj 2022.
T1  - Materijal za studente sa seminara projekta SYMBIOSIS
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5755
ER  - 
@misc{
author = "Todorović, Tamara and Prodanović, Radivoje and Senćanski, Milan and Balaž, Ana Marija and Ristić, Predrag and Stanišić, Marija D.",
year = "2022",
journal = "Seminar za studente, Beograd, 28. maj 2022.",
title = "Materijal za studente sa seminara projekta SYMBIOSIS",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5755"
}
Todorović, T., Prodanović, R., Senćanski, M., Balaž, A. M., Ristić, P.,& Stanišić, M. D.. (2022). Materijal za studente sa seminara projekta SYMBIOSIS. in Seminar za studente, Beograd, 28. maj 2022..
https://hdl.handle.net/21.15107/rcub_cherry_5755
Todorović T, Prodanović R, Senćanski M, Balaž AM, Ristić P, Stanišić MD. Materijal za studente sa seminara projekta SYMBIOSIS. in Seminar za studente, Beograd, 28. maj 2022.. 2022;.
https://hdl.handle.net/21.15107/rcub_cherry_5755 .
Todorović, Tamara, Prodanović, Radivoje, Senćanski, Milan, Balaž, Ana Marija, Ristić, Predrag, Stanišić, Marija D., "Materijal za studente sa seminara projekta SYMBIOSIS" in Seminar za studente, Beograd, 28. maj 2022. (2022),
https://hdl.handle.net/21.15107/rcub_cherry_5755 .

Zn(II) complexes with thiazolyl–hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity

Araškov, Jovana; Višnjevac, Aleksandar; Popović, Jasminka; Blagojević, Vladimir A.; Fernandes, Henrique S.; Sousa, Sérgio F.; Novaković, Irena T.; Padrón, José M.; Holló, Berta Barta; Monge, Miguel; Rodríguez-Castillo, María; López-de-Luzuriaga, José M.; Filipović, Nenad R.; Todorović, Tamara

(2022)

TY  - JOUR
AU  - Araškov, Jovana
AU  - Višnjevac, Aleksandar
AU  - Popović, Jasminka
AU  - Blagojević, Vladimir A.
AU  - Fernandes, Henrique S.
AU  - Sousa, Sérgio F.
AU  - Novaković, Irena T.
AU  - Padrón, José M.
AU  - Holló, Berta Barta
AU  - Monge, Miguel
AU  - Rodríguez-Castillo, María
AU  - López-de-Luzuriaga, José M.
AU  - Filipović, Nenad R.
AU  - Todorović, Tamara
PY  - 2022
UR  - https://pubs.rsc.org/en/content/articlelanding/2022/ce/d2ce00443g
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5380
AB  - Earth-abundant, cheap and non-toxic zinc-based coordination compounds are drawing research attention as promising candidates for various applications, such as photoluminescent materials and anticancer agents. In this paper we report six zinc complexes (1–3-NO3 and 1–3-Cl) with pyridyl-based thiazolyl–hydrazone ligands, which differ in the nature of substituents at the ligands' periphery, anion type, and geometry around the metal ion. The complexes were characterized by single-crystal and powder X-ray diffraction analysis, as well as IR and NMR spectroscopy. The symmetrical complexes 2-Cl and 3-Cl, where zinc atoms are located at a two-fold axis, do not exhibit photophysical properties, unlike their asymmetrical analogs 2-NO3 and 3-NO3 with the same complex cation. Asymmetrical pentacoordinated 1-Cl and hexacoordinated 1-NO3 complexes exhibit photophysical properties. An admixture of allowed intra-ligand (1IL) and chloro (X)-to-ligand charge-transfer (1XLCT) electronic transitions is responsible for the fluorescence of the 1-Cl complex. The origin of the emission of the 1-NO3 complex is ascribed to an admixture of 3IL and ligand-to-ligand charge-transfer (3LLCT) forbidden electronic transitions, while for 3-NO3 most electronic excitations are of LLCT character. The thermal stability of the complexes is in accord with the strength of respective intermolecular interactions. The antiproliferative activity of the complexes was in the nanomolar range on some of the investigated cancer cell lines. Contrary to the increase of antiproliferative activity of the complexes in comparison to the free ligands in cancer cell lines, an acute toxicity determined in the brine shrimp assay follows the opposite trend. The overall results suggest that Zn(II) thiazoyl–hydrazone complexes have considerable potential as multifunctional materials.
T2  - CrystEngComm
T1  - Zn(II) complexes with thiazolyl–hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity
IS  - 29
DO  - 10.1039/D2CE00443G
ER  - 
@article{
author = "Araškov, Jovana and Višnjevac, Aleksandar and Popović, Jasminka and Blagojević, Vladimir A. and Fernandes, Henrique S. and Sousa, Sérgio F. and Novaković, Irena T. and Padrón, José M. and Holló, Berta Barta and Monge, Miguel and Rodríguez-Castillo, María and López-de-Luzuriaga, José M. and Filipović, Nenad R. and Todorović, Tamara",
year = "2022",
abstract = "Earth-abundant, cheap and non-toxic zinc-based coordination compounds are drawing research attention as promising candidates for various applications, such as photoluminescent materials and anticancer agents. In this paper we report six zinc complexes (1–3-NO3 and 1–3-Cl) with pyridyl-based thiazolyl–hydrazone ligands, which differ in the nature of substituents at the ligands' periphery, anion type, and geometry around the metal ion. The complexes were characterized by single-crystal and powder X-ray diffraction analysis, as well as IR and NMR spectroscopy. The symmetrical complexes 2-Cl and 3-Cl, where zinc atoms are located at a two-fold axis, do not exhibit photophysical properties, unlike their asymmetrical analogs 2-NO3 and 3-NO3 with the same complex cation. Asymmetrical pentacoordinated 1-Cl and hexacoordinated 1-NO3 complexes exhibit photophysical properties. An admixture of allowed intra-ligand (1IL) and chloro (X)-to-ligand charge-transfer (1XLCT) electronic transitions is responsible for the fluorescence of the 1-Cl complex. The origin of the emission of the 1-NO3 complex is ascribed to an admixture of 3IL and ligand-to-ligand charge-transfer (3LLCT) forbidden electronic transitions, while for 3-NO3 most electronic excitations are of LLCT character. The thermal stability of the complexes is in accord with the strength of respective intermolecular interactions. The antiproliferative activity of the complexes was in the nanomolar range on some of the investigated cancer cell lines. Contrary to the increase of antiproliferative activity of the complexes in comparison to the free ligands in cancer cell lines, an acute toxicity determined in the brine shrimp assay follows the opposite trend. The overall results suggest that Zn(II) thiazoyl–hydrazone complexes have considerable potential as multifunctional materials.",
journal = "CrystEngComm",
title = "Zn(II) complexes with thiazolyl–hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity",
number = "29",
doi = "10.1039/D2CE00443G"
}
Araškov, J., Višnjevac, A., Popović, J., Blagojević, V. A., Fernandes, H. S., Sousa, S. F., Novaković, I. T., Padrón, J. M., Holló, B. B., Monge, M., Rodríguez-Castillo, M., López-de-Luzuriaga, J. M., Filipović, N. R.,& Todorović, T.. (2022). Zn(II) complexes with thiazolyl–hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity. in CrystEngComm(29).
https://doi.org/10.1039/D2CE00443G
Araškov J, Višnjevac A, Popović J, Blagojević VA, Fernandes HS, Sousa SF, Novaković IT, Padrón JM, Holló BB, Monge M, Rodríguez-Castillo M, López-de-Luzuriaga JM, Filipović NR, Todorović T. Zn(II) complexes with thiazolyl–hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity. in CrystEngComm. 2022;(29).
doi:10.1039/D2CE00443G .
Araškov, Jovana, Višnjevac, Aleksandar, Popović, Jasminka, Blagojević, Vladimir A., Fernandes, Henrique S., Sousa, Sérgio F., Novaković, Irena T., Padrón, José M., Holló, Berta Barta, Monge, Miguel, Rodríguez-Castillo, María, López-de-Luzuriaga, José M., Filipović, Nenad R., Todorović, Tamara, "Zn(II) complexes with thiazolyl–hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity" in CrystEngComm, no. 29 (2022),
https://doi.org/10.1039/D2CE00443G . .
6
7
7
5

Zn(II) complexes with thyazolyl-hydrazones: structure, photophysical properties, and antiproliferative activity

Araškov, Jovana; Višnjevac, Aleksandar; Blagojević, Vladimir; Filipović, Nenad; Todorović, Tamara

(Belgrade : Serbian Chemical Society, 2022)

TY  - CONF
AU  - Araškov, Jovana
AU  - Višnjevac, Aleksandar
AU  - Blagojević, Vladimir
AU  - Filipović, Nenad
AU  - Todorović, Tamara
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6003
AB  - Netoksični kompleksi na bazi Zn(II) privlače pažnju kao obećavajući kandidati za različite primene. U ovom radu je sintetisano i strukturno okarakterisano šest kompleksa Zn(II) (1‒3-NO3 i 1‒3-Cl) sa tiazolil-hidrazonskim ligandima na bazi piridina, koji se razlikuju po prirodi supstituenata na periferiji liganda, tipu anjona i geometriji oko jona metala. Simetrični kompleksi 2-Cl i 3-Cl, gde se atomi cinka nalaze na osi rotacije 2, ne pokazuju fotofizička svojstva, za razliku od drugih sintetisanih asimetričnih kompleksa. Poreklo fotoluminiscentnih svojstava je razjašnjeno korišćenjem DFT i TD-DFT proračuna. Antiproliferativna aktivnost kompleksa je bila u nanomolarnom opsegu na nekim od ispitivanih ćelijskih linija raka. Ukupni rezultati ukazuju na to da kompleksi Zn(II) sa tiazoil-hidrazonima imaju značajan potencijal kao multifunkcionalni materijali.
AB  - Non-toxic Zn-based complexes are drawing attention as promising candidates for various applications. In this study we report six Zn(II) complexes (1‒3-NO3 and 1‒3-Cl) with pyridyl-based thiazolyl-hydrazone ligands, which differ in the nature of substituents at the ligands’ periphery, anion type, and geometry around the metal ion. The symmetrical complexes 2-Cl and 3-Cl, where zinc atoms are located at a two-fold axis, do not exhibit photophysical properties, unlike other synthetized asymmetrical complexes. The origin of photoluminescent properties have been elucidated using DFT and TD-DFT calculations. Antiproliferative activity of the complexes was in the nanomolar range on some of the investigated cancer cell lines. The overall results suggest that Zn(II) thiazoyl-hydrazone complexes have considerable potential as multifunctional materials.
PB  - Belgrade : Serbian Chemical Society
C3  - 58th Meeting of the Serbian Chemical Society, Belgrade, Serbia, 9th-10th June, 2022. In: Book of Abstracts and Proceedings
T1  - Zn(II) complexes with thyazolyl-hydrazones: structure, photophysical properties, and antiproliferative activity
UR  - https://hdl.handle.net/21.15107/rcub_cherry_6003
ER  - 
@conference{
author = "Araškov, Jovana and Višnjevac, Aleksandar and Blagojević, Vladimir and Filipović, Nenad and Todorović, Tamara",
year = "2022",
abstract = "Netoksični kompleksi na bazi Zn(II) privlače pažnju kao obećavajući kandidati za različite primene. U ovom radu je sintetisano i strukturno okarakterisano šest kompleksa Zn(II) (1‒3-NO3 i 1‒3-Cl) sa tiazolil-hidrazonskim ligandima na bazi piridina, koji se razlikuju po prirodi supstituenata na periferiji liganda, tipu anjona i geometriji oko jona metala. Simetrični kompleksi 2-Cl i 3-Cl, gde se atomi cinka nalaze na osi rotacije 2, ne pokazuju fotofizička svojstva, za razliku od drugih sintetisanih asimetričnih kompleksa. Poreklo fotoluminiscentnih svojstava je razjašnjeno korišćenjem DFT i TD-DFT proračuna. Antiproliferativna aktivnost kompleksa je bila u nanomolarnom opsegu na nekim od ispitivanih ćelijskih linija raka. Ukupni rezultati ukazuju na to da kompleksi Zn(II) sa tiazoil-hidrazonima imaju značajan potencijal kao multifunkcionalni materijali., Non-toxic Zn-based complexes are drawing attention as promising candidates for various applications. In this study we report six Zn(II) complexes (1‒3-NO3 and 1‒3-Cl) with pyridyl-based thiazolyl-hydrazone ligands, which differ in the nature of substituents at the ligands’ periphery, anion type, and geometry around the metal ion. The symmetrical complexes 2-Cl and 3-Cl, where zinc atoms are located at a two-fold axis, do not exhibit photophysical properties, unlike other synthetized asymmetrical complexes. The origin of photoluminescent properties have been elucidated using DFT and TD-DFT calculations. Antiproliferative activity of the complexes was in the nanomolar range on some of the investigated cancer cell lines. The overall results suggest that Zn(II) thiazoyl-hydrazone complexes have considerable potential as multifunctional materials.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "58th Meeting of the Serbian Chemical Society, Belgrade, Serbia, 9th-10th June, 2022. In: Book of Abstracts and Proceedings",
title = "Zn(II) complexes with thyazolyl-hydrazones: structure, photophysical properties, and antiproliferative activity",
url = "https://hdl.handle.net/21.15107/rcub_cherry_6003"
}
Araškov, J., Višnjevac, A., Blagojević, V., Filipović, N.,& Todorović, T.. (2022). Zn(II) complexes with thyazolyl-hydrazones: structure, photophysical properties, and antiproliferative activity. in 58th Meeting of the Serbian Chemical Society, Belgrade, Serbia, 9th-10th June, 2022. In: Book of Abstracts and Proceedings
Belgrade : Serbian Chemical Society..
https://hdl.handle.net/21.15107/rcub_cherry_6003
Araškov J, Višnjevac A, Blagojević V, Filipović N, Todorović T. Zn(II) complexes with thyazolyl-hydrazones: structure, photophysical properties, and antiproliferative activity. in 58th Meeting of the Serbian Chemical Society, Belgrade, Serbia, 9th-10th June, 2022. In: Book of Abstracts and Proceedings. 2022;.
https://hdl.handle.net/21.15107/rcub_cherry_6003 .
Araškov, Jovana, Višnjevac, Aleksandar, Blagojević, Vladimir, Filipović, Nenad, Todorović, Tamara, "Zn(II) complexes with thyazolyl-hydrazones: structure, photophysical properties, and antiproliferative activity" in 58th Meeting of the Serbian Chemical Society, Belgrade, Serbia, 9th-10th June, 2022. In: Book of Abstracts and Proceedings (2022),
https://hdl.handle.net/21.15107/rcub_cherry_6003 .

Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters

Marković, Sanja B.; Maciejewska, Natalia; Olszewski, Mateusz; Višnjevac, Aleksandar; Puerta, Adrián; Padrón, José M.; Novaković, Irena T.; Kojić, Snežana; Fernandes, Henrique S.; Sousa, Sérgio F.; Ramotowska, Sandra; Chylewska, Agnieszka; Makowski, Mariusz; Todorović, Tamara; Filipović, Nenad R.

(Elsevier, 2022)

TY  - JOUR
AU  - Marković, Sanja B.
AU  - Maciejewska, Natalia
AU  - Olszewski, Mateusz
AU  - Višnjevac, Aleksandar
AU  - Puerta, Adrián
AU  - Padrón, José M.
AU  - Novaković, Irena T.
AU  - Kojić, Snežana
AU  - Fernandes, Henrique S.
AU  - Sousa, Sérgio F.
AU  - Ramotowska, Sandra
AU  - Chylewska, Agnieszka
AU  - Makowski, Mariusz
AU  - Todorović, Tamara
AU  - Filipović, Nenad R.
PY  - 2022
UR  - https://www.sciencedirect.com/science/article/pii/S0223523422003518
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5209
AB  - The biological activity of Cd compounds has been investigated scarce since Cd has been recognized as a human carcinogen. However, the toxicity of cadmium is comparable to the toxicity of noble metals such as Pt and Pd. The paradigm of metal toxicity has been challenged suggesting that metal toxicity is not a constant property, yet it depends on many factors like the presence of appropriate ligands. Studies on anticancer activity of cadmium complexes showed that the complexation of various ligands resulted in complexes that showed better activities than approved drugs. In the present study, cadmium complexes with biologically potent thiazolyl/selenazoyl-hydrazone ligands have been prepared, and tested for their activity against different types of tumor cell models. The complexation of ligands with Cd(II) resulted in a synergistic effect. The antiproliferative activity study revealed that all complexes are more active compared to 5-fluorouracil and cisplatin. The mechanism of tumor cell growth inhibition reveal that selenium-based compounds induce cell death in T-47D (gland carcinoma) cells through apoptosis via caspase-3/7 activation. Additionally, their pro-apoptotic effect was stronger compared to etoposide and cisplatin. Nuclease activity, detected by gel electrophoresis, may be the possible mechanism of anticancer action of investigated complexes.
PB  - Elsevier
T2  - European Journal of Medicinal Chemistry
T1  - Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters
VL  - 238
SP  - 114449
DO  - 10.1016/j.ejmech.2022.114449
ER  - 
@article{
author = "Marković, Sanja B. and Maciejewska, Natalia and Olszewski, Mateusz and Višnjevac, Aleksandar and Puerta, Adrián and Padrón, José M. and Novaković, Irena T. and Kojić, Snežana and Fernandes, Henrique S. and Sousa, Sérgio F. and Ramotowska, Sandra and Chylewska, Agnieszka and Makowski, Mariusz and Todorović, Tamara and Filipović, Nenad R.",
year = "2022",
abstract = "The biological activity of Cd compounds has been investigated scarce since Cd has been recognized as a human carcinogen. However, the toxicity of cadmium is comparable to the toxicity of noble metals such as Pt and Pd. The paradigm of metal toxicity has been challenged suggesting that metal toxicity is not a constant property, yet it depends on many factors like the presence of appropriate ligands. Studies on anticancer activity of cadmium complexes showed that the complexation of various ligands resulted in complexes that showed better activities than approved drugs. In the present study, cadmium complexes with biologically potent thiazolyl/selenazoyl-hydrazone ligands have been prepared, and tested for their activity against different types of tumor cell models. The complexation of ligands with Cd(II) resulted in a synergistic effect. The antiproliferative activity study revealed that all complexes are more active compared to 5-fluorouracil and cisplatin. The mechanism of tumor cell growth inhibition reveal that selenium-based compounds induce cell death in T-47D (gland carcinoma) cells through apoptosis via caspase-3/7 activation. Additionally, their pro-apoptotic effect was stronger compared to etoposide and cisplatin. Nuclease activity, detected by gel electrophoresis, may be the possible mechanism of anticancer action of investigated complexes.",
publisher = "Elsevier",
journal = "European Journal of Medicinal Chemistry",
title = "Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters",
volume = "238",
pages = "114449",
doi = "10.1016/j.ejmech.2022.114449"
}
Marković, S. B., Maciejewska, N., Olszewski, M., Višnjevac, A., Puerta, A., Padrón, J. M., Novaković, I. T., Kojić, S., Fernandes, H. S., Sousa, S. F., Ramotowska, S., Chylewska, A., Makowski, M., Todorović, T.,& Filipović, N. R.. (2022). Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters. in European Journal of Medicinal Chemistry
Elsevier., 238, 114449.
https://doi.org/10.1016/j.ejmech.2022.114449
Marković SB, Maciejewska N, Olszewski M, Višnjevac A, Puerta A, Padrón JM, Novaković IT, Kojić S, Fernandes HS, Sousa SF, Ramotowska S, Chylewska A, Makowski M, Todorović T, Filipović NR. Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters. in European Journal of Medicinal Chemistry. 2022;238:114449.
doi:10.1016/j.ejmech.2022.114449 .
Marković, Sanja B., Maciejewska, Natalia, Olszewski, Mateusz, Višnjevac, Aleksandar, Puerta, Adrián, Padrón, José M., Novaković, Irena T., Kojić, Snežana, Fernandes, Henrique S., Sousa, Sérgio F., Ramotowska, Sandra, Chylewska, Agnieszka, Makowski, Mariusz, Todorović, Tamara, Filipović, Nenad R., "Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters" in European Journal of Medicinal Chemistry, 238 (2022):114449,
https://doi.org/10.1016/j.ejmech.2022.114449 . .
11
10
1
8
6

Promo-materijal projekta SYMBIOSIS

Todorović, Tamara

(2022)

TY  - GEN
AU  - Todorović, Tamara
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5756
T2  - Projekat SYMBIOSIS
T1  - Promo-materijal projekta SYMBIOSIS
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5756
ER  - 
@misc{
author = "Todorović, Tamara",
year = "2022",
journal = "Projekat SYMBIOSIS",
title = "Promo-materijal projekta SYMBIOSIS",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5756"
}
Todorović, T.. (2022). Promo-materijal projekta SYMBIOSIS. in Projekat SYMBIOSIS.
https://hdl.handle.net/21.15107/rcub_cherry_5756
Todorović T. Promo-materijal projekta SYMBIOSIS. in Projekat SYMBIOSIS. 2022;.
https://hdl.handle.net/21.15107/rcub_cherry_5756 .
Todorović, Tamara, "Promo-materijal projekta SYMBIOSIS" in Projekat SYMBIOSIS (2022),
https://hdl.handle.net/21.15107/rcub_cherry_5756 .

Structural study of Pt(II) and Pd(II) complexes with quinoline-2-carboxaldehyde thiosemicarbazone

Ristić, Predrag; Rodić, Marko; Filipović, Nenad R.; Mitić, Dragana; Anđelković, Katarina K.; Todorović, Tamara

(Serbian Chemical Society, 2021)

TY  - JOUR
AU  - Ristić, Predrag
AU  - Rodić, Marko
AU  - Filipović, Nenad R.
AU  - Mitić, Dragana
AU  - Anđelković, Katarina K.
AU  - Todorović, Tamara
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4789
AB  - Two square-planar complexes, [PtLCl] (1) and [PdLCl] (2), were synthesized with quinoline-2-carboxaldehyde thiosemicarbazone ligand (HL), and characterized by IR and NMR spectroscopy and single crystal X-ray diffraction analysis. In both complexes, L- is coordinated tridentately via the same donor atom set, while the fourth coordination site is occupied by a chloride ion. However, the complexes are not isostructural due to different types of non-covalent intermolecular interactions. These interactions were analyzed using Hirshfeld surfaces and two-dimensional fingerprint plots.
PB  - Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - Structural study of Pt(II) and Pd(II) complexes with quinoline-2-carboxaldehyde thiosemicarbazone
VL  - 86
IS  - 4
SP  - 393
EP  - 406
DO  - 10.2298/JSC201126079R
ER  - 
@article{
author = "Ristić, Predrag and Rodić, Marko and Filipović, Nenad R. and Mitić, Dragana and Anđelković, Katarina K. and Todorović, Tamara",
year = "2021",
abstract = "Two square-planar complexes, [PtLCl] (1) and [PdLCl] (2), were synthesized with quinoline-2-carboxaldehyde thiosemicarbazone ligand (HL), and characterized by IR and NMR spectroscopy and single crystal X-ray diffraction analysis. In both complexes, L- is coordinated tridentately via the same donor atom set, while the fourth coordination site is occupied by a chloride ion. However, the complexes are not isostructural due to different types of non-covalent intermolecular interactions. These interactions were analyzed using Hirshfeld surfaces and two-dimensional fingerprint plots.",
publisher = "Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "Structural study of Pt(II) and Pd(II) complexes with quinoline-2-carboxaldehyde thiosemicarbazone",
volume = "86",
number = "4",
pages = "393-406",
doi = "10.2298/JSC201126079R"
}
Ristić, P., Rodić, M., Filipović, N. R., Mitić, D., Anđelković, K. K.,& Todorović, T.. (2021). Structural study of Pt(II) and Pd(II) complexes with quinoline-2-carboxaldehyde thiosemicarbazone. in Journal of the Serbian Chemical Society
Serbian Chemical Society., 86(4), 393-406.
https://doi.org/10.2298/JSC201126079R
Ristić P, Rodić M, Filipović NR, Mitić D, Anđelković KK, Todorović T. Structural study of Pt(II) and Pd(II) complexes with quinoline-2-carboxaldehyde thiosemicarbazone. in Journal of the Serbian Chemical Society. 2021;86(4):393-406.
doi:10.2298/JSC201126079R .
Ristić, Predrag, Rodić, Marko, Filipović, Nenad R., Mitić, Dragana, Anđelković, Katarina K., Todorović, Tamara, "Structural study of Pt(II) and Pd(II) complexes with quinoline-2-carboxaldehyde thiosemicarbazone" in Journal of the Serbian Chemical Society, 86, no. 4 (2021):393-406,
https://doi.org/10.2298/JSC201126079R . .
1
1

Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase

Stanišić, Marija D.; Popović Kokar, Nikolina; Ristić, Predrag; Balaž, Ana Marija; Senćanski, Milan; Ognjanović, Miloš; Đokić, Veljko R.; Prodanović, Radivoje; Todorović, Tamara

(MDPI, 2021)

TY  - JOUR
AU  - Stanišić, Marija D.
AU  - Popović Kokar, Nikolina
AU  - Ristić, Predrag
AU  - Balaž, Ana Marija
AU  - Senćanski, Milan
AU  - Ognjanović, Miloš
AU  - Đokić, Veljko R.
AU  - Prodanović, Radivoje
AU  - Todorović, Tamara
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4782
AB  - Zeolitic imidazolate framework-8 (ZIF-8) is widely used as a protective coating to encapsulate proteins via biomimetic mineralization. The formation of nucleation centers and further biocomposite crystal growth is entirely governed by the pure electrostatic interactions between the protein’s surface and the positively charged Zn(II) metal ions. It was previously shown that enhancing these electrostatic interactions by a chemical modification of surface amino acid residues can lead to a rapid biocomposite crystal formation. However, a chemical modification of carbohydrate components by periodate oxidation for glycoproteins can serve as an alternative strategy. In the present study, an industrially important enzyme glucose oxidase (GOx) was selected as a model system. Periodate oxidation of GOx by 2.5 mM sodium periodate increased negative charge on the enzyme molecule, from −10.2 to −36.9 mV, as shown by zeta potential measurements and native PAGE electrophoresis. Biomineralization experiments with oxidized GOx resulted in higher specific activity, effectiveness factor, and higher thermostability of the ZIF-8 biocomposites. Periodate oxidation of carbohydrate components for glycoproteins can serve as a facile and general method for facilitating the biomimetic mineralization of other industrially relevant glycoproteins.
PB  - MDPI
T2  - Polymers
T1  - Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase
VL  - 13
IS  - 22
SP  - 3875
DO  - 10.3390/polym13223875
ER  - 
@article{
author = "Stanišić, Marija D. and Popović Kokar, Nikolina and Ristić, Predrag and Balaž, Ana Marija and Senćanski, Milan and Ognjanović, Miloš and Đokić, Veljko R. and Prodanović, Radivoje and Todorović, Tamara",
year = "2021",
abstract = "Zeolitic imidazolate framework-8 (ZIF-8) is widely used as a protective coating to encapsulate proteins via biomimetic mineralization. The formation of nucleation centers and further biocomposite crystal growth is entirely governed by the pure electrostatic interactions between the protein’s surface and the positively charged Zn(II) metal ions. It was previously shown that enhancing these electrostatic interactions by a chemical modification of surface amino acid residues can lead to a rapid biocomposite crystal formation. However, a chemical modification of carbohydrate components by periodate oxidation for glycoproteins can serve as an alternative strategy. In the present study, an industrially important enzyme glucose oxidase (GOx) was selected as a model system. Periodate oxidation of GOx by 2.5 mM sodium periodate increased negative charge on the enzyme molecule, from −10.2 to −36.9 mV, as shown by zeta potential measurements and native PAGE electrophoresis. Biomineralization experiments with oxidized GOx resulted in higher specific activity, effectiveness factor, and higher thermostability of the ZIF-8 biocomposites. Periodate oxidation of carbohydrate components for glycoproteins can serve as a facile and general method for facilitating the biomimetic mineralization of other industrially relevant glycoproteins.",
publisher = "MDPI",
journal = "Polymers",
title = "Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase",
volume = "13",
number = "22",
pages = "3875",
doi = "10.3390/polym13223875"
}
Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Senćanski, M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2021). Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. in Polymers
MDPI., 13(22), 3875.
https://doi.org/10.3390/polym13223875
Stanišić MD, Popović Kokar N, Ristić P, Balaž AM, Senćanski M, Ognjanović M, Đokić VR, Prodanović R, Todorović T. Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. in Polymers. 2021;13(22):3875.
doi:10.3390/polym13223875 .
Stanišić, Marija D., Popović Kokar, Nikolina, Ristić, Predrag, Balaž, Ana Marija, Senćanski, Milan, Ognjanović, Miloš, Đokić, Veljko R., Prodanović, Radivoje, Todorović, Tamara, "Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase" in Polymers, 13, no. 22 (2021):3875,
https://doi.org/10.3390/polym13223875 . .
1
3
1
1

Primary research data for: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Senćanski, M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2021). Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. in Polymers MDPI., 13(22), 3875. https://doi.org/10.3390/polym13223875

Stanišić, Marija D.; Popović Kokar, Nikolina; Ristić, Predrag; Balaž, Ana Marija; Senćanski, Milan; Ognjanović, Miloš; Đokić, Veljko R.; Prodanović, Radivoje; Todorović, Tamara

(2021)

TY  - DATA
AU  - Stanišić, Marija D.
AU  - Popović Kokar, Nikolina
AU  - Ristić, Predrag
AU  - Balaž, Ana Marija
AU  - Senćanski, Milan
AU  - Ognjanović, Miloš
AU  - Đokić, Veljko R.
AU  - Prodanović, Radivoje
AU  - Todorović, Tamara
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5741
T1  - Primary research data for: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Senćanski, M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2021). Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. in Polymers
MDPI., 13(22), 3875.
https://doi.org/10.3390/polym13223875
VL  - 13
IS  - 22
SP  - 3875
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5741
ER  - 
@misc{
author = "Stanišić, Marija D. and Popović Kokar, Nikolina and Ristić, Predrag and Balaž, Ana Marija and Senćanski, Milan and Ognjanović, Miloš and Đokić, Veljko R. and Prodanović, Radivoje and Todorović, Tamara",
year = "2021",
title = "Primary research data for: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Senćanski, M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2021). Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. in Polymers
MDPI., 13(22), 3875.
https://doi.org/10.3390/polym13223875",
volume = "13",
number = "22",
pages = "3875",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5741"
}
Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Senćanski, M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2021). Primary research data for: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Senćanski, M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2021). Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. in Polymers
MDPI., 13(22), 3875.
https://doi.org/10.3390/polym13223875. , 13(22), 3875.
https://hdl.handle.net/21.15107/rcub_cherry_5741
Stanišić MD, Popović Kokar N, Ristić P, Balaž AM, Senćanski M, Ognjanović M, Đokić VR, Prodanović R, Todorović T. Primary research data for: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Senćanski, M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2021). Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. in Polymers
MDPI., 13(22), 3875.
https://doi.org/10.3390/polym13223875. 2021;13(22):3875.
https://hdl.handle.net/21.15107/rcub_cherry_5741 .
Stanišić, Marija D., Popović Kokar, Nikolina, Ristić, Predrag, Balaž, Ana Marija, Senćanski, Milan, Ognjanović, Miloš, Đokić, Veljko R., Prodanović, Radivoje, Todorović, Tamara, "Primary research data for: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Senćanski, M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2021). Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. in Polymers
MDPI., 13(22), 3875.
https://doi.org/10.3390/polym13223875", 13, no. 22 (2021):3875,
https://hdl.handle.net/21.15107/rcub_cherry_5741 .

Horseradish peroxidase C1A wild type gene and its variants expressed in Pichia pastoris KM71H strain

Balaž, Ana Marija; Crnoglavac Popović, Milica; Stanišić, Marija D.; Ristić, Predrag; Senćanski, Milan; Todorović, Tamara; Prodanović, Radivoje

(2021)

TY  - CONF
AU  - Balaž, Ana Marija
AU  - Crnoglavac Popović, Milica
AU  - Stanišić, Marija D.
AU  - Ristić, Predrag
AU  - Senćanski, Milan
AU  - Todorović, Tamara
AU  - Prodanović, Radivoje
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5747
AB  - Enzyme immobilization enables maintenance of enzyme activity and structural stability even in adverse conditions 1. Structural changes in enzymes that can occur due to the action of organic solvents, inhibitors or increased temperature can be prevented by immobilization of the enzymes in metal–organic frameworks (MOFs). It is reported that several enzymes, such as cytochrome c and horseradish peroxidase (HRP) have been successfully incorporated into MOFs 2. The aim of this work is to produce wild type horseradish peroxidase, isoform C1A, and several mutants specially designed to increase the activity and stability of HRP while immobilized within selected MOFs. Wild type and its variants were produced in metalotrophic yeast, Pichia pastoris KM71H strain, their activity and basic kinetic parameters were determined and compared prior imobilization.
C3  - Tenth Conference of Serbian Biochemical Society, 24 September 2021, Kragujevac
T1  - Horseradish peroxidase C1A wild type gene and its variants expressed in Pichia pastoris KM71H strain
SP  - 49
EP  - 49
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5747
ER  - 
@conference{
author = "Balaž, Ana Marija and Crnoglavac Popović, Milica and Stanišić, Marija D. and Ristić, Predrag and Senćanski, Milan and Todorović, Tamara and Prodanović, Radivoje",
year = "2021",
abstract = "Enzyme immobilization enables maintenance of enzyme activity and structural stability even in adverse conditions 1. Structural changes in enzymes that can occur due to the action of organic solvents, inhibitors or increased temperature can be prevented by immobilization of the enzymes in metal–organic frameworks (MOFs). It is reported that several enzymes, such as cytochrome c and horseradish peroxidase (HRP) have been successfully incorporated into MOFs 2. The aim of this work is to produce wild type horseradish peroxidase, isoform C1A, and several mutants specially designed to increase the activity and stability of HRP while immobilized within selected MOFs. Wild type and its variants were produced in metalotrophic yeast, Pichia pastoris KM71H strain, their activity and basic kinetic parameters were determined and compared prior imobilization.",
journal = "Tenth Conference of Serbian Biochemical Society, 24 September 2021, Kragujevac",
title = "Horseradish peroxidase C1A wild type gene and its variants expressed in Pichia pastoris KM71H strain",
pages = "49-49",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5747"
}
Balaž, A. M., Crnoglavac Popović, M., Stanišić, M. D., Ristić, P., Senćanski, M., Todorović, T.,& Prodanović, R.. (2021). Horseradish peroxidase C1A wild type gene and its variants expressed in Pichia pastoris KM71H strain. in Tenth Conference of Serbian Biochemical Society, 24 September 2021, Kragujevac, 49-49.
https://hdl.handle.net/21.15107/rcub_cherry_5747
Balaž AM, Crnoglavac Popović M, Stanišić MD, Ristić P, Senćanski M, Todorović T, Prodanović R. Horseradish peroxidase C1A wild type gene and its variants expressed in Pichia pastoris KM71H strain. in Tenth Conference of Serbian Biochemical Society, 24 September 2021, Kragujevac. 2021;:49-49.
https://hdl.handle.net/21.15107/rcub_cherry_5747 .
Balaž, Ana Marija, Crnoglavac Popović, Milica, Stanišić, Marija D., Ristić, Predrag, Senćanski, Milan, Todorović, Tamara, Prodanović, Radivoje, "Horseradish peroxidase C1A wild type gene and its variants expressed in Pichia pastoris KM71H strain" in Tenth Conference of Serbian Biochemical Society, 24 September 2021, Kragujevac (2021):49-49,
https://hdl.handle.net/21.15107/rcub_cherry_5747 .

Biomimetic mineralisation of periodate oxidized glucose oxidase

Stanišić, Marija D.; Popović, Nikolina; Ristić, Predrag; Balaž, Ana Marija; Senćanski, Milan; Prodanović, Radivoje; Todorović, Tamara

(Beograd : Biohemijsko društvo Srbije, 2021)

TY  - CONF
AU  - Stanišić, Marija D.
AU  - Popović, Nikolina
AU  - Ristić, Predrag
AU  - Balaž, Ana Marija
AU  - Senćanski, Milan
AU  - Prodanović, Radivoje
AU  - Todorović, Tamara
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5748
AB  - Glucose oxidase (GOx) is an enzyme that belongs to a group of oxidoreductases. This enzyme catalyzes the oxidation of glucose to gluconic acid using molecular oxygen as an electron acceptor. Glucose oxidase contains carbohydrates in its structure, most often mannose and glucose (11-13%) 1. Durability of GOx in harsh conditions can be enhanced by encapsulation within metal–organic frameworks via a process called biomimetic mineralisation. We demonstrate that chemical modification of carbohydrate parts on the protein surface by periodate oxidation is an effective method for control of biomimetic mineralisation by zeolitic imidazolate framework-8 (ZIF-8). Obtained GOx-ZIF-8 biocomposite had the higher half-life at 65oC, and higher specific activity than native GOx.
PB  - Beograd : Biohemijsko društvo Srbije
C3  - Tenth Conference of Serbian Biochemical Society, 24 September 2021, Kragujevac, Book of Abstracts
T1  - Biomimetic mineralisation of periodate oxidized glucose oxidase
SP  - 148
EP  - 148
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5748
ER  - 
@conference{
author = "Stanišić, Marija D. and Popović, Nikolina and Ristić, Predrag and Balaž, Ana Marija and Senćanski, Milan and Prodanović, Radivoje and Todorović, Tamara",
year = "2021",
abstract = "Glucose oxidase (GOx) is an enzyme that belongs to a group of oxidoreductases. This enzyme catalyzes the oxidation of glucose to gluconic acid using molecular oxygen as an electron acceptor. Glucose oxidase contains carbohydrates in its structure, most often mannose and glucose (11-13%) 1. Durability of GOx in harsh conditions can be enhanced by encapsulation within metal–organic frameworks via a process called biomimetic mineralisation. We demonstrate that chemical modification of carbohydrate parts on the protein surface by periodate oxidation is an effective method for control of biomimetic mineralisation by zeolitic imidazolate framework-8 (ZIF-8). Obtained GOx-ZIF-8 biocomposite had the higher half-life at 65oC, and higher specific activity than native GOx.",
publisher = "Beograd : Biohemijsko društvo Srbije",
journal = "Tenth Conference of Serbian Biochemical Society, 24 September 2021, Kragujevac, Book of Abstracts",
title = "Biomimetic mineralisation of periodate oxidized glucose oxidase",
pages = "148-148",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5748"
}
Stanišić, M. D., Popović, N., Ristić, P., Balaž, A. M., Senćanski, M., Prodanović, R.,& Todorović, T.. (2021). Biomimetic mineralisation of periodate oxidized glucose oxidase. in Tenth Conference of Serbian Biochemical Society, 24 September 2021, Kragujevac, Book of Abstracts
Beograd : Biohemijsko društvo Srbije., 148-148.
https://hdl.handle.net/21.15107/rcub_cherry_5748
Stanišić MD, Popović N, Ristić P, Balaž AM, Senćanski M, Prodanović R, Todorović T. Biomimetic mineralisation of periodate oxidized glucose oxidase. in Tenth Conference of Serbian Biochemical Society, 24 September 2021, Kragujevac, Book of Abstracts. 2021;:148-148.
https://hdl.handle.net/21.15107/rcub_cherry_5748 .
Stanišić, Marija D., Popović, Nikolina, Ristić, Predrag, Balaž, Ana Marija, Senćanski, Milan, Prodanović, Radivoje, Todorović, Tamara, "Biomimetic mineralisation of periodate oxidized glucose oxidase" in Tenth Conference of Serbian Biochemical Society, 24 September 2021, Kragujevac, Book of Abstracts (2021):148-148,
https://hdl.handle.net/21.15107/rcub_cherry_5748 .

Modelling of catalytic activity and enzyme-MOF interactions using combined in silico approach

Senćanski, Milan; Prodanović, Radivoje; Ristić, Predrag; Balaž, Ana Marija; Stanišić, Marija D.; Todorović, Tamara

(Materials Research Society of Serbia, 2021)

TY  - CONF
AU  - Senćanski, Milan
AU  - Prodanović, Radivoje
AU  - Ristić, Predrag
AU  - Balaž, Ana Marija
AU  - Stanišić, Marija D.
AU  - Todorović, Tamara
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5749
AB  - Enzymes as industrial biocatalysts offer numerous advantages over traditional chemical processes
concerning sustainability and process efficiency. Immobilization of enzymes on solid supporters is
one of the key strategies for improving the practical performances of enzymes.
Metal-organic frameworks (MOFs) are promising candidates for enzyme immobilization. MOFs are
porous coordination polymers consisting of metal-containing nodes and organic ligands linked
through coordination bonds. It has been demonstrated that proteins can be successfully immobilized
even in MOF pores whose apertures are smaller than the molecular dimension of the protein due to its
conformational flexibility.
For our study, we selected horseradish peroxidase (HRP) encapsulated in MOF PCN-888(Al). We
report the modelling of PCN-888(Al) MOF and the design of novel HRP mutants, which determine
their enzymatic activity and magnitude of intermolecular interactions with MOF. Using a combined
in silico approach, consisting of Informational Spectrum Method (ISM) bioinformatics method,
molecular docking and molecular dynamics simulations, we propose new HRP mutants, which show
higher/lower specific catalytic activity and higher/lower MOF-HRP dissociation constant, compared
to the wild type of enzyme.
PB  - Materials Research Society of Serbia
C3  - Twenty-Second Annual Conference YUCOMAT 2021, Herceg Novi, Montenegro, August 30 - September 3, 2021
T1  - Modelling of catalytic activity and enzyme-MOF interactions using combined in silico approach
SP  - 124
EP  - 124
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5749
ER  - 
@conference{
author = "Senćanski, Milan and Prodanović, Radivoje and Ristić, Predrag and Balaž, Ana Marija and Stanišić, Marija D. and Todorović, Tamara",
year = "2021",
abstract = "Enzymes as industrial biocatalysts offer numerous advantages over traditional chemical processes
concerning sustainability and process efficiency. Immobilization of enzymes on solid supporters is
one of the key strategies for improving the practical performances of enzymes.
Metal-organic frameworks (MOFs) are promising candidates for enzyme immobilization. MOFs are
porous coordination polymers consisting of metal-containing nodes and organic ligands linked
through coordination bonds. It has been demonstrated that proteins can be successfully immobilized
even in MOF pores whose apertures are smaller than the molecular dimension of the protein due to its
conformational flexibility.
For our study, we selected horseradish peroxidase (HRP) encapsulated in MOF PCN-888(Al). We
report the modelling of PCN-888(Al) MOF and the design of novel HRP mutants, which determine
their enzymatic activity and magnitude of intermolecular interactions with MOF. Using a combined
in silico approach, consisting of Informational Spectrum Method (ISM) bioinformatics method,
molecular docking and molecular dynamics simulations, we propose new HRP mutants, which show
higher/lower specific catalytic activity and higher/lower MOF-HRP dissociation constant, compared
to the wild type of enzyme.",
publisher = "Materials Research Society of Serbia",
journal = "Twenty-Second Annual Conference YUCOMAT 2021, Herceg Novi, Montenegro, August 30 - September 3, 2021",
title = "Modelling of catalytic activity and enzyme-MOF interactions using combined in silico approach",
pages = "124-124",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5749"
}
Senćanski, M., Prodanović, R., Ristić, P., Balaž, A. M., Stanišić, M. D.,& Todorović, T.. (2021). Modelling of catalytic activity and enzyme-MOF interactions using combined in silico approach. in Twenty-Second Annual Conference YUCOMAT 2021, Herceg Novi, Montenegro, August 30 - September 3, 2021
Materials Research Society of Serbia., 124-124.
https://hdl.handle.net/21.15107/rcub_cherry_5749
Senćanski M, Prodanović R, Ristić P, Balaž AM, Stanišić MD, Todorović T. Modelling of catalytic activity and enzyme-MOF interactions using combined in silico approach. in Twenty-Second Annual Conference YUCOMAT 2021, Herceg Novi, Montenegro, August 30 - September 3, 2021. 2021;:124-124.
https://hdl.handle.net/21.15107/rcub_cherry_5749 .
Senćanski, Milan, Prodanović, Radivoje, Ristić, Predrag, Balaž, Ana Marija, Stanišić, Marija D., Todorović, Tamara, "Modelling of catalytic activity and enzyme-MOF interactions using combined in silico approach" in Twenty-Second Annual Conference YUCOMAT 2021, Herceg Novi, Montenegro, August 30 - September 3, 2021 (2021):124-124,
https://hdl.handle.net/21.15107/rcub_cherry_5749 .

Uticaj anjona, pufera i detergenata na topologiju i morfologiju ZIF-8 kristalita

Ristić, Predrag; Pavlović, Pavle; Stanišić, Marija D.; Prodanović, Radivoje; Ognjanović, Miloš; Đokić, Veljko; Todorović, Tamara

(Beograd : Srpsko kristalografsko društvo, 2021)

TY  - CONF
AU  - Ristić, Predrag
AU  - Pavlović, Pavle
AU  - Stanišić, Marija D.
AU  - Prodanović, Radivoje
AU  - Ognjanović, Miloš
AU  - Đokić, Veljko
AU  - Todorović, Tamara
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5750
AB  - Metal-organic frameworks (MOFs) are a class of inorganic materials with potential application in gas adsorption, biosensitization, biocatalysis, and drug delivery [1]. Zeolitic imidazolate frame-works (ZIFs) are a subclass of MOFs, particularly suitable for enzyme immobilization by biomi-metic mineralization [1]. ZIF-8 consisting of tetrahedral Zn(II) ions bridged via 2-methylimidazole ligands (mIM) is most commonly used for this purpose. However, the topology and morphology of ZIF-8 crystals vary depending on the experimental synthesis conditions. In addition, during the process of biomimetic mineralization, the biocomposite composed of the enzyme immobilized in ZIF-8 is washed with buffers and detergents to remove excess of an adsorbed enzyme, which can lead to the chemical transformation of the surface and undesirable release of the enzyme. There-fore, the influence of anion nature on the topology and morphology of ZIF-8 was investigated in this work, and the stability of ZIF-8 crystallites was tested in acetate buffer (0.1 M; pH = 5.5) and sodium dodecyl sulfate solution (ω = 10%). Crystal morphology was monitored by scanning elec-tron microscopy, while topology was determined using powder X-ray diffraction.
PB  - Beograd : Srpsko kristalografsko društvo
C3  - XXVII Konferencija Srpskog kristalografskog društva, 16-17. Septembar 2021, Kragujevac
T1  - Uticaj anjona, pufera i detergenata na topologiju i morfologiju ZIF-8 kristalita
SP  - 64
EP  - 65
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5750
ER  - 
@conference{
author = "Ristić, Predrag and Pavlović, Pavle and Stanišić, Marija D. and Prodanović, Radivoje and Ognjanović, Miloš and Đokić, Veljko and Todorović, Tamara",
year = "2021",
abstract = "Metal-organic frameworks (MOFs) are a class of inorganic materials with potential application in gas adsorption, biosensitization, biocatalysis, and drug delivery [1]. Zeolitic imidazolate frame-works (ZIFs) are a subclass of MOFs, particularly suitable for enzyme immobilization by biomi-metic mineralization [1]. ZIF-8 consisting of tetrahedral Zn(II) ions bridged via 2-methylimidazole ligands (mIM) is most commonly used for this purpose. However, the topology and morphology of ZIF-8 crystals vary depending on the experimental synthesis conditions. In addition, during the process of biomimetic mineralization, the biocomposite composed of the enzyme immobilized in ZIF-8 is washed with buffers and detergents to remove excess of an adsorbed enzyme, which can lead to the chemical transformation of the surface and undesirable release of the enzyme. There-fore, the influence of anion nature on the topology and morphology of ZIF-8 was investigated in this work, and the stability of ZIF-8 crystallites was tested in acetate buffer (0.1 M; pH = 5.5) and sodium dodecyl sulfate solution (ω = 10%). Crystal morphology was monitored by scanning elec-tron microscopy, while topology was determined using powder X-ray diffraction.",
publisher = "Beograd : Srpsko kristalografsko društvo",
journal = "XXVII Konferencija Srpskog kristalografskog društva, 16-17. Septembar 2021, Kragujevac",
title = "Uticaj anjona, pufera i detergenata na topologiju i morfologiju ZIF-8 kristalita",
pages = "64-65",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5750"
}
Ristić, P., Pavlović, P., Stanišić, M. D., Prodanović, R., Ognjanović, M., Đokić, V.,& Todorović, T.. (2021). Uticaj anjona, pufera i detergenata na topologiju i morfologiju ZIF-8 kristalita. in XXVII Konferencija Srpskog kristalografskog društva, 16-17. Septembar 2021, Kragujevac
Beograd : Srpsko kristalografsko društvo., 64-65.
https://hdl.handle.net/21.15107/rcub_cherry_5750
Ristić P, Pavlović P, Stanišić MD, Prodanović R, Ognjanović M, Đokić V, Todorović T. Uticaj anjona, pufera i detergenata na topologiju i morfologiju ZIF-8 kristalita. in XXVII Konferencija Srpskog kristalografskog društva, 16-17. Septembar 2021, Kragujevac. 2021;:64-65.
https://hdl.handle.net/21.15107/rcub_cherry_5750 .
Ristić, Predrag, Pavlović, Pavle, Stanišić, Marija D., Prodanović, Radivoje, Ognjanović, Miloš, Đokić, Veljko, Todorović, Tamara, "Uticaj anjona, pufera i detergenata na topologiju i morfologiju ZIF-8 kristalita" in XXVII Konferencija Srpskog kristalografskog društva, 16-17. Septembar 2021, Kragujevac (2021):64-65,
https://hdl.handle.net/21.15107/rcub_cherry_5750 .

Structural, antioxidant, antiproliferative and in‒silico study of pyridine-based hydrazonyl‒selenazoles and their sulphur isosteres

Araškov, Jovana; Nikolić, Milan; Armaković, Stevan; Armaković, Sanja; Rodić, Marko; Višnjevac, Aleksandar; Padrón, José M.; Todorović, Tamara; Filipović, Nenad R.

(Elsevier, 2021)

TY  - JOUR
AU  - Araškov, Jovana
AU  - Nikolić, Milan
AU  - Armaković, Stevan
AU  - Armaković, Sanja
AU  - Rodić, Marko
AU  - Višnjevac, Aleksandar
AU  - Padrón, José M.
AU  - Todorović, Tamara
AU  - Filipović, Nenad R.
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0022286021006451
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4539
AB  - To evaluate the impact of chalcogen atom type, we performed a comparative study of antioxidant capacity and antiproliferative activity of a focused library of three pyridine-based hydrazonyl-1,3-selenazoles and their sulfur isosteres in five antioxidant assays and in six human solid tumor cell lines, respectively. In-silico calculations were further used to check pharmacokinetic profiles of investigated compounds such as drug-likeness parameters and interaction with water. Generally, selenium compounds appear to be more potent in comparison to sulfur isosteres in the performed essays.
PB  - Elsevier
T2  - Journal of Molecular Structure
T1  - Structural, antioxidant, antiproliferative and in‒silico study of pyridine-based hydrazonyl‒selenazoles and their sulphur isosteres
VL  - 1240
SP  - 130512
DO  - 10.1016/j.molstruc.2021.130512
ER  - 
@article{
author = "Araškov, Jovana and Nikolić, Milan and Armaković, Stevan and Armaković, Sanja and Rodić, Marko and Višnjevac, Aleksandar and Padrón, José M. and Todorović, Tamara and Filipović, Nenad R.",
year = "2021",
abstract = "To evaluate the impact of chalcogen atom type, we performed a comparative study of antioxidant capacity and antiproliferative activity of a focused library of three pyridine-based hydrazonyl-1,3-selenazoles and their sulfur isosteres in five antioxidant assays and in six human solid tumor cell lines, respectively. In-silico calculations were further used to check pharmacokinetic profiles of investigated compounds such as drug-likeness parameters and interaction with water. Generally, selenium compounds appear to be more potent in comparison to sulfur isosteres in the performed essays.",
publisher = "Elsevier",
journal = "Journal of Molecular Structure",
title = "Structural, antioxidant, antiproliferative and in‒silico study of pyridine-based hydrazonyl‒selenazoles and their sulphur isosteres",
volume = "1240",
pages = "130512",
doi = "10.1016/j.molstruc.2021.130512"
}
Araškov, J., Nikolić, M., Armaković, S., Armaković, S., Rodić, M., Višnjevac, A., Padrón, J. M., Todorović, T.,& Filipović, N. R.. (2021). Structural, antioxidant, antiproliferative and in‒silico study of pyridine-based hydrazonyl‒selenazoles and their sulphur isosteres. in Journal of Molecular Structure
Elsevier., 1240, 130512.
https://doi.org/10.1016/j.molstruc.2021.130512
Araškov J, Nikolić M, Armaković S, Armaković S, Rodić M, Višnjevac A, Padrón JM, Todorović T, Filipović NR. Structural, antioxidant, antiproliferative and in‒silico study of pyridine-based hydrazonyl‒selenazoles and their sulphur isosteres. in Journal of Molecular Structure. 2021;1240:130512.
doi:10.1016/j.molstruc.2021.130512 .
Araškov, Jovana, Nikolić, Milan, Armaković, Stevan, Armaković, Sanja, Rodić, Marko, Višnjevac, Aleksandar, Padrón, José M., Todorović, Tamara, Filipović, Nenad R., "Structural, antioxidant, antiproliferative and in‒silico study of pyridine-based hydrazonyl‒selenazoles and their sulphur isosteres" in Journal of Molecular Structure, 1240 (2021):130512,
https://doi.org/10.1016/j.molstruc.2021.130512 . .
7
19
14
14