Mirković, Miljana

Link to this page

Authority KeyName Variants
93c40606-73a3-4757-983e-f79fb45fcb65
  • Mirković, Miljana (3)
  • Mirković, Miljana M. (1)
Projects
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200116 (University of Belgrade, Faculty of Agriculture) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry)
EU Framework Programme for Research and Innovation (RIS-ALiCE, project no. 18258) European Institute of Innovation and Technology (EIT)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200105 (University of Belgrade, Faculty of Mechanical Engineering) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200162 (University of Belgrade, Faculty of Physics)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200288 (Innovation Center of the Faculty of Chemistry) Synthesis, processing and characterization of nanostructured materials for application in the field of energy, mechanical engineering, environmental protection and biomedicine

Author's Bibliography

Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition

Anđelković, Ljubica; Šuljagić, Marija; Mirković, Miljana; Pavlović, Vera P.; Petronijević, Ivan; Stanković, Dalibor; Jeremić, Dejan; Uskoković, Vuk

(Elsevier, 2023)

TY  - JOUR
AU  - Anđelković, Ljubica
AU  - Šuljagić, Marija
AU  - Mirković, Miljana
AU  - Pavlović, Vera P.
AU  - Petronijević, Ivan
AU  - Stanković, Dalibor
AU  - Jeremić, Dejan
AU  - Uskoković, Vuk
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6254
AB  - The combination of an intense absorption of visible light and p-type semiconducting nature makes spinel cobalt oxide (Co3O4) a very attractive material for various optoelectronic applications. However, the traditional methods for its synthesis have been either time- and energy-consuming or relying on toxic chemicals. To solve this issue, a simple, facile, and eco-friendly method of synthesis was successfully developed to obtain spinel Co3O4 nanoparticles. The novel method for obtaining pure and monophasic Co3O4 reported here is based on the thermal decomposition of hexaaquacobalt(II) D-camphor10-sulfonate at 900 °C. This fast solid-state synthesis route overcomes the disadvantages of many combustion methods, most critically by avoiding the use of toxic organic solvents. The synthesized material was subjected to a detailed characterization to assess its potential for use as a nanocatalyst. The band gap measurements indicated the presence of two band gaps, one at 2.10 eV and another at 1.22 eV, confirming the purity and semiconducting properties of the sample. The electrochemical studies demonstrated a significant enhancement in the electron transfer kinetics with the addition of the synthesized Co3O4 to the carbon-paste electrode, leading to an enhanced electrocatalytic performance. These prominent functional properties, suitable for a wide range of technological applications, pave way for the implementation of the reported method for the synthesis of Co3O4 on a larger industrial scale.
PB  - Elsevier
T2  - Ceramics International
T1  - Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition
VL  - 49
IS  - 14, Part A
SP  - 23491
EP  - 23498
DO  - 10.1016/j.ceramint.2023.04.182
ER  - 
@article{
author = "Anđelković, Ljubica and Šuljagić, Marija and Mirković, Miljana and Pavlović, Vera P. and Petronijević, Ivan and Stanković, Dalibor and Jeremić, Dejan and Uskoković, Vuk",
year = "2023",
abstract = "The combination of an intense absorption of visible light and p-type semiconducting nature makes spinel cobalt oxide (Co3O4) a very attractive material for various optoelectronic applications. However, the traditional methods for its synthesis have been either time- and energy-consuming or relying on toxic chemicals. To solve this issue, a simple, facile, and eco-friendly method of synthesis was successfully developed to obtain spinel Co3O4 nanoparticles. The novel method for obtaining pure and monophasic Co3O4 reported here is based on the thermal decomposition of hexaaquacobalt(II) D-camphor10-sulfonate at 900 °C. This fast solid-state synthesis route overcomes the disadvantages of many combustion methods, most critically by avoiding the use of toxic organic solvents. The synthesized material was subjected to a detailed characterization to assess its potential for use as a nanocatalyst. The band gap measurements indicated the presence of two band gaps, one at 2.10 eV and another at 1.22 eV, confirming the purity and semiconducting properties of the sample. The electrochemical studies demonstrated a significant enhancement in the electron transfer kinetics with the addition of the synthesized Co3O4 to the carbon-paste electrode, leading to an enhanced electrocatalytic performance. These prominent functional properties, suitable for a wide range of technological applications, pave way for the implementation of the reported method for the synthesis of Co3O4 on a larger industrial scale.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition",
volume = "49",
number = "14, Part A",
pages = "23491-23498",
doi = "10.1016/j.ceramint.2023.04.182"
}
Anđelković, L., Šuljagić, M., Mirković, M., Pavlović, V. P., Petronijević, I., Stanković, D., Jeremić, D.,& Uskoković, V.. (2023). Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition. in Ceramics International
Elsevier., 49(14, Part A), 23491-23498.
https://doi.org/10.1016/j.ceramint.2023.04.182
Anđelković L, Šuljagić M, Mirković M, Pavlović VP, Petronijević I, Stanković D, Jeremić D, Uskoković V. Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition. in Ceramics International. 2023;49(14, Part A):23491-23498.
doi:10.1016/j.ceramint.2023.04.182 .
Anđelković, Ljubica, Šuljagić, Marija, Mirković, Miljana, Pavlović, Vera P., Petronijević, Ivan, Stanković, Dalibor, Jeremić, Dejan, Uskoković, Vuk, "Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition" in Ceramics International, 49, no. 14, Part A (2023):23491-23498,
https://doi.org/10.1016/j.ceramint.2023.04.182 . .

Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites

Šuljagić, Marija; Milenković, Milica R.; Uskoković, Vuk; Mirković, Miljana; Vrbica, Boško; Pavlović, Vladimir D.; Živković-Radovanović, Vukosava; Stanković, Dalibor; Anđelković, Ljubica

(Elsevier, 2022)

TY  - JOUR
AU  - Šuljagić, Marija
AU  - Milenković, Milica R.
AU  - Uskoković, Vuk
AU  - Mirković, Miljana
AU  - Vrbica, Boško
AU  - Pavlović, Vladimir D.
AU  - Živković-Radovanović, Vukosava
AU  - Stanković, Dalibor
AU  - Anđelković, Ljubica
PY  - 2022
UR  - https://www.sciencedirect.com/journal/materials-today-communications
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5521
AB  - The emerging threat of bacterial resistance to antibiotics prompts the urgent search for biomaterials for the treatment of infectious disease. Here we report on the synthesis and characterization of a multiphasic nanocomposite comprising magnetic iron oxide and silver nanoparticles. The method of synthesis involved the combustion of a metalorganic complex and reduction of the silver ions that were exchanged and/or adsorbed on the surface of iron oxide. Different physical and chemical treatments coupled to the reduction process, including ultrasound and Lugol's iodine solution, respectively, homogenized the distribution of the silver nanoparticles on the iron oxide phase. Remarkably, using ascorbic acid as a reductant enhanced the magnetic properties of the material as a result of the reduction of the magnetic matrix alongside the silver cations. The treatment with ultrasound detached large amounts of silver from the iron oxide phase and resulted in the lowest amount of silver incorporated in the nanocomposite. Despite that, this treatment led to the highest antibacterial activity against both Gram-positive and Gram-negative strains, indicating that the homogeneity of the distribution of silver on the iron oxide matrix is a more important determinant of the antibacterial performance than the amount of silver incorporated in the material. At the same time, the treatment with Lugol's iodine equally increased the distribution homogeneity, but induced excessive ion exchange and crystal lattice substitutions, thereby adversely affecting the antibacterial performance. This has indicated that the mode of binding silver to iron oxide can compensate for the positive effects of homogeneous distribution with respect to the antibacterial performance.
PB  - Elsevier
T2  - Materials Today Communications
T1  - Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites
VL  - 32
SP  - 104157
DO  - 10.1016/j.mtcomm.2022.104157
ER  - 
@article{
author = "Šuljagić, Marija and Milenković, Milica R. and Uskoković, Vuk and Mirković, Miljana and Vrbica, Boško and Pavlović, Vladimir D. and Živković-Radovanović, Vukosava and Stanković, Dalibor and Anđelković, Ljubica",
year = "2022",
abstract = "The emerging threat of bacterial resistance to antibiotics prompts the urgent search for biomaterials for the treatment of infectious disease. Here we report on the synthesis and characterization of a multiphasic nanocomposite comprising magnetic iron oxide and silver nanoparticles. The method of synthesis involved the combustion of a metalorganic complex and reduction of the silver ions that were exchanged and/or adsorbed on the surface of iron oxide. Different physical and chemical treatments coupled to the reduction process, including ultrasound and Lugol's iodine solution, respectively, homogenized the distribution of the silver nanoparticles on the iron oxide phase. Remarkably, using ascorbic acid as a reductant enhanced the magnetic properties of the material as a result of the reduction of the magnetic matrix alongside the silver cations. The treatment with ultrasound detached large amounts of silver from the iron oxide phase and resulted in the lowest amount of silver incorporated in the nanocomposite. Despite that, this treatment led to the highest antibacterial activity against both Gram-positive and Gram-negative strains, indicating that the homogeneity of the distribution of silver on the iron oxide matrix is a more important determinant of the antibacterial performance than the amount of silver incorporated in the material. At the same time, the treatment with Lugol's iodine equally increased the distribution homogeneity, but induced excessive ion exchange and crystal lattice substitutions, thereby adversely affecting the antibacterial performance. This has indicated that the mode of binding silver to iron oxide can compensate for the positive effects of homogeneous distribution with respect to the antibacterial performance.",
publisher = "Elsevier",
journal = "Materials Today Communications",
title = "Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites",
volume = "32",
pages = "104157",
doi = "10.1016/j.mtcomm.2022.104157"
}
Šuljagić, M., Milenković, M. R., Uskoković, V., Mirković, M., Vrbica, B., Pavlović, V. D., Živković-Radovanović, V., Stanković, D.,& Anđelković, L.. (2022). Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites. in Materials Today Communications
Elsevier., 32, 104157.
https://doi.org/10.1016/j.mtcomm.2022.104157
Šuljagić M, Milenković MR, Uskoković V, Mirković M, Vrbica B, Pavlović VD, Živković-Radovanović V, Stanković D, Anđelković L. Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites. in Materials Today Communications. 2022;32:104157.
doi:10.1016/j.mtcomm.2022.104157 .
Šuljagić, Marija, Milenković, Milica R., Uskoković, Vuk, Mirković, Miljana, Vrbica, Boško, Pavlović, Vladimir D., Živković-Radovanović, Vukosava, Stanković, Dalibor, Anđelković, Ljubica, "Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites" in Materials Today Communications, 32 (2022):104157,
https://doi.org/10.1016/j.mtcomm.2022.104157 . .
2
1
1

Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials

Đukić, Dunja; Šuljagić, Marija; Anđelković, Ljubica; Pavlović, Vera; Bučevac, Dušan; Vrbica, Boško; Mirković, Miljana

(Belgrade : Association for ETRAN Society, 2022)

TY  - JOUR
AU  - Đukić, Dunja
AU  - Šuljagić, Marija
AU  - Anđelković, Ljubica
AU  - Pavlović, Vera
AU  - Bučevac, Dušan
AU  - Vrbica, Boško
AU  - Mirković, Miljana
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5620
AB  - The effect of Ca2+ amount and sintering temperature on mechanical properties of
geopolymer-brushite (GPB) binders was investigated. Brushite and raw abandoned kaolinite
clay thermally transformed into metakaolin were used for GPB synthesis. The complete phase
and structural analyses were performed by X-ray powder diffraction, and Fourier transforms
infrared spectroscopy (FT-IR). The pore-filling effect as a consequence of Ca2+ ions
incorporation into the hybrid geopolymer networks improved the compressive strength. On
the other hand, the chosen biscuit sintering at 800 and 900o
C caused the phase
transformation of brushite into calcium pyrophosphate, which negatively affected the
compressive strength of such materials. The obtained results indicate that the usage of
relatively high sintering temperatures is not always the necessary step for producing
geopolymer-based types of cement with prominent mechanical properties.
PB  - Belgrade : Association for ETRAN Society
T2  - Science of Sintering
T1  - Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials
VL  - 54
IS  - 3
SP  - 287
EP  - 294
DO  - 10.2298/SOS2203287D
ER  - 
@article{
author = "Đukić, Dunja and Šuljagić, Marija and Anđelković, Ljubica and Pavlović, Vera and Bučevac, Dušan and Vrbica, Boško and Mirković, Miljana",
year = "2022",
abstract = "The effect of Ca2+ amount and sintering temperature on mechanical properties of
geopolymer-brushite (GPB) binders was investigated. Brushite and raw abandoned kaolinite
clay thermally transformed into metakaolin were used for GPB synthesis. The complete phase
and structural analyses were performed by X-ray powder diffraction, and Fourier transforms
infrared spectroscopy (FT-IR). The pore-filling effect as a consequence of Ca2+ ions
incorporation into the hybrid geopolymer networks improved the compressive strength. On
the other hand, the chosen biscuit sintering at 800 and 900o
C caused the phase
transformation of brushite into calcium pyrophosphate, which negatively affected the
compressive strength of such materials. The obtained results indicate that the usage of
relatively high sintering temperatures is not always the necessary step for producing
geopolymer-based types of cement with prominent mechanical properties.",
publisher = "Belgrade : Association for ETRAN Society",
journal = "Science of Sintering",
title = "Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials",
volume = "54",
number = "3",
pages = "287-294",
doi = "10.2298/SOS2203287D"
}
Đukić, D., Šuljagić, M., Anđelković, L., Pavlović, V., Bučevac, D., Vrbica, B.,& Mirković, M.. (2022). Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials. in Science of Sintering
Belgrade : Association for ETRAN Society., 54(3), 287-294.
https://doi.org/10.2298/SOS2203287D
Đukić D, Šuljagić M, Anđelković L, Pavlović V, Bučevac D, Vrbica B, Mirković M. Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials. in Science of Sintering. 2022;54(3):287-294.
doi:10.2298/SOS2203287D .
Đukić, Dunja, Šuljagić, Marija, Anđelković, Ljubica, Pavlović, Vera, Bučevac, Dušan, Vrbica, Boško, Mirković, Miljana, "Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials" in Science of Sintering, 54, no. 3 (2022):287-294,
https://doi.org/10.2298/SOS2203287D . .

Safe trapping of Cs radionuclides in sintered matrix of zeolites

Omerašević, Mia; Lukić, Miodrag J.; Baščarević, Zvezdana; Orlić, Jovana; Mirković, Miljana M.; Savić-Biserčić, Marjetka; Matović, Ljiljana Lj.

(Belgrade : Institute of Technical Sciences of SASA, 2015)

TY  - CONF
AU  - Omerašević, Mia
AU  - Lukić, Miodrag J.
AU  - Baščarević, Zvezdana
AU  - Orlić, Jovana
AU  - Mirković, Miljana M.
AU  - Savić-Biserčić, Marjetka
AU  - Matović, Ljiljana Lj.
PY  - 2015
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3785
AB  - Cesium aluminosilicate phases are of the great interest as possible host for Cs immobilization in radioactive waste management. The possibility to use zeolite as a host material for radioactive Cs immobilization was investigated. Cs-exchanged forms of clinoptilolite and 13X which were prepared by ion-exchange treatment were compacted. The powders compacts of exchanged zeolites were thermally treated at 1200 °C. The XRD analysis showed that Cs was successfully immobilized after heat treatment by formation of stable cesium-aluminosilicate ceramic forms. Thermal and mechanical properties of the sintered samples were investigated. From the perspective of these characteristics, Cs-exchanged zeolite (clinoptilolite and 13 X) can be considered as a potential material for safe waste disposal.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Fourteenth Young Researchers' Conference Materials Sciences and Engineering, December 9-11, 2015, Belgrade, Serbia
T1  - Safe trapping of Cs radionuclides in sintered matrix of zeolites
SP  - 45
EP  - 45
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3785
ER  - 
@conference{
author = "Omerašević, Mia and Lukić, Miodrag J. and Baščarević, Zvezdana and Orlić, Jovana and Mirković, Miljana M. and Savić-Biserčić, Marjetka and Matović, Ljiljana Lj.",
year = "2015",
abstract = "Cesium aluminosilicate phases are of the great interest as possible host for Cs immobilization in radioactive waste management. The possibility to use zeolite as a host material for radioactive Cs immobilization was investigated. Cs-exchanged forms of clinoptilolite and 13X which were prepared by ion-exchange treatment were compacted. The powders compacts of exchanged zeolites were thermally treated at 1200 °C. The XRD analysis showed that Cs was successfully immobilized after heat treatment by formation of stable cesium-aluminosilicate ceramic forms. Thermal and mechanical properties of the sintered samples were investigated. From the perspective of these characteristics, Cs-exchanged zeolite (clinoptilolite and 13 X) can be considered as a potential material for safe waste disposal.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Fourteenth Young Researchers' Conference Materials Sciences and Engineering, December 9-11, 2015, Belgrade, Serbia",
title = "Safe trapping of Cs radionuclides in sintered matrix of zeolites",
pages = "45-45",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3785"
}
Omerašević, M., Lukić, M. J., Baščarević, Z., Orlić, J., Mirković, M. M., Savić-Biserčić, M.,& Matović, L. Lj.. (2015). Safe trapping of Cs radionuclides in sintered matrix of zeolites. in Program and the Book of Abstracts / Fourteenth Young Researchers' Conference Materials Sciences and Engineering, December 9-11, 2015, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 45-45.
https://hdl.handle.net/21.15107/rcub_cherry_3785
Omerašević M, Lukić MJ, Baščarević Z, Orlić J, Mirković MM, Savić-Biserčić M, Matović LL. Safe trapping of Cs radionuclides in sintered matrix of zeolites. in Program and the Book of Abstracts / Fourteenth Young Researchers' Conference Materials Sciences and Engineering, December 9-11, 2015, Belgrade, Serbia. 2015;:45-45.
https://hdl.handle.net/21.15107/rcub_cherry_3785 .
Omerašević, Mia, Lukić, Miodrag J., Baščarević, Zvezdana, Orlić, Jovana, Mirković, Miljana M., Savić-Biserčić, Marjetka, Matović, Ljiljana Lj., "Safe trapping of Cs radionuclides in sintered matrix of zeolites" in Program and the Book of Abstracts / Fourteenth Young Researchers' Conference Materials Sciences and Engineering, December 9-11, 2015, Belgrade, Serbia (2015):45-45,
https://hdl.handle.net/21.15107/rcub_cherry_3785 .