Petrović, Tamara

Link to this page

Authority KeyName Variants
d9e2f38b-cdfc-40ec-b9a4-429b24db3690
  • Petrović, Tamara (9)
Projects

Author's Bibliography

Oxorhenium(V) complexes with N,O ligands – synthesis and biological studies

Petrović, Tamara; Gligorijević, Nevenka; Ferdinand, Belaj; Poljarević, Jelena; Mihajlović-Lalić, Ljiljana; Aranđelović, Sandra; Nikolić, Stefan; Grgurić-Šipka, Sanja

(2023)

TY  - CONF
AU  - Petrović, Tamara
AU  - Gligorijević, Nevenka
AU  - Ferdinand, Belaj
AU  - Poljarević, Jelena
AU  - Mihajlović-Lalić, Ljiljana
AU  - Aranđelović, Sandra
AU  - Nikolić, Stefan
AU  - Grgurić-Šipka, Sanja
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5957
AB  - Rhenium complexes merit particular attention in the area of metallodrug design due to
rhenium’s broad spectrum of oxidation states and consequently, the possibility to design
compounds of great structural diversity [1,2]. Thus, the synthesis, chemical characterization,
and antitumor activity in vitro of the six Re(V) complexes are described. Novel compounds
were obtained via reaction of [ReOCl3(PPh3)2] with corresponding ligands (pyridine-2-
carboxylic acid, 3-methylpyridine-2-carboxylic acid, 6-methylpyridine-2-carboxylic acid, 2,3-
pyridinedicarboxylic acid, 2,5-pyridinedicarboxylic acid, and 2,6-pyridinedicarboxylic acid) in
acetonitrile or dichloromethane/methanol at 78 °C for 3h. The complexes were fully
characterized using NMR, IR, MS, and elemental analysis. Results of X-ray diffraction analysis
for three of these compounds confirmed the proposed octahedral geometry with bidentate
coordinated ligands, via both oxygen and nitrogen atoms. The antiproliferative effect was
determined by MTT assay. All complexes expressed moderate to low cytotoxic potential.
Complex with pyridine-2-carboxylic acid showed dose-dependent cytotoxic potential,
particularly toward triple-negative breast adenocarcinoma cells MDA-MB-231 and pancreatic
adenocarcinoma cells PANC-1. Drug combination studies in PANC-1 cells with that complex
and Verapamil hydrochloride (VRP) showed a slight arrest of the cell cycle in the S phase and
also increase its antiproliferative potential.
C3  - 16th International Symposium on Applied Bioinorganic Chemistry (16-ISABC), Ioannina, Greece, June 11-14, 2023
T1  - Oxorhenium(V) complexes with N,O ligands – synthesis and biological studies
SP  - 241
EP  - 241
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5957
ER  - 
@conference{
author = "Petrović, Tamara and Gligorijević, Nevenka and Ferdinand, Belaj and Poljarević, Jelena and Mihajlović-Lalić, Ljiljana and Aranđelović, Sandra and Nikolić, Stefan and Grgurić-Šipka, Sanja",
year = "2023",
abstract = "Rhenium complexes merit particular attention in the area of metallodrug design due to
rhenium’s broad spectrum of oxidation states and consequently, the possibility to design
compounds of great structural diversity [1,2]. Thus, the synthesis, chemical characterization,
and antitumor activity in vitro of the six Re(V) complexes are described. Novel compounds
were obtained via reaction of [ReOCl3(PPh3)2] with corresponding ligands (pyridine-2-
carboxylic acid, 3-methylpyridine-2-carboxylic acid, 6-methylpyridine-2-carboxylic acid, 2,3-
pyridinedicarboxylic acid, 2,5-pyridinedicarboxylic acid, and 2,6-pyridinedicarboxylic acid) in
acetonitrile or dichloromethane/methanol at 78 °C for 3h. The complexes were fully
characterized using NMR, IR, MS, and elemental analysis. Results of X-ray diffraction analysis
for three of these compounds confirmed the proposed octahedral geometry with bidentate
coordinated ligands, via both oxygen and nitrogen atoms. The antiproliferative effect was
determined by MTT assay. All complexes expressed moderate to low cytotoxic potential.
Complex with pyridine-2-carboxylic acid showed dose-dependent cytotoxic potential,
particularly toward triple-negative breast adenocarcinoma cells MDA-MB-231 and pancreatic
adenocarcinoma cells PANC-1. Drug combination studies in PANC-1 cells with that complex
and Verapamil hydrochloride (VRP) showed a slight arrest of the cell cycle in the S phase and
also increase its antiproliferative potential.",
journal = "16th International Symposium on Applied Bioinorganic Chemistry (16-ISABC), Ioannina, Greece, June 11-14, 2023",
title = "Oxorhenium(V) complexes with N,O ligands – synthesis and biological studies",
pages = "241-241",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5957"
}
Petrović, T., Gligorijević, N., Ferdinand, B., Poljarević, J., Mihajlović-Lalić, L., Aranđelović, S., Nikolić, S.,& Grgurić-Šipka, S.. (2023). Oxorhenium(V) complexes with N,O ligands – synthesis and biological studies. in 16th International Symposium on Applied Bioinorganic Chemistry (16-ISABC), Ioannina, Greece, June 11-14, 2023, 241-241.
https://hdl.handle.net/21.15107/rcub_cherry_5957
Petrović T, Gligorijević N, Ferdinand B, Poljarević J, Mihajlović-Lalić L, Aranđelović S, Nikolić S, Grgurić-Šipka S. Oxorhenium(V) complexes with N,O ligands – synthesis and biological studies. in 16th International Symposium on Applied Bioinorganic Chemistry (16-ISABC), Ioannina, Greece, June 11-14, 2023. 2023;:241-241.
https://hdl.handle.net/21.15107/rcub_cherry_5957 .
Petrović, Tamara, Gligorijević, Nevenka, Ferdinand, Belaj, Poljarević, Jelena, Mihajlović-Lalić, Ljiljana, Aranđelović, Sandra, Nikolić, Stefan, Grgurić-Šipka, Sanja, "Oxorhenium(V) complexes with N,O ligands – synthesis and biological studies" in 16th International Symposium on Applied Bioinorganic Chemistry (16-ISABC), Ioannina, Greece, June 11-14, 2023 (2023):241-241,
https://hdl.handle.net/21.15107/rcub_cherry_5957 .

Ru(II) arene based pyridil complexes: synthesis and antimicrobial potency

Dimitrijević, Marija; Mihajlović-Lalić, Ljiljana; Grgurić-Šipka, Sanja; Nikolić, Stefan; Petrović, Tamara; Poljarević, Jelena

(Belgrade : Serbian Chemical Society, 2023)

TY  - CONF
AU  - Dimitrijević, Marija
AU  - Mihajlović-Lalić, Ljiljana
AU  - Grgurić-Šipka, Sanja
AU  - Nikolić, Stefan
AU  - Petrović, Tamara
AU  - Poljarević, Jelena
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5904
AB  - Metal-based compounds are rarely good antimicrobial compounds. Here we report
synthesis, chemical characterization and antimicrobial potency of fourteen Ru(II) arene
complexes with pyridine-based ligands. The structures and purity of synthesized
compounds were confirmed using 1H and 13C NMR spectroscopy, IR spectroscopy, MS, and
EA. A micro-well dilution assay was used to determine the minimum inhibitory
concentration (MIC), and minimum bactericidal concentration. of evaluated compounds.
Streptomycin and chloramphenicol were used as a positive control. The best activity of all
tested bacteria was observed against E. coli, with a MIC value of 1.25 mg/mL, for
complexes with 2,4- i 2,5-pyridinedicarboxylic ligands. Also, all synthesized complexes
showed the same activity against C. Albicans.
AB  - Kompleksi metala retko se koriste kao potencijalni antimikrobni agensi. U ovom radu smo prikazali sintezu, hemijsku karakterizaciju i antimikrobnu aktivnost 14 arenskih Ru(II) kompleksa sa piridinskim ligandima. Strukturu i čistoću dobijenih jedinjenja potvrdili smo koristeći 1H, 13C NMR i IC spektroskopiju, MS i EA. Mikrodilucioni esej je korišćen za određivanje minimalne inhibitorne koncentracije (MIC) i minimalne baktericidne koncentracije sintetisanih jedinjenja. Streptomicin i hloramfenikol su korišćeni kao standard. Najbolja aktivnost prema ispitivanim sojevima bakterija zapažena je na soju E. coli, sa MIC vrednošću 1,25 mg/mL, kompleksa sa 2,4- i 2,5-piridindikarboksilnim ligandima. Svi sintetisani kompleksi pokazali su podjednako dobru aktivnost prema C. Albicans.
PB  - Belgrade : Serbian Chemical Society
C3  - 59th Meeting of the Serbian Chemical Society, Book of Abstracts, June 1-2, 2023, Novi Sad, Serbia
T1  - Ru(II) arene based pyridil complexes: synthesis and antimicrobial potency
SP  - 74
EP  - 74
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5904
ER  - 
@conference{
author = "Dimitrijević, Marija and Mihajlović-Lalić, Ljiljana and Grgurić-Šipka, Sanja and Nikolić, Stefan and Petrović, Tamara and Poljarević, Jelena",
year = "2023",
abstract = "Metal-based compounds are rarely good antimicrobial compounds. Here we report
synthesis, chemical characterization and antimicrobial potency of fourteen Ru(II) arene
complexes with pyridine-based ligands. The structures and purity of synthesized
compounds were confirmed using 1H and 13C NMR spectroscopy, IR spectroscopy, MS, and
EA. A micro-well dilution assay was used to determine the minimum inhibitory
concentration (MIC), and minimum bactericidal concentration. of evaluated compounds.
Streptomycin and chloramphenicol were used as a positive control. The best activity of all
tested bacteria was observed against E. coli, with a MIC value of 1.25 mg/mL, for
complexes with 2,4- i 2,5-pyridinedicarboxylic ligands. Also, all synthesized complexes
showed the same activity against C. Albicans., Kompleksi metala retko se koriste kao potencijalni antimikrobni agensi. U ovom radu smo prikazali sintezu, hemijsku karakterizaciju i antimikrobnu aktivnost 14 arenskih Ru(II) kompleksa sa piridinskim ligandima. Strukturu i čistoću dobijenih jedinjenja potvrdili smo koristeći 1H, 13C NMR i IC spektroskopiju, MS i EA. Mikrodilucioni esej je korišćen za određivanje minimalne inhibitorne koncentracije (MIC) i minimalne baktericidne koncentracije sintetisanih jedinjenja. Streptomicin i hloramfenikol su korišćeni kao standard. Najbolja aktivnost prema ispitivanim sojevima bakterija zapažena je na soju E. coli, sa MIC vrednošću 1,25 mg/mL, kompleksa sa 2,4- i 2,5-piridindikarboksilnim ligandima. Svi sintetisani kompleksi pokazali su podjednako dobru aktivnost prema C. Albicans.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "59th Meeting of the Serbian Chemical Society, Book of Abstracts, June 1-2, 2023, Novi Sad, Serbia",
title = "Ru(II) arene based pyridil complexes: synthesis and antimicrobial potency",
pages = "74-74",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5904"
}
Dimitrijević, M., Mihajlović-Lalić, L., Grgurić-Šipka, S., Nikolić, S., Petrović, T.,& Poljarević, J.. (2023). Ru(II) arene based pyridil complexes: synthesis and antimicrobial potency. in 59th Meeting of the Serbian Chemical Society, Book of Abstracts, June 1-2, 2023, Novi Sad, Serbia
Belgrade : Serbian Chemical Society., 74-74.
https://hdl.handle.net/21.15107/rcub_cherry_5904
Dimitrijević M, Mihajlović-Lalić L, Grgurić-Šipka S, Nikolić S, Petrović T, Poljarević J. Ru(II) arene based pyridil complexes: synthesis and antimicrobial potency. in 59th Meeting of the Serbian Chemical Society, Book of Abstracts, June 1-2, 2023, Novi Sad, Serbia. 2023;:74-74.
https://hdl.handle.net/21.15107/rcub_cherry_5904 .
Dimitrijević, Marija, Mihajlović-Lalić, Ljiljana, Grgurić-Šipka, Sanja, Nikolić, Stefan, Petrović, Tamara, Poljarević, Jelena, "Ru(II) arene based pyridil complexes: synthesis and antimicrobial potency" in 59th Meeting of the Serbian Chemical Society, Book of Abstracts, June 1-2, 2023, Novi Sad, Serbia (2023):74-74,
https://hdl.handle.net/21.15107/rcub_cherry_5904 .

Drug combination study of novel oxorhenium(V) complexes

Petrović, Tamara; Gligorijević, Nevenka; Belaj, Ferdinand; Aranđelović, Sandra; Mihajlović-Lalić, Ljiljana; Grgurić-Šipka, Sanja; Poljarević, Jelena

(Elsevier, 2022)

TY  - JOUR
AU  - Petrović, Tamara
AU  - Gligorijević, Nevenka
AU  - Belaj, Ferdinand
AU  - Aranđelović, Sandra
AU  - Mihajlović-Lalić, Ljiljana
AU  - Grgurić-Šipka, Sanja
AU  - Poljarević, Jelena
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5047
AB  - Three Re(V) complexes of structural formulas [ReOCl2L(PPh3)], where L is pyridine-2-carboxylic acid (C1), 3-methyl-pyridine-2-carboxylic acid (C2) and 6-methyl-pyridine-2-carboxylic acid (C3) were synthesized andcharacterized using NMR, IR spectroscopy and mass spectrometry. Crystal structures of all three complexes havebeen additionally confirmed by X-ray analysis. The biological activity has been investigated in the panel of tumorcell lines A549, PANC-1, MDA-MB-231, MCF-7, LS-174, EAhy.926 and one in non-tumor cell line MRC-5. OnlyC1 showed dose-dependent cytotoxic potential, particularly toward triple-negative breast adenocarcinoma cellsMDA-MB-231 with IC50 68.90 ± 1.73 μM and pancreatic adenocarcinoma cells PANC-1 with IC50 69.84 ± 2.3μM. Both cell lines are characterized by a highly invasive and resistant phenotype. Drug combination studies inPANC-1 cells with C1 and Verapamil hydrochloride (VRP), which is the established inhibitor of efflux transporterP-glycoprotein (Pgp), revealed enhancement of antiproliferative action of the complex in a dose-dependentmanner, and slight arrest of cell cycle in the S phase. Also, a depletion of the glutathione (GSH) level by Lbuthionine-sulfoximine (L-BSO) at sub-toxic concentrations (100 μM) caused an increase of activity of C1 to theIC50 57.67 ± 6.51 (μM). A morphological analysis in PANC-1 cells by dual acridine orange/ethidium bromidestaining, revealed apoptotic potential of complex C1 and a slower kinetic of cell death induction, suggesting adifferent mechanism of action compared to cisplatin.
PB  - Elsevier
T2  - Journal of Inorganic Biochemistry
T1  - Drug combination study of novel oxorhenium(V) complexes
VL  - 231
SP  - 111807
DO  - 10.1016/j.jinorgbio.2022.111807
ER  - 
@article{
author = "Petrović, Tamara and Gligorijević, Nevenka and Belaj, Ferdinand and Aranđelović, Sandra and Mihajlović-Lalić, Ljiljana and Grgurić-Šipka, Sanja and Poljarević, Jelena",
year = "2022",
abstract = "Three Re(V) complexes of structural formulas [ReOCl2L(PPh3)], where L is pyridine-2-carboxylic acid (C1), 3-methyl-pyridine-2-carboxylic acid (C2) and 6-methyl-pyridine-2-carboxylic acid (C3) were synthesized andcharacterized using NMR, IR spectroscopy and mass spectrometry. Crystal structures of all three complexes havebeen additionally confirmed by X-ray analysis. The biological activity has been investigated in the panel of tumorcell lines A549, PANC-1, MDA-MB-231, MCF-7, LS-174, EAhy.926 and one in non-tumor cell line MRC-5. OnlyC1 showed dose-dependent cytotoxic potential, particularly toward triple-negative breast adenocarcinoma cellsMDA-MB-231 with IC50 68.90 ± 1.73 μM and pancreatic adenocarcinoma cells PANC-1 with IC50 69.84 ± 2.3μM. Both cell lines are characterized by a highly invasive and resistant phenotype. Drug combination studies inPANC-1 cells with C1 and Verapamil hydrochloride (VRP), which is the established inhibitor of efflux transporterP-glycoprotein (Pgp), revealed enhancement of antiproliferative action of the complex in a dose-dependentmanner, and slight arrest of cell cycle in the S phase. Also, a depletion of the glutathione (GSH) level by Lbuthionine-sulfoximine (L-BSO) at sub-toxic concentrations (100 μM) caused an increase of activity of C1 to theIC50 57.67 ± 6.51 (μM). A morphological analysis in PANC-1 cells by dual acridine orange/ethidium bromidestaining, revealed apoptotic potential of complex C1 and a slower kinetic of cell death induction, suggesting adifferent mechanism of action compared to cisplatin.",
publisher = "Elsevier",
journal = "Journal of Inorganic Biochemistry",
title = "Drug combination study of novel oxorhenium(V) complexes",
volume = "231",
pages = "111807",
doi = "10.1016/j.jinorgbio.2022.111807"
}
Petrović, T., Gligorijević, N., Belaj, F., Aranđelović, S., Mihajlović-Lalić, L., Grgurić-Šipka, S.,& Poljarević, J.. (2022). Drug combination study of novel oxorhenium(V) complexes. in Journal of Inorganic Biochemistry
Elsevier., 231, 111807.
https://doi.org/10.1016/j.jinorgbio.2022.111807
Petrović T, Gligorijević N, Belaj F, Aranđelović S, Mihajlović-Lalić L, Grgurić-Šipka S, Poljarević J. Drug combination study of novel oxorhenium(V) complexes. in Journal of Inorganic Biochemistry. 2022;231:111807.
doi:10.1016/j.jinorgbio.2022.111807 .
Petrović, Tamara, Gligorijević, Nevenka, Belaj, Ferdinand, Aranđelović, Sandra, Mihajlović-Lalić, Ljiljana, Grgurić-Šipka, Sanja, Poljarević, Jelena, "Drug combination study of novel oxorhenium(V) complexes" in Journal of Inorganic Biochemistry, 231 (2022):111807,
https://doi.org/10.1016/j.jinorgbio.2022.111807 . .
2
4
4
2

Oxorhenium(V) complexes in the drug combination study

Petrović, Tamara; Gligorijević, Nevenka; Belaj, Ferdinand; Grgurić-Šipka, Sanja; Nikolić, Stefan; Krstić, Milena; Poljarević, Jelena; Mihajlović-Lalić, Ljiljana

(Belgrade : Serbian Chemical Society, 2022)

TY  - CONF
AU  - Petrović, Tamara
AU  - Gligorijević, Nevenka
AU  - Belaj, Ferdinand
AU  - Grgurić-Šipka, Sanja
AU  - Nikolić, Stefan
AU  - Krstić, Milena
AU  - Poljarević, Jelena
AU  - Mihajlović-Lalić, Ljiljana
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5824
AB  - Rhenium complexes merit particular attention in the area of metallodrug design due to rhenium’s broad spectrum of oxidation states and consequently, the possibility to design compounds of a great structural diversity. Thus, the synthesis, chemical characterization and antitumor activity in vitro of the three Re(V) complexes is described. Novel compounds were obtained via reaction of [ReOCl3(PPh3)2] with corresponding ligands (pyridine-2-carboxylic acid, 3-methylpyridine-2-carboxylic acid and 6-methylpyridine-2-carboxylic acid) in acetonitrile at 78 °C for 3h. The complexes were fully characterized using NMR, IR, MS and elemental analysis. Their octahedral geometry with bidentate NO ligand was confirmed by X-ray diffraction analysis. Antiproliferative effect was determined by MTT assay and only the complex with pyridine-2-carboxylic acid (1) showed dose-dependent cytotoxic potential, particularly toward triple-negative breast adenocarcinoma cells MDA-MB-231 with IC50 68.90 ± 1.73 µM and pancreatic adenocarcinoma cells PANC-1 with IC50 69.8 ± 2.3 µM. Drug combination studies in PANC-1 cells with 1 and Verapamil hydrochloride (VRP) showed slight arrest of cell cycle in the S phase and also it increase its antiproliferative potential to IC50 51.4 ± 2.8 μM. Part of the research included a depletion of the glutathione (GSH) level by L-buthionine-sulfoximine (L-BSO) at sub-toxic concentrations (100 μM) in PANC-1 cells which caused an increase of activity of 1 to the IC50 57.67 ± 6.51 μM.
PB  - Belgrade : Serbian Chemical Society
PB  - Belgrade : Serbian Young Chemists’ Club
C3  - 8 th Conference of Young Chemists of Serbia Belgrade, 29th October 2022
T1  - Oxorhenium(V) complexes in the drug combination study
SP  - 81
EP  - 81
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5824
ER  - 
@conference{
author = "Petrović, Tamara and Gligorijević, Nevenka and Belaj, Ferdinand and Grgurić-Šipka, Sanja and Nikolić, Stefan and Krstić, Milena and Poljarević, Jelena and Mihajlović-Lalić, Ljiljana",
year = "2022",
abstract = "Rhenium complexes merit particular attention in the area of metallodrug design due to rhenium’s broad spectrum of oxidation states and consequently, the possibility to design compounds of a great structural diversity. Thus, the synthesis, chemical characterization and antitumor activity in vitro of the three Re(V) complexes is described. Novel compounds were obtained via reaction of [ReOCl3(PPh3)2] with corresponding ligands (pyridine-2-carboxylic acid, 3-methylpyridine-2-carboxylic acid and 6-methylpyridine-2-carboxylic acid) in acetonitrile at 78 °C for 3h. The complexes were fully characterized using NMR, IR, MS and elemental analysis. Their octahedral geometry with bidentate NO ligand was confirmed by X-ray diffraction analysis. Antiproliferative effect was determined by MTT assay and only the complex with pyridine-2-carboxylic acid (1) showed dose-dependent cytotoxic potential, particularly toward triple-negative breast adenocarcinoma cells MDA-MB-231 with IC50 68.90 ± 1.73 µM and pancreatic adenocarcinoma cells PANC-1 with IC50 69.8 ± 2.3 µM. Drug combination studies in PANC-1 cells with 1 and Verapamil hydrochloride (VRP) showed slight arrest of cell cycle in the S phase and also it increase its antiproliferative potential to IC50 51.4 ± 2.8 μM. Part of the research included a depletion of the glutathione (GSH) level by L-buthionine-sulfoximine (L-BSO) at sub-toxic concentrations (100 μM) in PANC-1 cells which caused an increase of activity of 1 to the IC50 57.67 ± 6.51 μM.",
publisher = "Belgrade : Serbian Chemical Society, Belgrade : Serbian Young Chemists’ Club",
journal = "8 th Conference of Young Chemists of Serbia Belgrade, 29th October 2022",
title = "Oxorhenium(V) complexes in the drug combination study",
pages = "81-81",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5824"
}
Petrović, T., Gligorijević, N., Belaj, F., Grgurić-Šipka, S., Nikolić, S., Krstić, M., Poljarević, J.,& Mihajlović-Lalić, L.. (2022). Oxorhenium(V) complexes in the drug combination study. in 8 th Conference of Young Chemists of Serbia Belgrade, 29th October 2022
Belgrade : Serbian Chemical Society., 81-81.
https://hdl.handle.net/21.15107/rcub_cherry_5824
Petrović T, Gligorijević N, Belaj F, Grgurić-Šipka S, Nikolić S, Krstić M, Poljarević J, Mihajlović-Lalić L. Oxorhenium(V) complexes in the drug combination study. in 8 th Conference of Young Chemists of Serbia Belgrade, 29th October 2022. 2022;:81-81.
https://hdl.handle.net/21.15107/rcub_cherry_5824 .
Petrović, Tamara, Gligorijević, Nevenka, Belaj, Ferdinand, Grgurić-Šipka, Sanja, Nikolić, Stefan, Krstić, Milena, Poljarević, Jelena, Mihajlović-Lalić, Ljiljana, "Oxorhenium(V) complexes in the drug combination study" in 8 th Conference of Young Chemists of Serbia Belgrade, 29th October 2022 (2022):81-81,
https://hdl.handle.net/21.15107/rcub_cherry_5824 .

PO-017 Oxorhenium(V) complexes in the drug combination study

Petrović, Tamara; Gligorijević, Nevenka; Belaj, Ferdinand; Grgurić-Šipka, Sanja; Nikolić, Stefan; Krstić, Milena; Poljarević, Jelena; Mihajlović-Lalić, Ljiljana

(Wien, Österreich : Nibelungengasse, 2022)

TY  - CONF
AU  - Petrović, Tamara
AU  - Gligorijević, Nevenka
AU  - Belaj, Ferdinand
AU  - Grgurić-Šipka, Sanja
AU  - Nikolić, Stefan
AU  - Krstić, Milena
AU  - Poljarević, Jelena
AU  - Mihajlović-Lalić, Ljiljana
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5865
AB  - Rhenium complexes merit particular attention in the area of metallodrug design due to rhenium’s broad spectrum of oxidation states and consequently, the possibility to design compounds of a great structural diversity. Thus, the synthesis, chemical characterization and antitumor activity in vitro of the three Re(V) complexes is described. Novel compounds were obtained via reaction of [ReOCl3(PPh3)2] with corresponding ligands (pyridine-2-carboxylic acid, 3-methylpyridine-2-carboxylic acid and 6-methylpyridine- 2-carboxylic acid) in acetonitrile at 78 °C for 3h. The complexes were fully characterized using NMR, IR, MS and elemental analysis. Their octahedral geometry with bidentate N^O ligand was confirmed by X-ray diffraction analysis. Antiproliferative effect was determined by MTT assay and only the complex with pyridine-2-carboxylic acid (1) showed dose-dependent cytotoxic potential, particularly toward triple-negative breast adenocarcinoma cells MDA-MB-231 with IC50 68.90 ±
1.73 μM and pancreatic adenocarcinoma cells PANC-1 with IC50 69.8 ± 2.3 μM. Drug combination studies in PANC-1 cells with 1 and Verapamil hydrochloride (VRP) showed slight arrest of cell cycle in the S phase and also it increase its antiproliferative potential to IC50 51.4 ± 2.8 μM. Part of the research included a depletion of the glutathione (GSH) level by L-buthionine-sulfoximine (L-BSO) at sub-toxic concentrations (100 μM) in PANC-1 cells which caused an increase of activity of 1 to the IC50 57.67 ± 6.51 μM.
PB  - Wien, Österreich : Nibelungengasse
C3  - Österreichische Chemische Gesellschaft, September 20, 22, 2022, Vienna, Austria
T1  - PO-017 Oxorhenium(V) complexes in the drug combination study
SP  - 90
EP  - 90
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5865
ER  - 
@conference{
author = "Petrović, Tamara and Gligorijević, Nevenka and Belaj, Ferdinand and Grgurić-Šipka, Sanja and Nikolić, Stefan and Krstić, Milena and Poljarević, Jelena and Mihajlović-Lalić, Ljiljana",
year = "2022",
abstract = "Rhenium complexes merit particular attention in the area of metallodrug design due to rhenium’s broad spectrum of oxidation states and consequently, the possibility to design compounds of a great structural diversity. Thus, the synthesis, chemical characterization and antitumor activity in vitro of the three Re(V) complexes is described. Novel compounds were obtained via reaction of [ReOCl3(PPh3)2] with corresponding ligands (pyridine-2-carboxylic acid, 3-methylpyridine-2-carboxylic acid and 6-methylpyridine- 2-carboxylic acid) in acetonitrile at 78 °C for 3h. The complexes were fully characterized using NMR, IR, MS and elemental analysis. Their octahedral geometry with bidentate N^O ligand was confirmed by X-ray diffraction analysis. Antiproliferative effect was determined by MTT assay and only the complex with pyridine-2-carboxylic acid (1) showed dose-dependent cytotoxic potential, particularly toward triple-negative breast adenocarcinoma cells MDA-MB-231 with IC50 68.90 ±
1.73 μM and pancreatic adenocarcinoma cells PANC-1 with IC50 69.8 ± 2.3 μM. Drug combination studies in PANC-1 cells with 1 and Verapamil hydrochloride (VRP) showed slight arrest of cell cycle in the S phase and also it increase its antiproliferative potential to IC50 51.4 ± 2.8 μM. Part of the research included a depletion of the glutathione (GSH) level by L-buthionine-sulfoximine (L-BSO) at sub-toxic concentrations (100 μM) in PANC-1 cells which caused an increase of activity of 1 to the IC50 57.67 ± 6.51 μM.",
publisher = "Wien, Österreich : Nibelungengasse",
journal = "Österreichische Chemische Gesellschaft, September 20, 22, 2022, Vienna, Austria",
title = "PO-017 Oxorhenium(V) complexes in the drug combination study",
pages = "90-90",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5865"
}
Petrović, T., Gligorijević, N., Belaj, F., Grgurić-Šipka, S., Nikolić, S., Krstić, M., Poljarević, J.,& Mihajlović-Lalić, L.. (2022). PO-017 Oxorhenium(V) complexes in the drug combination study. in Österreichische Chemische Gesellschaft, September 20, 22, 2022, Vienna, Austria
Wien, Österreich : Nibelungengasse., 90-90.
https://hdl.handle.net/21.15107/rcub_cherry_5865
Petrović T, Gligorijević N, Belaj F, Grgurić-Šipka S, Nikolić S, Krstić M, Poljarević J, Mihajlović-Lalić L. PO-017 Oxorhenium(V) complexes in the drug combination study. in Österreichische Chemische Gesellschaft, September 20, 22, 2022, Vienna, Austria. 2022;:90-90.
https://hdl.handle.net/21.15107/rcub_cherry_5865 .
Petrović, Tamara, Gligorijević, Nevenka, Belaj, Ferdinand, Grgurić-Šipka, Sanja, Nikolić, Stefan, Krstić, Milena, Poljarević, Jelena, Mihajlović-Lalić, Ljiljana, "PO-017 Oxorhenium(V) complexes in the drug combination study" in Österreichische Chemische Gesellschaft, September 20, 22, 2022, Vienna, Austria (2022):90-90,
https://hdl.handle.net/21.15107/rcub_cherry_5865 .

Ru(II) bipyridine complexes with acetylpyridine analogues spectral and electrochemical characterization

Mihajlović-Lalić, Ljiljana; Poljarević, Jelena; Nikolić, Stefan; Petrović, Tamara; Stanković, Dalibor; Grgurić-Šipka, Sanja

(Belgrade : Serbian Chemical Society, 2022)

TY  - CONF
AU  - Mihajlović-Lalić, Ljiljana
AU  - Poljarević, Jelena
AU  - Nikolić, Stefan
AU  - Petrović, Tamara
AU  - Stanković, Dalibor
AU  - Grgurić-Šipka, Sanja
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5822
AB  - The versatile chemistry of ruthenium complexes involves thousands of compounds aimed
for different applications related to e.g. homogenous catalysis, cancer therapy, tumor
diagnosis, and advanced materials.1 Thus, the synthesis and full (electro)chemical
characterization of three new Ru(II) complexes carrying acetylpyridine (acpy) ligand unitis
is described. The complexes were obtained via reaction of three ligand equivalents (2-, 3-,
and 4-acpy) with an equimolar amount of metal precursor, [RuCl2(bpy)2] in methanol.
After the overnight reflux, the reaction mixture was left to cool when equimolar amount of
NH4PF6 was added. The products were isolated in a form of dark red powder. The
complexes were characterized by IR, NMR and MS revealing bidentate coordination of 2-
acpy and monodentate binding of 3- and 4-acpy. Their electrochemical profile was studied
by cyclic voltammetry which confirmed rich redox chemistry.
AB  - Raznovrsna hemija kompleksa rutenijuma obuhvata hiljade jedinjenja namenjenih za
različite primene, npr. homogenu katalizu, terapiju kancera, dijagnozu tumora i moderne
materijale.1
 S tim u vezi se opisuje sinteza i kompletna (elektro)hemijska karakterizacija tri
nova Ru(II) kompleksa sa acetilpiridinskim ligandom (acpy). Kompleksi su dobijeni
reakcijom tri ekvivalenta liganda (2-, 3-, i 4-acpy) sa ekvimolarnom količinom prekursora
metala, [RuCl2(bpy)2] u metanolu. Nakon refluksa preko noći, reakciona smeša je
ostavljena da se ohladi kad je dodata ekvimolarna količina NH4PF6. Produkti su izolovani
u obliku tamnocrvenog praha. Kompleksi su okarakterisani IC, NMR i MS pokazujući
bidentatnu koordinaciju 2-acpy i monodentatno vezivanje 3- i 4-acpy. Njihov
elektrohemijski profil je ispitan cikličnom voltametrijom koja je potvrdila bogatu redoks
hemiju.
PB  - Belgrade : Serbian Chemical Society
C3  - 58th Meeting of the Serbian Chemical Society, Belgrade, Serbia, 9th-10th June, 2022. In: Book of Abstracts and Proceedings
T1  - Ru(II) bipyridine complexes with acetylpyridine analogues spectral and electrochemical characterization
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5822
ER  - 
@conference{
author = "Mihajlović-Lalić, Ljiljana and Poljarević, Jelena and Nikolić, Stefan and Petrović, Tamara and Stanković, Dalibor and Grgurić-Šipka, Sanja",
year = "2022",
abstract = "The versatile chemistry of ruthenium complexes involves thousands of compounds aimed
for different applications related to e.g. homogenous catalysis, cancer therapy, tumor
diagnosis, and advanced materials.1 Thus, the synthesis and full (electro)chemical
characterization of three new Ru(II) complexes carrying acetylpyridine (acpy) ligand unitis
is described. The complexes were obtained via reaction of three ligand equivalents (2-, 3-,
and 4-acpy) with an equimolar amount of metal precursor, [RuCl2(bpy)2] in methanol.
After the overnight reflux, the reaction mixture was left to cool when equimolar amount of
NH4PF6 was added. The products were isolated in a form of dark red powder. The
complexes were characterized by IR, NMR and MS revealing bidentate coordination of 2-
acpy and monodentate binding of 3- and 4-acpy. Their electrochemical profile was studied
by cyclic voltammetry which confirmed rich redox chemistry., Raznovrsna hemija kompleksa rutenijuma obuhvata hiljade jedinjenja namenjenih za
različite primene, npr. homogenu katalizu, terapiju kancera, dijagnozu tumora i moderne
materijale.1
 S tim u vezi se opisuje sinteza i kompletna (elektro)hemijska karakterizacija tri
nova Ru(II) kompleksa sa acetilpiridinskim ligandom (acpy). Kompleksi su dobijeni
reakcijom tri ekvivalenta liganda (2-, 3-, i 4-acpy) sa ekvimolarnom količinom prekursora
metala, [RuCl2(bpy)2] u metanolu. Nakon refluksa preko noći, reakciona smeša je
ostavljena da se ohladi kad je dodata ekvimolarna količina NH4PF6. Produkti su izolovani
u obliku tamnocrvenog praha. Kompleksi su okarakterisani IC, NMR i MS pokazujući
bidentatnu koordinaciju 2-acpy i monodentatno vezivanje 3- i 4-acpy. Njihov
elektrohemijski profil je ispitan cikličnom voltametrijom koja je potvrdila bogatu redoks
hemiju.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "58th Meeting of the Serbian Chemical Society, Belgrade, Serbia, 9th-10th June, 2022. In: Book of Abstracts and Proceedings",
title = "Ru(II) bipyridine complexes with acetylpyridine analogues spectral and electrochemical characterization",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5822"
}
Mihajlović-Lalić, L., Poljarević, J., Nikolić, S., Petrović, T., Stanković, D.,& Grgurić-Šipka, S.. (2022). Ru(II) bipyridine complexes with acetylpyridine analogues spectral and electrochemical characterization. in 58th Meeting of the Serbian Chemical Society, Belgrade, Serbia, 9th-10th June, 2022. In: Book of Abstracts and Proceedings
Belgrade : Serbian Chemical Society..
https://hdl.handle.net/21.15107/rcub_cherry_5822
Mihajlović-Lalić L, Poljarević J, Nikolić S, Petrović T, Stanković D, Grgurić-Šipka S. Ru(II) bipyridine complexes with acetylpyridine analogues spectral and electrochemical characterization. in 58th Meeting of the Serbian Chemical Society, Belgrade, Serbia, 9th-10th June, 2022. In: Book of Abstracts and Proceedings. 2022;.
https://hdl.handle.net/21.15107/rcub_cherry_5822 .
Mihajlović-Lalić, Ljiljana, Poljarević, Jelena, Nikolić, Stefan, Petrović, Tamara, Stanković, Dalibor, Grgurić-Šipka, Sanja, "Ru(II) bipyridine complexes with acetylpyridine analogues spectral and electrochemical characterization" in 58th Meeting of the Serbian Chemical Society, Belgrade, Serbia, 9th-10th June, 2022. In: Book of Abstracts and Proceedings (2022),
https://hdl.handle.net/21.15107/rcub_cherry_5822 .

Drug combination study of novel oxorhenium(V) complexes

Petrović, Tamara; Gligorijević, Nevenka; Belaj, Ferdinand; Aranđelović, Sandra; Mihajlović-Lalić, Ljiljana; Grgurić-Šipka, Sanja; Poljarević, Jelena

(Elsevier, 2022)

TY  - JOUR
AU  - Petrović, Tamara
AU  - Gligorijević, Nevenka
AU  - Belaj, Ferdinand
AU  - Aranđelović, Sandra
AU  - Mihajlović-Lalić, Ljiljana
AU  - Grgurić-Šipka, Sanja
AU  - Poljarević, Jelena
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5046
AB  - Three Re(V) complexes of structural formulas [ReOCl2L(PPh3)], where L is pyridine-2-carboxylic acid (C1), 3-
methyl-pyridine-2-carboxylic acid (C2) and 6-methyl-pyridine-2-carboxylic acid (C3) were synthesized and
characterized using NMR, IR spectroscopy and mass spectrometry. Crystal structures of all three complexes have
been additionally confirmed by X-ray analysis. The biological activity has been investigated in the panel of tumor
cell lines A549, PANC-1, MDA-MB-231, MCF-7, LS-174, EAhy.926 and one in non-tumor cell line MRC-5. Only
C1 showed dose-dependent cytotoxic potential, particularly toward triple-negative breast adenocarcinoma cells
MDA-MB-231 with IC50 68.90 ± 1.73 μM and pancreatic adenocarcinoma cells PANC-1 with IC50 69.84 ± 2.3
μM. Both cell lines are characterized by a highly invasive and resistant phenotype. Drug combination studies in
PANC-1 cells with C1 and Verapamil hydrochloride (VRP), which is the established inhibitor of efflux transporter
P-glycoprotein (Pgp), revealed enhancement of antiproliferative action of the complex in a dose-dependent
manner, and slight arrest of cell cycle in the S phase. Also, a depletion of the glutathione (GSH) level by Lbuthionine-sulfoximine (L-BSO) at sub-toxic concentrations (100 μM) caused an increase of activity of C1 to the
IC50 57.67 ± 6.51 (μM). A morphological analysis in PANC-1 cells by dual acridine orange/ethidium bromide
staining, revealed apoptotic potential of complex C1 and a slower kinetic of cell death induction, suggesting a
different mechanism of action compared to cisplatin.
PB  - Elsevier
T2  - Journal of Inorganic Biochemistry
T1  - Drug combination study of novel oxorhenium(V) complexes
VL  - 231
SP  - 111807
DO  - 10.1016/j.jinorgbio.2022.111807
ER  - 
@article{
author = "Petrović, Tamara and Gligorijević, Nevenka and Belaj, Ferdinand and Aranđelović, Sandra and Mihajlović-Lalić, Ljiljana and Grgurić-Šipka, Sanja and Poljarević, Jelena",
year = "2022",
abstract = "Three Re(V) complexes of structural formulas [ReOCl2L(PPh3)], where L is pyridine-2-carboxylic acid (C1), 3-
methyl-pyridine-2-carboxylic acid (C2) and 6-methyl-pyridine-2-carboxylic acid (C3) were synthesized and
characterized using NMR, IR spectroscopy and mass spectrometry. Crystal structures of all three complexes have
been additionally confirmed by X-ray analysis. The biological activity has been investigated in the panel of tumor
cell lines A549, PANC-1, MDA-MB-231, MCF-7, LS-174, EAhy.926 and one in non-tumor cell line MRC-5. Only
C1 showed dose-dependent cytotoxic potential, particularly toward triple-negative breast adenocarcinoma cells
MDA-MB-231 with IC50 68.90 ± 1.73 μM and pancreatic adenocarcinoma cells PANC-1 with IC50 69.84 ± 2.3
μM. Both cell lines are characterized by a highly invasive and resistant phenotype. Drug combination studies in
PANC-1 cells with C1 and Verapamil hydrochloride (VRP), which is the established inhibitor of efflux transporter
P-glycoprotein (Pgp), revealed enhancement of antiproliferative action of the complex in a dose-dependent
manner, and slight arrest of cell cycle in the S phase. Also, a depletion of the glutathione (GSH) level by Lbuthionine-sulfoximine (L-BSO) at sub-toxic concentrations (100 μM) caused an increase of activity of C1 to the
IC50 57.67 ± 6.51 (μM). A morphological analysis in PANC-1 cells by dual acridine orange/ethidium bromide
staining, revealed apoptotic potential of complex C1 and a slower kinetic of cell death induction, suggesting a
different mechanism of action compared to cisplatin.",
publisher = "Elsevier",
journal = "Journal of Inorganic Biochemistry",
title = "Drug combination study of novel oxorhenium(V) complexes",
volume = "231",
pages = "111807",
doi = "10.1016/j.jinorgbio.2022.111807"
}
Petrović, T., Gligorijević, N., Belaj, F., Aranđelović, S., Mihajlović-Lalić, L., Grgurić-Šipka, S.,& Poljarević, J.. (2022). Drug combination study of novel oxorhenium(V) complexes. in Journal of Inorganic Biochemistry
Elsevier., 231, 111807.
https://doi.org/10.1016/j.jinorgbio.2022.111807
Petrović T, Gligorijević N, Belaj F, Aranđelović S, Mihajlović-Lalić L, Grgurić-Šipka S, Poljarević J. Drug combination study of novel oxorhenium(V) complexes. in Journal of Inorganic Biochemistry. 2022;231:111807.
doi:10.1016/j.jinorgbio.2022.111807 .
Petrović, Tamara, Gligorijević, Nevenka, Belaj, Ferdinand, Aranđelović, Sandra, Mihajlović-Lalić, Ljiljana, Grgurić-Šipka, Sanja, Poljarević, Jelena, "Drug combination study of novel oxorhenium(V) complexes" in Journal of Inorganic Biochemistry, 231 (2022):111807,
https://doi.org/10.1016/j.jinorgbio.2022.111807 . .
2
4
4
2

Synthesis, chemical characterization, PARP inhibition, DNA binding and cellular uptake of novel ruthenium(II)-arene complexes bearing benzamide derivatives in human breast cancer cells

Pavlović, Marijana; Tadić, Ana; Gligorijević, Nevenka; Poljarević, Jelena; Petrović, Tamara; Dojčinović, Biljana P.; Savić, Aleksandar; Radulović, Siniša; Grgurić-Šipka, Sanja; Aranđelović, Sandra

(Elsevier, 2020)

TY  - JOUR
AU  - Pavlović, Marijana
AU  - Tadić, Ana
AU  - Gligorijević, Nevenka
AU  - Poljarević, Jelena
AU  - Petrović, Tamara
AU  - Dojčinović, Biljana P.
AU  - Savić, Aleksandar
AU  - Radulović, Siniša
AU  - Grgurić-Šipka, Sanja
AU  - Aranđelović, Sandra
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4048
AB  - Inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1) showed remarkable clinical efficacy in BRCA-mutated tumors. Based on the rational drug design, derivatives of PARP inhibitor 3-aminobenzamide (3-AB), 2-amino-4-methylbenzamide (L1) and 3-amino-N-methylbenzamide (L2), were coordinated to the ruthenium(II) ion, to form potential drugs affecting DNA and inhibiting PARP enzyme. The four conjugated complexes of formula: C1 [(ƞ6-toluene)Ru(L1)Cl]PF6, C2 [(ƞ6-p-cymene)Ru(L1)Cl]PF6, C3 [(ƞ6-toluene)Ru(L2)Cl2] and C4 [(ƞ6-p-cymene)Ru(L2)Cl2], have been synthesized and characterized. Colorimetric 3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) assay showed the highest antiproliferative activity of C1 in HCC1937, MDA-MB-231, and MCF-7 breast cancer cells. Efficiency of inhibition of PARP-1 enzymatic activity in vitro decreased in order: C2 > C4 > 3-AB>C1 > C3. ICP-MS study of intracellular accumulation and distribution in BRCA1-mutated HCC1937 revealed that C1-C4 entered cells within 24 h. The complex C1 showed the highest intracellular accumulation, nuclear-targeting properties, and exhibited the highest DNA binding (39.2 ± 0.6 pg of Ru per μg of DNA) that resulted in the cell cycle arrest in the S phase.
PB  - Elsevier
T2  - Journal of Inorganic Biochemistry
T1  - Synthesis, chemical characterization, PARP inhibition, DNA binding and cellular uptake of novel ruthenium(II)-arene complexes bearing benzamide derivatives in human breast cancer cells
VL  - 210
SP  - 111155
DO  - 10.1016/j.jinorgbio.2020.111155
ER  - 
@article{
author = "Pavlović, Marijana and Tadić, Ana and Gligorijević, Nevenka and Poljarević, Jelena and Petrović, Tamara and Dojčinović, Biljana P. and Savić, Aleksandar and Radulović, Siniša and Grgurić-Šipka, Sanja and Aranđelović, Sandra",
year = "2020",
abstract = "Inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1) showed remarkable clinical efficacy in BRCA-mutated tumors. Based on the rational drug design, derivatives of PARP inhibitor 3-aminobenzamide (3-AB), 2-amino-4-methylbenzamide (L1) and 3-amino-N-methylbenzamide (L2), were coordinated to the ruthenium(II) ion, to form potential drugs affecting DNA and inhibiting PARP enzyme. The four conjugated complexes of formula: C1 [(ƞ6-toluene)Ru(L1)Cl]PF6, C2 [(ƞ6-p-cymene)Ru(L1)Cl]PF6, C3 [(ƞ6-toluene)Ru(L2)Cl2] and C4 [(ƞ6-p-cymene)Ru(L2)Cl2], have been synthesized and characterized. Colorimetric 3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) assay showed the highest antiproliferative activity of C1 in HCC1937, MDA-MB-231, and MCF-7 breast cancer cells. Efficiency of inhibition of PARP-1 enzymatic activity in vitro decreased in order: C2 > C4 > 3-AB>C1 > C3. ICP-MS study of intracellular accumulation and distribution in BRCA1-mutated HCC1937 revealed that C1-C4 entered cells within 24 h. The complex C1 showed the highest intracellular accumulation, nuclear-targeting properties, and exhibited the highest DNA binding (39.2 ± 0.6 pg of Ru per μg of DNA) that resulted in the cell cycle arrest in the S phase.",
publisher = "Elsevier",
journal = "Journal of Inorganic Biochemistry",
title = "Synthesis, chemical characterization, PARP inhibition, DNA binding and cellular uptake of novel ruthenium(II)-arene complexes bearing benzamide derivatives in human breast cancer cells",
volume = "210",
pages = "111155",
doi = "10.1016/j.jinorgbio.2020.111155"
}
Pavlović, M., Tadić, A., Gligorijević, N., Poljarević, J., Petrović, T., Dojčinović, B. P., Savić, A., Radulović, S., Grgurić-Šipka, S.,& Aranđelović, S.. (2020). Synthesis, chemical characterization, PARP inhibition, DNA binding and cellular uptake of novel ruthenium(II)-arene complexes bearing benzamide derivatives in human breast cancer cells. in Journal of Inorganic Biochemistry
Elsevier., 210, 111155.
https://doi.org/10.1016/j.jinorgbio.2020.111155
Pavlović M, Tadić A, Gligorijević N, Poljarević J, Petrović T, Dojčinović BP, Savić A, Radulović S, Grgurić-Šipka S, Aranđelović S. Synthesis, chemical characterization, PARP inhibition, DNA binding and cellular uptake of novel ruthenium(II)-arene complexes bearing benzamide derivatives in human breast cancer cells. in Journal of Inorganic Biochemistry. 2020;210:111155.
doi:10.1016/j.jinorgbio.2020.111155 .
Pavlović, Marijana, Tadić, Ana, Gligorijević, Nevenka, Poljarević, Jelena, Petrović, Tamara, Dojčinović, Biljana P., Savić, Aleksandar, Radulović, Siniša, Grgurić-Šipka, Sanja, Aranđelović, Sandra, "Synthesis, chemical characterization, PARP inhibition, DNA binding and cellular uptake of novel ruthenium(II)-arene complexes bearing benzamide derivatives in human breast cancer cells" in Journal of Inorganic Biochemistry, 210 (2020):111155,
https://doi.org/10.1016/j.jinorgbio.2020.111155 . .
1
14
6
14
12

Supplementary data for the article: Pavlović, M.; Tadić, A.; Gligorijević, N.; Poljarević, J.; Petrović, T.; Dojčinović, B.; Savić, A.; Radulović, S.; Grgurić-Šipka, S.; Aranđelović, S. Synthesis, Chemical Characterization, PARP Inhibition, DNA Binding and Cellular Uptake of Novel Ruthenium(II)-Arene Complexes Bearing Benzamide Derivatives in Human Breast Cancer Cells. Journal of Inorganic Biochemistry 2020, 210, 111155. https://doi.org/10.1016/j.jinorgbio.2020.111155

Pavlović, Marijana; Tadić, Ana; Gligorijević, Nevenka; Poljarević, Jelena; Petrović, Tamara; Dojčinović, Biljana P.; Savić, Aleksandar; Radulović, Siniša; Grgurić-Šipka, Sanja; Aranđelović, Sandra

(Elsevier, 2020)

TY  - DATA
AU  - Pavlović, Marijana
AU  - Tadić, Ana
AU  - Gligorijević, Nevenka
AU  - Poljarević, Jelena
AU  - Petrović, Tamara
AU  - Dojčinović, Biljana P.
AU  - Savić, Aleksandar
AU  - Radulović, Siniša
AU  - Grgurić-Šipka, Sanja
AU  - Aranđelović, Sandra
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4049
PB  - Elsevier
T2  - Journal of Inorganic Biochemistry
T1  - Supplementary data for the article: Pavlović, M.; Tadić, A.; Gligorijević, N.; Poljarević, J.; Petrović, T.; Dojčinović, B.; Savić, A.; Radulović, S.; Grgurić-Šipka, S.; Aranđelović, S. Synthesis, Chemical Characterization, PARP Inhibition, DNA Binding and Cellular Uptake of Novel Ruthenium(II)-Arene Complexes Bearing Benzamide Derivatives in Human Breast Cancer Cells. Journal of Inorganic Biochemistry 2020, 210, 111155. https://doi.org/10.1016/j.jinorgbio.2020.111155
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4049
ER  - 
@misc{
author = "Pavlović, Marijana and Tadić, Ana and Gligorijević, Nevenka and Poljarević, Jelena and Petrović, Tamara and Dojčinović, Biljana P. and Savić, Aleksandar and Radulović, Siniša and Grgurić-Šipka, Sanja and Aranđelović, Sandra",
year = "2020",
publisher = "Elsevier",
journal = "Journal of Inorganic Biochemistry",
title = "Supplementary data for the article: Pavlović, M.; Tadić, A.; Gligorijević, N.; Poljarević, J.; Petrović, T.; Dojčinović, B.; Savić, A.; Radulović, S.; Grgurić-Šipka, S.; Aranđelović, S. Synthesis, Chemical Characterization, PARP Inhibition, DNA Binding and Cellular Uptake of Novel Ruthenium(II)-Arene Complexes Bearing Benzamide Derivatives in Human Breast Cancer Cells. Journal of Inorganic Biochemistry 2020, 210, 111155. https://doi.org/10.1016/j.jinorgbio.2020.111155",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4049"
}
Pavlović, M., Tadić, A., Gligorijević, N., Poljarević, J., Petrović, T., Dojčinović, B. P., Savić, A., Radulović, S., Grgurić-Šipka, S.,& Aranđelović, S.. (2020). Supplementary data for the article: Pavlović, M.; Tadić, A.; Gligorijević, N.; Poljarević, J.; Petrović, T.; Dojčinović, B.; Savić, A.; Radulović, S.; Grgurić-Šipka, S.; Aranđelović, S. Synthesis, Chemical Characterization, PARP Inhibition, DNA Binding and Cellular Uptake of Novel Ruthenium(II)-Arene Complexes Bearing Benzamide Derivatives in Human Breast Cancer Cells. Journal of Inorganic Biochemistry 2020, 210, 111155. https://doi.org/10.1016/j.jinorgbio.2020.111155. in Journal of Inorganic Biochemistry
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_4049
Pavlović M, Tadić A, Gligorijević N, Poljarević J, Petrović T, Dojčinović BP, Savić A, Radulović S, Grgurić-Šipka S, Aranđelović S. Supplementary data for the article: Pavlović, M.; Tadić, A.; Gligorijević, N.; Poljarević, J.; Petrović, T.; Dojčinović, B.; Savić, A.; Radulović, S.; Grgurić-Šipka, S.; Aranđelović, S. Synthesis, Chemical Characterization, PARP Inhibition, DNA Binding and Cellular Uptake of Novel Ruthenium(II)-Arene Complexes Bearing Benzamide Derivatives in Human Breast Cancer Cells. Journal of Inorganic Biochemistry 2020, 210, 111155. https://doi.org/10.1016/j.jinorgbio.2020.111155. in Journal of Inorganic Biochemistry. 2020;.
https://hdl.handle.net/21.15107/rcub_cherry_4049 .
Pavlović, Marijana, Tadić, Ana, Gligorijević, Nevenka, Poljarević, Jelena, Petrović, Tamara, Dojčinović, Biljana P., Savić, Aleksandar, Radulović, Siniša, Grgurić-Šipka, Sanja, Aranđelović, Sandra, "Supplementary data for the article: Pavlović, M.; Tadić, A.; Gligorijević, N.; Poljarević, J.; Petrović, T.; Dojčinović, B.; Savić, A.; Radulović, S.; Grgurić-Šipka, S.; Aranđelović, S. Synthesis, Chemical Characterization, PARP Inhibition, DNA Binding and Cellular Uptake of Novel Ruthenium(II)-Arene Complexes Bearing Benzamide Derivatives in Human Breast Cancer Cells. Journal of Inorganic Biochemistry 2020, 210, 111155. https://doi.org/10.1016/j.jinorgbio.2020.111155" in Journal of Inorganic Biochemistry (2020),
https://hdl.handle.net/21.15107/rcub_cherry_4049 .