Fischer, Rainer

Link to this page

Authority KeyName Variants
orcid::0000-0003-0129-9174
  • Fischer, Rainer (39)
Projects
Allergens, antibodies, enzymes and small physiologically important molecules: design, structure, function and relevance Study of structure-function relationships in the plant cell wall and modifications of the wall structure by enzyme engineering
Novel encapsulation and enzyme technologies for designing of new biocatalysts and biologically active compounds targeting enhancement of food quality, safety and competitiveness Excellence Initiative by the German federal government
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200053 (University of Belgrade, Institute for Multidisciplinary Research)
DAAD bilateral project 451-03-01038/2015-09/21 Fulbright Foundation
G. Menghiu acknowledges support from the strategic grant POSDRU/159/1.5/S/137750: Project “Doctoral and postdoctoral programs support for increased competitiveness in exact sciences research” co-financed by the European Social Fund within the Sectorial Operational Program Human Resources Development 2007–2013. This research was funded by the GRANT PNIII-P3- 284, ChitoWound—Biotechnological tools implementation for new wound healing applications of byproducts from the crustacean seafood processing industry. Harvard MRSEC [DMR-0820484]
internal program MEF from the Fraunhofer Gesellschaft [125-600156] National Science Foundation (NSF) [DMR-1310266]
National Science Foundation under NSF Award [ECS-0335765] NSERC PGS D
RWTH Aachen University Cluster of Excellence “Tailor-made Fuels from Biomass”.
FEBS Collaborative and Experimental Scholarship for Central and Eastern Europe Fulbright Foundation.
National Science Foundation (NSF) (DMR-1310266) and Harvard MRSEC (DMR-0820484). National Science Foundation under NSF Award No. ECS-0335765.
RWTH Aachen University.

Author's Bibliography

Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization

Popović, Nikolina; Pržulj, Dunja; Mladenović, Maja; Prodanović, Olivera; Ece, Selin; Ilić Đurđić, Karla; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(2021)

TY  - JOUR
AU  - Popović, Nikolina
AU  - Pržulj, Dunja
AU  - Mladenović, Maja
AU  - Prodanović, Olivera
AU  - Ece, Selin
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0141813021008813
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4406
AB  - High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV–Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.
T2  - International Journal of Biological Macromolecules
T1  - Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization
VL  - 181
SP  - 1072
EP  - 1080
DO  - 10.1016/j.ijbiomac.2021.04.115
ER  - 
@article{
author = "Popović, Nikolina and Pržulj, Dunja and Mladenović, Maja and Prodanović, Olivera and Ece, Selin and Ilić Đurđić, Karla and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2021",
abstract = "High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV–Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.",
journal = "International Journal of Biological Macromolecules",
title = "Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization",
volume = "181",
pages = "1072-1080",
doi = "10.1016/j.ijbiomac.2021.04.115"
}
Popović, N., Pržulj, D., Mladenović, M., Prodanović, O., Ece, S., Ilić Đurđić, K., Ostafe, R., Fischer, R.,& Prodanović, R.. (2021). Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. in International Journal of Biological Macromolecules, 181, 1072-1080.
https://doi.org/10.1016/j.ijbiomac.2021.04.115
Popović N, Pržulj D, Mladenović M, Prodanović O, Ece S, Ilić Đurđić K, Ostafe R, Fischer R, Prodanović R. Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. in International Journal of Biological Macromolecules. 2021;181:1072-1080.
doi:10.1016/j.ijbiomac.2021.04.115 .
Popović, Nikolina, Pržulj, Dunja, Mladenović, Maja, Prodanović, Olivera, Ece, Selin, Ilić Đurđić, Karla, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization" in International Journal of Biological Macromolecules, 181 (2021):1072-1080,
https://doi.org/10.1016/j.ijbiomac.2021.04.115 . .
3
2
1

Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization

Popović, Nikolina; Pržulj, Dunja; Mladenović, Maja; Prodanović, Olivera; Ece, Selin; Ilić Đurđić, Karla; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(2021)

TY  - JOUR
AU  - Popović, Nikolina
AU  - Pržulj, Dunja
AU  - Mladenović, Maja
AU  - Prodanović, Olivera
AU  - Ece, Selin
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0141813021008813
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4404
AB  - High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV–Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.
T2  - International Journal of Biological Macromolecules
T1  - Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization
VL  - 181
SP  - 1072
EP  - 1080
DO  - 10.1016/j.ijbiomac.2021.04.115
ER  - 
@article{
author = "Popović, Nikolina and Pržulj, Dunja and Mladenović, Maja and Prodanović, Olivera and Ece, Selin and Ilić Đurđić, Karla and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2021",
abstract = "High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV–Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.",
journal = "International Journal of Biological Macromolecules",
title = "Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization",
volume = "181",
pages = "1072-1080",
doi = "10.1016/j.ijbiomac.2021.04.115"
}
Popović, N., Pržulj, D., Mladenović, M., Prodanović, O., Ece, S., Ilić Đurđić, K., Ostafe, R., Fischer, R.,& Prodanović, R.. (2021). Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. in International Journal of Biological Macromolecules, 181, 1072-1080.
https://doi.org/10.1016/j.ijbiomac.2021.04.115
Popović N, Pržulj D, Mladenović M, Prodanović O, Ece S, Ilić Đurđić K, Ostafe R, Fischer R, Prodanović R. Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. in International Journal of Biological Macromolecules. 2021;181:1072-1080.
doi:10.1016/j.ijbiomac.2021.04.115 .
Popović, Nikolina, Pržulj, Dunja, Mladenović, Maja, Prodanović, Olivera, Ece, Selin, Ilić Đurđić, Karla, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization" in International Journal of Biological Macromolecules, 181 (2021):1072-1080,
https://doi.org/10.1016/j.ijbiomac.2021.04.115 . .
3
2
1

A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A

Menghiu, Gheorghita; Ostafe, Vasile; Prodanović, Radivoje; Fischer, Rainer; Ostafe, Raluca

(MDPI, 2021)

TY  - JOUR
AU  - Menghiu, Gheorghita
AU  - Ostafe, Vasile
AU  - Prodanović, Radivoje
AU  - Fischer, Rainer
AU  - Ostafe, Raluca
PY  - 2021
UR  - https://www.mdpi.com/1422-0067/22/6/3041
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4393
AB  - Chitinases catalyze the degradation of chitin, a polymer of N-acetylglucosamine found in crustacean shells, insect cuticles, and fungal cell walls. There is great interest in the development of improved chitinases to address the environmental burden of chitin waste from the food processing industry as well as the potential medical, agricultural, and industrial uses of partially deacetylated chitin (chitosan) and its products (chito-oligosaccharides). The depolymerization of chitin can be achieved using chemical and physical treatments, but an enzymatic process would be more environmentally friendly and more sustainable. However, chitinases are slow-acting enzymes, limiting their biotechnological exploitation, although this can be overcome by molecular evolution approaches to enhance the features required for specific applications. The two main goals of this study were the development of a high-throughput screening system for chitinase activity (which could be extrapolated to other hydrolytic enzymes), and the deployment of this new method to select improved chitinase variants. We therefore cloned and expressed the Bacillus licheniformis DSM8785 chitinase A (chiA) gene in Escherichia coli BL21 (DE3) cells and generated a mutant library by error-prone PCR. We then developed a screening method based on fluorescence-activated cell sorting (FACS) using the model substrate 4-methylumbelliferyl β-d-N,N′,N″-triacetyl chitotrioside to identify improved enzymes. We prevented cross-talk between emulsion compartments caused by the hydrophobicity of 4-methylumbelliferone, the fluorescent product of the enzymatic reaction, by incorporating cyclodextrins into the aqueous phases. We also addressed the toxicity of long-term chiA expression in E. coli by limiting the reaction time. We identified 12 mutants containing 2–8 mutations per gene resulting in up to twofold higher activity than wild-type ChiA.
PB  - MDPI
T2  - International Journal of Molecular Sciences
T1  - A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A
VL  - 22
IS  - 6
SP  - 3041
DO  - 10.3390/ijms22063041
ER  - 
@article{
author = "Menghiu, Gheorghita and Ostafe, Vasile and Prodanović, Radivoje and Fischer, Rainer and Ostafe, Raluca",
year = "2021",
abstract = "Chitinases catalyze the degradation of chitin, a polymer of N-acetylglucosamine found in crustacean shells, insect cuticles, and fungal cell walls. There is great interest in the development of improved chitinases to address the environmental burden of chitin waste from the food processing industry as well as the potential medical, agricultural, and industrial uses of partially deacetylated chitin (chitosan) and its products (chito-oligosaccharides). The depolymerization of chitin can be achieved using chemical and physical treatments, but an enzymatic process would be more environmentally friendly and more sustainable. However, chitinases are slow-acting enzymes, limiting their biotechnological exploitation, although this can be overcome by molecular evolution approaches to enhance the features required for specific applications. The two main goals of this study were the development of a high-throughput screening system for chitinase activity (which could be extrapolated to other hydrolytic enzymes), and the deployment of this new method to select improved chitinase variants. We therefore cloned and expressed the Bacillus licheniformis DSM8785 chitinase A (chiA) gene in Escherichia coli BL21 (DE3) cells and generated a mutant library by error-prone PCR. We then developed a screening method based on fluorescence-activated cell sorting (FACS) using the model substrate 4-methylumbelliferyl β-d-N,N′,N″-triacetyl chitotrioside to identify improved enzymes. We prevented cross-talk between emulsion compartments caused by the hydrophobicity of 4-methylumbelliferone, the fluorescent product of the enzymatic reaction, by incorporating cyclodextrins into the aqueous phases. We also addressed the toxicity of long-term chiA expression in E. coli by limiting the reaction time. We identified 12 mutants containing 2–8 mutations per gene resulting in up to twofold higher activity than wild-type ChiA.",
publisher = "MDPI",
journal = "International Journal of Molecular Sciences",
title = "A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A",
volume = "22",
number = "6",
pages = "3041",
doi = "10.3390/ijms22063041"
}
Menghiu, G., Ostafe, V., Prodanović, R., Fischer, R.,& Ostafe, R.. (2021). A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. in International Journal of Molecular Sciences
MDPI., 22(6), 3041.
https://doi.org/10.3390/ijms22063041
Menghiu G, Ostafe V, Prodanović R, Fischer R, Ostafe R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. in International Journal of Molecular Sciences. 2021;22(6):3041.
doi:10.3390/ijms22063041 .
Menghiu, Gheorghita, Ostafe, Vasile, Prodanović, Radivoje, Fischer, Rainer, Ostafe, Raluca, "A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A" in International Journal of Molecular Sciences, 22, no. 6 (2021):3041,
https://doi.org/10.3390/ijms22063041 . .

Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls

Ilić Đurđić, Karla; Ostafe, Raluca; Prodanović, Olivera; Đurđević Đelmaš, Aleksandra; Popović, Nikolina; Fischer, Rainer; Schillberg, Stefan; Prodanović, Radivoje

(Springer, 2021)

TY  - JOUR
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Prodanović, Olivera
AU  - Đurđević Đelmaš, Aleksandra
AU  - Popović, Nikolina
AU  - Fischer, Rainer
AU  - Schillberg, Stefan
AU  - Prodanović, Radivoje
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4101
AB  - The enzymatic degradation of azo dyes is a promising alternative to ineffective chemical and physical remediation methods. Lignin peroxidase (LiP) from Phanerochaete chrysosporium is a heme-containing lignin-degrading oxidoreductase that catalyzes the peroxide-dependent oxidation of diverse molecules, including industrial dyes. This enzyme is therefore ideal as a starting point for protein engineering. Accordingly, we subjected two positions (165 and 264) in the environment of the catalytic Trp171 residue to saturation mutagenesis, and the resulting library of 104 independent clones was expressed on the surface of yeast cells. This yeast display library was used for the selection of variants with the ability to break down structurally-distinct azo dyes more efficiently. We identified mutants with up to 10-fold greater affinity than wild-type LiP for three diverse azo dyes (Evans blue, amido black 10B and Guinea green) and up to 13-fold higher catalytic activity. Additionally, cell wall fragments displaying mutant LiP enzymes were prepared by toluene-induced cell lysis, achieving significant increases in both enzyme activity and stability compared to a whole-cell biocatalyst. LiP-coated cell wall fragments retained their initial dye degradation activity after 10 reaction cycles each lasting 8 h. The best-performing mutants removed up to 2.5-fold more of each dye than the wild-type LiP in multiple reaction cycles.
PB  - Springer
T2  - Frontiers of Environmental Science & Engineering
T2  - Frontiers of Environmental Science & EngineeringFront. Environ. Sci. Eng.
T1  - Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls
VL  - 15
IS  - 2
SP  - 19
DO  - 10.1007/s11783-020-1311-4
ER  - 
@article{
author = "Ilić Đurđić, Karla and Ostafe, Raluca and Prodanović, Olivera and Đurđević Đelmaš, Aleksandra and Popović, Nikolina and Fischer, Rainer and Schillberg, Stefan and Prodanović, Radivoje",
year = "2021",
abstract = "The enzymatic degradation of azo dyes is a promising alternative to ineffective chemical and physical remediation methods. Lignin peroxidase (LiP) from Phanerochaete chrysosporium is a heme-containing lignin-degrading oxidoreductase that catalyzes the peroxide-dependent oxidation of diverse molecules, including industrial dyes. This enzyme is therefore ideal as a starting point for protein engineering. Accordingly, we subjected two positions (165 and 264) in the environment of the catalytic Trp171 residue to saturation mutagenesis, and the resulting library of 104 independent clones was expressed on the surface of yeast cells. This yeast display library was used for the selection of variants with the ability to break down structurally-distinct azo dyes more efficiently. We identified mutants with up to 10-fold greater affinity than wild-type LiP for three diverse azo dyes (Evans blue, amido black 10B and Guinea green) and up to 13-fold higher catalytic activity. Additionally, cell wall fragments displaying mutant LiP enzymes were prepared by toluene-induced cell lysis, achieving significant increases in both enzyme activity and stability compared to a whole-cell biocatalyst. LiP-coated cell wall fragments retained their initial dye degradation activity after 10 reaction cycles each lasting 8 h. The best-performing mutants removed up to 2.5-fold more of each dye than the wild-type LiP in multiple reaction cycles.",
publisher = "Springer",
journal = "Frontiers of Environmental Science & Engineering, Frontiers of Environmental Science & EngineeringFront. Environ. Sci. Eng.",
title = "Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls",
volume = "15",
number = "2",
pages = "19",
doi = "10.1007/s11783-020-1311-4"
}
Ilić Đurđić, K., Ostafe, R., Prodanović, O., Đurđević Đelmaš, A., Popović, N., Fischer, R., Schillberg, S.,& Prodanović, R.. (2021). Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls. in Frontiers of Environmental Science & Engineering
Springer., 15(2), 19.
https://doi.org/10.1007/s11783-020-1311-4
Ilić Đurđić K, Ostafe R, Prodanović O, Đurđević Đelmaš A, Popović N, Fischer R, Schillberg S, Prodanović R. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls. in Frontiers of Environmental Science & Engineering. 2021;15(2):19.
doi:10.1007/s11783-020-1311-4 .
Ilić Đurđić, Karla, Ostafe, Raluca, Prodanović, Olivera, Đurđević Đelmaš, Aleksandra, Popović, Nikolina, Fischer, Rainer, Schillberg, Stefan, Prodanović, Radivoje, "Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls" in Frontiers of Environmental Science & Engineering, 15, no. 2 (2021):19,
https://doi.org/10.1007/s11783-020-1311-4 . .
4
4

Supplementary data for the article: Ilić Đurđić, K.; Ostafe, R.; Prodanović, O.; Đurđević Đelmaš, A.; Popović, N.; Fischer, R.; Schillberg, S.; Prodanović, R. Improved Degradation of Azo Dyes by Lignin Peroxidase Following Mutagenesis at Two Sites near the Catalytic Pocket and the Application of Peroxidase-Coated Yeast Cell Walls. Front. Environ. Sci. Eng. 2020, 15 (2), 19. https://doi.org/10.1007/s11783-020-1311-4

Ilić Đurđić, Karla; Ostafe, Raluca; Prodanović, Olivera; Đurđević Đelmaš, Aleksandra; Popović, Nikolina; Fischer, Rainer; Schillberg, Stefan; Prodanović, Radivoje

(Springer, 2021)

TY  - DATA
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Prodanović, Olivera
AU  - Đurđević Đelmaš, Aleksandra
AU  - Popović, Nikolina
AU  - Fischer, Rainer
AU  - Schillberg, Stefan
AU  - Prodanović, Radivoje
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4103
PB  - Springer
T2  - Frontiers of Environmental Science & EngineeringFront. Environ. Sci. Eng.
T1  - Supplementary data for the article: Ilić Đurđić, K.; Ostafe, R.; Prodanović, O.; Đurđević Đelmaš, A.; Popović, N.; Fischer, R.; Schillberg, S.; Prodanović, R. Improved Degradation of Azo Dyes by Lignin Peroxidase Following Mutagenesis at Two Sites near the Catalytic Pocket and the Application of Peroxidase-Coated Yeast Cell Walls. Front. Environ. Sci. Eng. 2020, 15 (2), 19. https://doi.org/10.1007/s11783-020-1311-4
ER  - 
@misc{
author = "Ilić Đurđić, Karla and Ostafe, Raluca and Prodanović, Olivera and Đurđević Đelmaš, Aleksandra and Popović, Nikolina and Fischer, Rainer and Schillberg, Stefan and Prodanović, Radivoje",
year = "2021",
publisher = "Springer",
journal = "Frontiers of Environmental Science & EngineeringFront. Environ. Sci. Eng.",
title = "Supplementary data for the article: Ilić Đurđić, K.; Ostafe, R.; Prodanović, O.; Đurđević Đelmaš, A.; Popović, N.; Fischer, R.; Schillberg, S.; Prodanović, R. Improved Degradation of Azo Dyes by Lignin Peroxidase Following Mutagenesis at Two Sites near the Catalytic Pocket and the Application of Peroxidase-Coated Yeast Cell Walls. Front. Environ. Sci. Eng. 2020, 15 (2), 19. https://doi.org/10.1007/s11783-020-1311-4"
}
Ilić Đurđić, K., Ostafe, R., Prodanović, O., Đurđević Đelmaš, A., Popović, N., Fischer, R., Schillberg, S.,& Prodanović, R.. (2021). Supplementary data for the article: Ilić Đurđić, K.; Ostafe, R.; Prodanović, O.; Đurđević Đelmaš, A.; Popović, N.; Fischer, R.; Schillberg, S.; Prodanović, R. Improved Degradation of Azo Dyes by Lignin Peroxidase Following Mutagenesis at Two Sites near the Catalytic Pocket and the Application of Peroxidase-Coated Yeast Cell Walls. Front. Environ. Sci. Eng. 2020, 15 (2), 19. https://doi.org/10.1007/s11783-020-1311-4. in Frontiers of Environmental Science & EngineeringFront. Environ. Sci. Eng.
Springer..
Ilić Đurđić K, Ostafe R, Prodanović O, Đurđević Đelmaš A, Popović N, Fischer R, Schillberg S, Prodanović R. Supplementary data for the article: Ilić Đurđić, K.; Ostafe, R.; Prodanović, O.; Đurđević Đelmaš, A.; Popović, N.; Fischer, R.; Schillberg, S.; Prodanović, R. Improved Degradation of Azo Dyes by Lignin Peroxidase Following Mutagenesis at Two Sites near the Catalytic Pocket and the Application of Peroxidase-Coated Yeast Cell Walls. Front. Environ. Sci. Eng. 2020, 15 (2), 19. https://doi.org/10.1007/s11783-020-1311-4. in Frontiers of Environmental Science & EngineeringFront. Environ. Sci. Eng.. 2021;..
Ilić Đurđić, Karla, Ostafe, Raluca, Prodanović, Olivera, Đurđević Đelmaš, Aleksandra, Popović, Nikolina, Fischer, Rainer, Schillberg, Stefan, Prodanović, Radivoje, "Supplementary data for the article: Ilić Đurđić, K.; Ostafe, R.; Prodanović, O.; Đurđević Đelmaš, A.; Popović, N.; Fischer, R.; Schillberg, S.; Prodanović, R. Improved Degradation of Azo Dyes by Lignin Peroxidase Following Mutagenesis at Two Sites near the Catalytic Pocket and the Application of Peroxidase-Coated Yeast Cell Walls. Front. Environ. Sci. Eng. 2020, 15 (2), 19. https://doi.org/10.1007/s11783-020-1311-4" in Frontiers of Environmental Science & EngineeringFront. Environ. Sci. Eng. (2021).

Supplementary data for the article: Menghiu, G.; Ostafe, V.; Prodanović, R.; Fischer, R.; Ostafe, R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. International Journal of Molecular Sciences 2021, 22 (6), 3041. https://doi.org/10.3390/ijms22063041.

Menghiu, Gheorghita; Ostafe, Vasile; Prodanović, Radivoje; Fischer, Rainer; Ostafe, Raluca

(MDPI, 2021)

TY  - DATA
AU  - Menghiu, Gheorghita
AU  - Ostafe, Vasile
AU  - Prodanović, Radivoje
AU  - Fischer, Rainer
AU  - Ostafe, Raluca
PY  - 2021
UR  - https://www.mdpi.com/1422-0067/22/6/3041
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4394
PB  - MDPI
T2  - International Journal of Molecular Sciences
T1  - Supplementary data for the article: Menghiu, G.; Ostafe, V.; Prodanović, R.; Fischer, R.; Ostafe, R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. International Journal of Molecular Sciences 2021, 22 (6), 3041. https://doi.org/10.3390/ijms22063041.
ER  - 
@misc{
author = "Menghiu, Gheorghita and Ostafe, Vasile and Prodanović, Radivoje and Fischer, Rainer and Ostafe, Raluca",
year = "2021",
publisher = "MDPI",
journal = "International Journal of Molecular Sciences",
title = "Supplementary data for the article: Menghiu, G.; Ostafe, V.; Prodanović, R.; Fischer, R.; Ostafe, R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. International Journal of Molecular Sciences 2021, 22 (6), 3041. https://doi.org/10.3390/ijms22063041."
}
Menghiu, G., Ostafe, V., Prodanović, R., Fischer, R.,& Ostafe, R.. (2021). Supplementary data for the article: Menghiu, G.; Ostafe, V.; Prodanović, R.; Fischer, R.; Ostafe, R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. International Journal of Molecular Sciences 2021, 22 (6), 3041. https://doi.org/10.3390/ijms22063041.. in International Journal of Molecular Sciences
MDPI..
Menghiu G, Ostafe V, Prodanović R, Fischer R, Ostafe R. Supplementary data for the article: Menghiu, G.; Ostafe, V.; Prodanović, R.; Fischer, R.; Ostafe, R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. International Journal of Molecular Sciences 2021, 22 (6), 3041. https://doi.org/10.3390/ijms22063041.. in International Journal of Molecular Sciences. 2021;..
Menghiu, Gheorghita, Ostafe, Vasile, Prodanović, Radivoje, Fischer, Rainer, Ostafe, Raluca, "Supplementary data for the article: Menghiu, G.; Ostafe, V.; Prodanović, R.; Fischer, R.; Ostafe, R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. International Journal of Molecular Sciences 2021, 22 (6), 3041. https://doi.org/10.3390/ijms22063041." in International Journal of Molecular Sciences (2021).

Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115.

Popović, Nikolina; Pržulj, Dunja; Mladenović, Maja; Prodanović, Olivera; Ece, Selin; Ilić Đurđić, Karla; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(2021)

TY  - DATA
AU  - Popović, Nikolina
AU  - Pržulj, Dunja
AU  - Mladenović, Maja
AU  - Prodanović, Olivera
AU  - Ece, Selin
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0141813021008813
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4405
T2  - International Journal of Biological Macromolecules
T1  - Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115.
ER  - 
@misc{
author = "Popović, Nikolina and Pržulj, Dunja and Mladenović, Maja and Prodanović, Olivera and Ece, Selin and Ilić Đurđić, Karla and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2021",
journal = "International Journal of Biological Macromolecules",
title = "Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115."
}
Popović, N., Pržulj, D., Mladenović, M., Prodanović, O., Ece, S., Ilić Đurđić, K., Ostafe, R., Fischer, R.,& Prodanović, R.. (2021). Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115.. in International Journal of Biological Macromolecules.
Popović N, Pržulj D, Mladenović M, Prodanović O, Ece S, Ilić Đurđić K, Ostafe R, Fischer R, Prodanović R. Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115.. in International Journal of Biological Macromolecules. 2021;..
Popović, Nikolina, Pržulj, Dunja, Mladenović, Maja, Prodanović, Olivera, Ece, Selin, Ilić Đurđić, Karla, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115." in International Journal of Biological Macromolecules (2021).

Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls

Ilić Đurđić, Karla; Ostafe, Raluca; Đurđević Đelmaš, Aleksandra; Popović, Nikolina; Schillberg, Stefan; Fischer, Rainer; Prodanović, Radivoje

(Elsevier, 2020)

TY  - JOUR
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Đurđević Đelmaš, Aleksandra
AU  - Popović, Nikolina
AU  - Schillberg, Stefan
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3835
AB  - Azo dyes are toxic and carcinogenic synthetic pigments that accumulate as pollutants in aquatic bodies near textile factories. The pigments are structurally diverse, and bioremediation is mostly limited to single dye compounds or related groups. Versatile peroxidase (VP) from Pleurotus eryngii is a heme-containing peroxidase with a broad substrate spectrum that can break down many structurally distinct pollutants, including azo dyes. The utilization of this enzyme could be facilitated by engineering to modify its catalytic activity and substrate range. We used saturation mutagenesis to alter two amino acids in the catalytic tryptophan environment of VP (V160 and A260). Library screening with three azo dyes revealed that these two positions had a significant influence on substrate specificity. We were able to isolate and sequence VP variants with up to 16-fold higher catalytic efficiency for different azo dyes. The same approach could be used to select for VP variants that catalyze the degradation of many other types of pollutants. To allow multiple cycles of dye degradation, we immobilized VP on the surface of yeast cells and used washed cell wall fragments after lysis. VP embedded in the cell wall retained ∼70 % of its initial activity after 10 cycles of dye degradation each lasting 12 h, making this platform ideal for the bioremediation of environments contaminated with azo dyes.
PB  - Elsevier
T2  - Enzyme and Microbial Technology
T1  - Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls
VL  - 136
SP  - e109509
DO  - 10.1016/j.enzmictec.2020.109509
ER  - 
@article{
author = "Ilić Đurđić, Karla and Ostafe, Raluca and Đurđević Đelmaš, Aleksandra and Popović, Nikolina and Schillberg, Stefan and Fischer, Rainer and Prodanović, Radivoje",
year = "2020",
abstract = "Azo dyes are toxic and carcinogenic synthetic pigments that accumulate as pollutants in aquatic bodies near textile factories. The pigments are structurally diverse, and bioremediation is mostly limited to single dye compounds or related groups. Versatile peroxidase (VP) from Pleurotus eryngii is a heme-containing peroxidase with a broad substrate spectrum that can break down many structurally distinct pollutants, including azo dyes. The utilization of this enzyme could be facilitated by engineering to modify its catalytic activity and substrate range. We used saturation mutagenesis to alter two amino acids in the catalytic tryptophan environment of VP (V160 and A260). Library screening with three azo dyes revealed that these two positions had a significant influence on substrate specificity. We were able to isolate and sequence VP variants with up to 16-fold higher catalytic efficiency for different azo dyes. The same approach could be used to select for VP variants that catalyze the degradation of many other types of pollutants. To allow multiple cycles of dye degradation, we immobilized VP on the surface of yeast cells and used washed cell wall fragments after lysis. VP embedded in the cell wall retained ∼70 % of its initial activity after 10 cycles of dye degradation each lasting 12 h, making this platform ideal for the bioremediation of environments contaminated with azo dyes.",
publisher = "Elsevier",
journal = "Enzyme and Microbial Technology",
title = "Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls",
volume = "136",
pages = "e109509",
doi = "10.1016/j.enzmictec.2020.109509"
}
Ilić Đurđić, K., Ostafe, R., Đurđević Đelmaš, A., Popović, N., Schillberg, S., Fischer, R.,& Prodanović, R.. (2020). Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls. in Enzyme and Microbial Technology
Elsevier., 136, e109509.
https://doi.org/10.1016/j.enzmictec.2020.109509
Ilić Đurđić K, Ostafe R, Đurđević Đelmaš A, Popović N, Schillberg S, Fischer R, Prodanović R. Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls. in Enzyme and Microbial Technology. 2020;136:e109509.
doi:10.1016/j.enzmictec.2020.109509 .
Ilić Đurđić, Karla, Ostafe, Raluca, Đurđević Đelmaš, Aleksandra, Popović, Nikolina, Schillberg, Stefan, Fischer, Rainer, Prodanović, Radivoje, "Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls" in Enzyme and Microbial Technology, 136 (2020):e109509,
https://doi.org/10.1016/j.enzmictec.2020.109509 . .
12
8

Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls

Ilić Đurđić, Karla; Ostafe, Raluca; Đurđević Đelmaš, Aleksandra; Popović, Nikolina; Schillberg, Stefan; Fischer, Rainer; Prodanović, Radivoje

(Elsevier, 2020)

TY  - JOUR
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Đurđević Đelmaš, Aleksandra
AU  - Popović, Nikolina
AU  - Schillberg, Stefan
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3834
AB  - Azo dyes are toxic and carcinogenic synthetic pigments that accumulate as pollutants in aquatic bodies near textile factories. The pigments are structurally diverse, and bioremediation is mostly limited to single dye compounds or related groups. Versatile peroxidase (VP) from Pleurotus eryngii is a heme-containing peroxidase with a broad substrate spectrum that can break down many structurally distinct pollutants, including azo dyes. The utilization of this enzyme could be facilitated by engineering to modify its catalytic activity and substrate range. We used saturation mutagenesis to alter two amino acids in the catalytic tryptophan environment of VP (V160 and A260). Library screening with three azo dyes revealed that these two positions had a significant influence on substrate specificity. We were able to isolate and sequence VP variants with up to 16-fold higher catalytic efficiency for different azo dyes. The same approach could be used to select for VP variants that catalyze the degradation of many other types of pollutants. To allow multiple cycles of dye degradation, we immobilized VP on the surface of yeast cells and used washed cell wall fragments after lysis. VP embedded in the cell wall retained ∼70 % of its initial activity after 10 cycles of dye degradation each lasting 12 h, making this platform ideal for the bioremediation of environments contaminated with azo dyes.
PB  - Elsevier
T2  - Enzyme and Microbial Technology
T1  - Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls
VL  - 136
SP  - e109509
DO  - 10.1016/j.enzmictec.2020.109509
ER  - 
@article{
author = "Ilić Đurđić, Karla and Ostafe, Raluca and Đurđević Đelmaš, Aleksandra and Popović, Nikolina and Schillberg, Stefan and Fischer, Rainer and Prodanović, Radivoje",
year = "2020",
abstract = "Azo dyes are toxic and carcinogenic synthetic pigments that accumulate as pollutants in aquatic bodies near textile factories. The pigments are structurally diverse, and bioremediation is mostly limited to single dye compounds or related groups. Versatile peroxidase (VP) from Pleurotus eryngii is a heme-containing peroxidase with a broad substrate spectrum that can break down many structurally distinct pollutants, including azo dyes. The utilization of this enzyme could be facilitated by engineering to modify its catalytic activity and substrate range. We used saturation mutagenesis to alter two amino acids in the catalytic tryptophan environment of VP (V160 and A260). Library screening with three azo dyes revealed that these two positions had a significant influence on substrate specificity. We were able to isolate and sequence VP variants with up to 16-fold higher catalytic efficiency for different azo dyes. The same approach could be used to select for VP variants that catalyze the degradation of many other types of pollutants. To allow multiple cycles of dye degradation, we immobilized VP on the surface of yeast cells and used washed cell wall fragments after lysis. VP embedded in the cell wall retained ∼70 % of its initial activity after 10 cycles of dye degradation each lasting 12 h, making this platform ideal for the bioremediation of environments contaminated with azo dyes.",
publisher = "Elsevier",
journal = "Enzyme and Microbial Technology",
title = "Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls",
volume = "136",
pages = "e109509",
doi = "10.1016/j.enzmictec.2020.109509"
}
Ilić Đurđić, K., Ostafe, R., Đurđević Đelmaš, A., Popović, N., Schillberg, S., Fischer, R.,& Prodanović, R.. (2020). Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls. in Enzyme and Microbial Technology
Elsevier., 136, e109509.
https://doi.org/10.1016/j.enzmictec.2020.109509
Ilić Đurđić K, Ostafe R, Đurđević Đelmaš A, Popović N, Schillberg S, Fischer R, Prodanović R. Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls. in Enzyme and Microbial Technology. 2020;136:e109509.
doi:10.1016/j.enzmictec.2020.109509 .
Ilić Đurđić, Karla, Ostafe, Raluca, Đurđević Đelmaš, Aleksandra, Popović, Nikolina, Schillberg, Stefan, Fischer, Rainer, Prodanović, Radivoje, "Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls" in Enzyme and Microbial Technology, 136 (2020):e109509,
https://doi.org/10.1016/j.enzmictec.2020.109509 . .
12
8

One-shot optimization of multiple enzyme parameters: Tailoring glucose oxidase for pH and electron mediators

Ostafe, Raluca; Fontaine, Nicolas; Frank, David; Ng Fuk Chong, Matthieu; Prodanović, Radivoje; Pandjaitan, Rudy; Offmann, Bernard; Cadet, Frederic; Fischer, Rainer

(Willey, 2020)

TY  - JOUR
AU  - Ostafe, Raluca
AU  - Fontaine, Nicolas
AU  - Frank, David
AU  - Ng Fuk Chong, Matthieu
AU  - Prodanović, Radivoje
AU  - Pandjaitan, Rudy
AU  - Offmann, Bernard
AU  - Cadet, Frederic
AU  - Fischer, Rainer
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3784
AB  - Enzymes are biological catalysts with many industrial applications, but natural enzymes are usually unsuitable for industrial processes because they are not optimized for the process conditions. The properties of enzymes can be improved by directed evolution, which involves multiple rounds of mutagenesis and screening. By using mathematical models to predict the structure–activity relationship of an enzyme, and by defining the optimal combination of mutations in silico, we can significantly reduce the number of bench experiments needed, and hence the time and investment required to develop an optimized product. Here, we applied our innovative sequence–activity relationship methodology (innov'SAR) to improve glucose oxidase activity in the presence of different mediators across a range of pH values. Using this machine learning approach, a predictive model was developed and the optimal combination of mutations was determined, leading to a glucose oxidase mutant (P1) with greater specificity for the mediators ferrocene–methanol (12-fold) and nitrosoaniline (8-fold), compared to the wild-type enzyme, and better performance in three pH-adjusted buffers. The kcat/KM ratio of P1 increased by up to 121 folds compared to the wild type enzyme at pH 5.5 in the presence of ferrocene methanol.
PB  - Willey
T2  - Biotechnology and Bioengineering
T1  - One-shot optimization of multiple enzyme parameters: Tailoring glucose oxidase for pH and electron mediators
VL  - 117
IS  - 1
SP  - 17
EP  - 29
DO  - 10.1002/bit.27169
ER  - 
@article{
author = "Ostafe, Raluca and Fontaine, Nicolas and Frank, David and Ng Fuk Chong, Matthieu and Prodanović, Radivoje and Pandjaitan, Rudy and Offmann, Bernard and Cadet, Frederic and Fischer, Rainer",
year = "2020",
abstract = "Enzymes are biological catalysts with many industrial applications, but natural enzymes are usually unsuitable for industrial processes because they are not optimized for the process conditions. The properties of enzymes can be improved by directed evolution, which involves multiple rounds of mutagenesis and screening. By using mathematical models to predict the structure–activity relationship of an enzyme, and by defining the optimal combination of mutations in silico, we can significantly reduce the number of bench experiments needed, and hence the time and investment required to develop an optimized product. Here, we applied our innovative sequence–activity relationship methodology (innov'SAR) to improve glucose oxidase activity in the presence of different mediators across a range of pH values. Using this machine learning approach, a predictive model was developed and the optimal combination of mutations was determined, leading to a glucose oxidase mutant (P1) with greater specificity for the mediators ferrocene–methanol (12-fold) and nitrosoaniline (8-fold), compared to the wild-type enzyme, and better performance in three pH-adjusted buffers. The kcat/KM ratio of P1 increased by up to 121 folds compared to the wild type enzyme at pH 5.5 in the presence of ferrocene methanol.",
publisher = "Willey",
journal = "Biotechnology and Bioengineering",
title = "One-shot optimization of multiple enzyme parameters: Tailoring glucose oxidase for pH and electron mediators",
volume = "117",
number = "1",
pages = "17-29",
doi = "10.1002/bit.27169"
}
Ostafe, R., Fontaine, N., Frank, D., Ng Fuk Chong, M., Prodanović, R., Pandjaitan, R., Offmann, B., Cadet, F.,& Fischer, R.. (2020). One-shot optimization of multiple enzyme parameters: Tailoring glucose oxidase for pH and electron mediators. in Biotechnology and Bioengineering
Willey., 117(1), 17-29.
https://doi.org/10.1002/bit.27169
Ostafe R, Fontaine N, Frank D, Ng Fuk Chong M, Prodanović R, Pandjaitan R, Offmann B, Cadet F, Fischer R. One-shot optimization of multiple enzyme parameters: Tailoring glucose oxidase for pH and electron mediators. in Biotechnology and Bioengineering. 2020;117(1):17-29.
doi:10.1002/bit.27169 .
Ostafe, Raluca, Fontaine, Nicolas, Frank, David, Ng Fuk Chong, Matthieu, Prodanović, Radivoje, Pandjaitan, Rudy, Offmann, Bernard, Cadet, Frederic, Fischer, Rainer, "One-shot optimization of multiple enzyme parameters: Tailoring glucose oxidase for pH and electron mediators" in Biotechnology and Bioengineering, 117, no. 1 (2020):17-29,
https://doi.org/10.1002/bit.27169 . .
2
8
8

Supplementary data for article: Ilić Đurđić, K.; Ostafe, R.; Đurđević Đelmaš, A.; Popović, N.; Schillberg, S.; Fischer, R.; Prodanović, R. Saturation Mutagenesis to Improve the Degradation of Azo Dyes by Versatile Peroxidase and Application in Form of VP-Coated Yeast Cell Walls. Enzyme and Microbial Technology 2020, 136. https://doi.org/10.1016/j.enzmictec.2020.109509

Ilić Đurđić, Karla; Ostafe, Raluca; Đurđević Đelmaš, Aleksandra; Popović, Nikolina; Schillberg, Stefan; Fischer, Rainer; Prodanović, Radivoje

(Elsevier, 2020)

TY  - DATA
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Đurđević Đelmaš, Aleksandra
AU  - Popović, Nikolina
AU  - Schillberg, Stefan
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3836
PB  - Elsevier
T2  - Enzyme and Microbial Technology
T1  - Supplementary data for article: Ilić Đurđić, K.; Ostafe, R.; Đurđević Đelmaš, A.; Popović, N.; Schillberg, S.; Fischer, R.;  Prodanović, R. Saturation Mutagenesis to Improve the Degradation of Azo Dyes by Versatile Peroxidase and Application in Form of VP-Coated Yeast Cell Walls. Enzyme and Microbial Technology 2020, 136. https://doi.org/10.1016/j.enzmictec.2020.109509
ER  - 
@misc{
author = "Ilić Đurđić, Karla and Ostafe, Raluca and Đurđević Đelmaš, Aleksandra and Popović, Nikolina and Schillberg, Stefan and Fischer, Rainer and Prodanović, Radivoje",
year = "2020",
publisher = "Elsevier",
journal = "Enzyme and Microbial Technology",
title = "Supplementary data for article: Ilić Đurđić, K.; Ostafe, R.; Đurđević Đelmaš, A.; Popović, N.; Schillberg, S.; Fischer, R.;  Prodanović, R. Saturation Mutagenesis to Improve the Degradation of Azo Dyes by Versatile Peroxidase and Application in Form of VP-Coated Yeast Cell Walls. Enzyme and Microbial Technology 2020, 136. https://doi.org/10.1016/j.enzmictec.2020.109509"
}
Ilić Đurđić, K., Ostafe, R., Đurđević Đelmaš, A., Popović, N., Schillberg, S., Fischer, R.,& Prodanović, R.. (2020). Supplementary data for article: Ilić Đurđić, K.; Ostafe, R.; Đurđević Đelmaš, A.; Popović, N.; Schillberg, S.; Fischer, R.;  Prodanović, R. Saturation Mutagenesis to Improve the Degradation of Azo Dyes by Versatile Peroxidase and Application in Form of VP-Coated Yeast Cell Walls. Enzyme and Microbial Technology 2020, 136. https://doi.org/10.1016/j.enzmictec.2020.109509. in Enzyme and Microbial Technology
Elsevier..
Ilić Đurđić K, Ostafe R, Đurđević Đelmaš A, Popović N, Schillberg S, Fischer R, Prodanović R. Supplementary data for article: Ilić Đurđić, K.; Ostafe, R.; Đurđević Đelmaš, A.; Popović, N.; Schillberg, S.; Fischer, R.;  Prodanović, R. Saturation Mutagenesis to Improve the Degradation of Azo Dyes by Versatile Peroxidase and Application in Form of VP-Coated Yeast Cell Walls. Enzyme and Microbial Technology 2020, 136. https://doi.org/10.1016/j.enzmictec.2020.109509. in Enzyme and Microbial Technology. 2020;..
Ilić Đurđić, Karla, Ostafe, Raluca, Đurđević Đelmaš, Aleksandra, Popović, Nikolina, Schillberg, Stefan, Fischer, Rainer, Prodanović, Radivoje, "Supplementary data for article: Ilić Đurđić, K.; Ostafe, R.; Đurđević Đelmaš, A.; Popović, N.; Schillberg, S.; Fischer, R.;  Prodanović, R. Saturation Mutagenesis to Improve the Degradation of Azo Dyes by Versatile Peroxidase and Application in Form of VP-Coated Yeast Cell Walls. Enzyme and Microbial Technology 2020, 136. https://doi.org/10.1016/j.enzmictec.2020.109509" in Enzyme and Microbial Technology (2020).

Improvement in oxidative stability of versatile peroxidase by flow cytometry-based high-throughput screening system

Ilić Đurđić, Karla; Ece, Selin; Ostafe, Raluca; Vogel, Simon; Schillberg, Stefan; Fischer, Rainer; Prodanović, Radivoje

(Elsevier, 2020)

TY  - JOUR
AU  - Ilić Đurđić, Karla
AU  - Ece, Selin
AU  - Ostafe, Raluca
AU  - Vogel, Simon
AU  - Schillberg, Stefan
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3888
AB  - Pleurotus eryngii wild-type versatile peroxidase (wtVP) oxidizes structurally diverse substrates in an H2O2-dependent manner, but its ability to oxidize many pollutants is limited by suicidal enzyme inactivation in the presence of excess H2O2. To address this drawback, we generated random mutagenesis libraries containing 3 × 106 mutated VP genes and screened for enzymes with higher oxidative stability expressed on the surface of yeast cells. This was achieved by flow cytometry using the substrate fluorescein tyramide. After two rounds of sorting, the percentage of cells expressing variants with improved oxidative stability had increased from 1 % to 56 %. The most stable variants featured 3–5 amino acid substitutions and retained up to 70 % of their initial activity after incubation for 1 h in 30 mM H2O2 (conditions that completely inactivate wtVP). Selected variants were extracted from yeast cell walls and purified for kinetic characterization. We also prepared yeast cell walls with wtVP and the three most stable VP variants for multiple cycles of azo dye (Reactive black 5) degradation. After 10 cycles of 12 h, two of the variants retained more than 97 % of their initial activity, whereas the activity of wtVP declined by ∼30 %. These results confirm that our high-throughput screening system can improve the oxidative stability of versatile peroxidase, providing a source of novel enzymes for remediation applications.
PB  - Elsevier
T2  - Biochemical Engineering Journal
T1  - Improvement in oxidative stability of versatile peroxidase by flow cytometry-based high-throughput screening system
VL  - 157
DO  - 10.1016/j.bej.2020.107555
ER  - 
@article{
author = "Ilić Đurđić, Karla and Ece, Selin and Ostafe, Raluca and Vogel, Simon and Schillberg, Stefan and Fischer, Rainer and Prodanović, Radivoje",
year = "2020",
abstract = "Pleurotus eryngii wild-type versatile peroxidase (wtVP) oxidizes structurally diverse substrates in an H2O2-dependent manner, but its ability to oxidize many pollutants is limited by suicidal enzyme inactivation in the presence of excess H2O2. To address this drawback, we generated random mutagenesis libraries containing 3 × 106 mutated VP genes and screened for enzymes with higher oxidative stability expressed on the surface of yeast cells. This was achieved by flow cytometry using the substrate fluorescein tyramide. After two rounds of sorting, the percentage of cells expressing variants with improved oxidative stability had increased from 1 % to 56 %. The most stable variants featured 3–5 amino acid substitutions and retained up to 70 % of their initial activity after incubation for 1 h in 30 mM H2O2 (conditions that completely inactivate wtVP). Selected variants were extracted from yeast cell walls and purified for kinetic characterization. We also prepared yeast cell walls with wtVP and the three most stable VP variants for multiple cycles of azo dye (Reactive black 5) degradation. After 10 cycles of 12 h, two of the variants retained more than 97 % of their initial activity, whereas the activity of wtVP declined by ∼30 %. These results confirm that our high-throughput screening system can improve the oxidative stability of versatile peroxidase, providing a source of novel enzymes for remediation applications.",
publisher = "Elsevier",
journal = "Biochemical Engineering Journal",
title = "Improvement in oxidative stability of versatile peroxidase by flow cytometry-based high-throughput screening system",
volume = "157",
doi = "10.1016/j.bej.2020.107555"
}
Ilić Đurđić, K., Ece, S., Ostafe, R., Vogel, S., Schillberg, S., Fischer, R.,& Prodanović, R.. (2020). Improvement in oxidative stability of versatile peroxidase by flow cytometry-based high-throughput screening system. in Biochemical Engineering Journal
Elsevier., 157.
https://doi.org/10.1016/j.bej.2020.107555
Ilić Đurđić K, Ece S, Ostafe R, Vogel S, Schillberg S, Fischer R, Prodanović R. Improvement in oxidative stability of versatile peroxidase by flow cytometry-based high-throughput screening system. in Biochemical Engineering Journal. 2020;157.
doi:10.1016/j.bej.2020.107555 .
Ilić Đurđić, Karla, Ece, Selin, Ostafe, Raluca, Vogel, Simon, Schillberg, Stefan, Fischer, Rainer, Prodanović, Radivoje, "Improvement in oxidative stability of versatile peroxidase by flow cytometry-based high-throughput screening system" in Biochemical Engineering Journal, 157 (2020),
https://doi.org/10.1016/j.bej.2020.107555 . .
1
1

Improvement in oxidative stability of versatile peroxidase by flow cytometry-based high-throughput screening system

Ilić Đurđić, Karla; Ece, Selin; Ostafe, Raluca; Vogel, Simon; Schillberg, Stefan; Fischer, Rainer; Prodanović, Radivoje

(Elsevier, 2020)

TY  - JOUR
AU  - Ilić Đurđić, Karla
AU  - Ece, Selin
AU  - Ostafe, Raluca
AU  - Vogel, Simon
AU  - Schillberg, Stefan
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3898
AB  - Pleurotus eryngii wild-type versatile peroxidase (wtVP) oxidizes structurally diverse substrates in an H2O2-dependent manner, but its ability to oxidize many pollutants is limited by suicidal enzyme inactivation in the presence of excess H2O2. To address this drawback, we generated random mutagenesis libraries containing 3 × 106 mutated VP genes and screened for enzymes with higher oxidative stability expressed on the surface of yeast cells. This was achieved by flow cytometry using the substrate fluorescein tyramide. After two rounds of sorting, the percentage of cells expressing variants with improved oxidative stability had increased from 1 % to 56 %. The most stable variants featured 3–5 amino acid substitutions and retained up to 70 % of their initial activity after incubation for 1 h in 30 mM H2O2 (conditions that completely inactivate wtVP). Selected variants were extracted from yeast cell walls and purified for kinetic characterization. We also prepared yeast cell walls with wtVP and the three most stable VP variants for multiple cycles of azo dye (Reactive black 5) degradation. After 10 cycles of 12 h, two of the variants retained more than 97 % of their initial activity, whereas the activity of wtVP declined by ∼30 %. These results confirm that our high-throughput screening system can improve the oxidative stability of versatile peroxidase, providing a source of novel enzymes for remediation applications.
PB  - Elsevier
T2  - Biochemical Engineering Journal
T1  - Improvement in oxidative stability of versatile peroxidase by flow cytometry-based high-throughput screening system
VL  - 157
DO  - 10.1016/j.bej.2020.107555
ER  - 
@article{
author = "Ilić Đurđić, Karla and Ece, Selin and Ostafe, Raluca and Vogel, Simon and Schillberg, Stefan and Fischer, Rainer and Prodanović, Radivoje",
year = "2020",
abstract = "Pleurotus eryngii wild-type versatile peroxidase (wtVP) oxidizes structurally diverse substrates in an H2O2-dependent manner, but its ability to oxidize many pollutants is limited by suicidal enzyme inactivation in the presence of excess H2O2. To address this drawback, we generated random mutagenesis libraries containing 3 × 106 mutated VP genes and screened for enzymes with higher oxidative stability expressed on the surface of yeast cells. This was achieved by flow cytometry using the substrate fluorescein tyramide. After two rounds of sorting, the percentage of cells expressing variants with improved oxidative stability had increased from 1 % to 56 %. The most stable variants featured 3–5 amino acid substitutions and retained up to 70 % of their initial activity after incubation for 1 h in 30 mM H2O2 (conditions that completely inactivate wtVP). Selected variants were extracted from yeast cell walls and purified for kinetic characterization. We also prepared yeast cell walls with wtVP and the three most stable VP variants for multiple cycles of azo dye (Reactive black 5) degradation. After 10 cycles of 12 h, two of the variants retained more than 97 % of their initial activity, whereas the activity of wtVP declined by ∼30 %. These results confirm that our high-throughput screening system can improve the oxidative stability of versatile peroxidase, providing a source of novel enzymes for remediation applications.",
publisher = "Elsevier",
journal = "Biochemical Engineering Journal",
title = "Improvement in oxidative stability of versatile peroxidase by flow cytometry-based high-throughput screening system",
volume = "157",
doi = "10.1016/j.bej.2020.107555"
}
Ilić Đurđić, K., Ece, S., Ostafe, R., Vogel, S., Schillberg, S., Fischer, R.,& Prodanović, R.. (2020). Improvement in oxidative stability of versatile peroxidase by flow cytometry-based high-throughput screening system. in Biochemical Engineering Journal
Elsevier., 157.
https://doi.org/10.1016/j.bej.2020.107555
Ilić Đurđić K, Ece S, Ostafe R, Vogel S, Schillberg S, Fischer R, Prodanović R. Improvement in oxidative stability of versatile peroxidase by flow cytometry-based high-throughput screening system. in Biochemical Engineering Journal. 2020;157.
doi:10.1016/j.bej.2020.107555 .
Ilić Đurđić, Karla, Ece, Selin, Ostafe, Raluca, Vogel, Simon, Schillberg, Stefan, Fischer, Rainer, Prodanović, Radivoje, "Improvement in oxidative stability of versatile peroxidase by flow cytometry-based high-throughput screening system" in Biochemical Engineering Journal, 157 (2020),
https://doi.org/10.1016/j.bej.2020.107555 . .
1
1

Supplementary data for the article: Ilić Đurđić, K.; Ece, S.; Ostafe, R.; Vogel, S.; Schillberg, S.; Fischer, R.; Prodanović, R. Improvement in Oxidative Stability of Versatile Peroxidase by Flow Cytometry-Based High-Throughput Screening System. Biochemical Engineering Journal 2020, 157. https://doi.org/10.1016/j.bej.2020.107555

Ilić Đurđić, Karla; Ece, Selin; Ostafe, Raluca; Vogel, Simon; Schillberg, Stefan; Fischer, Rainer; Prodanović, Radivoje

(Elsevier, 2020)

TY  - DATA
AU  - Ilić Đurđić, Karla
AU  - Ece, Selin
AU  - Ostafe, Raluca
AU  - Vogel, Simon
AU  - Schillberg, Stefan
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3899
PB  - Elsevier
T2  - Biochemical Engineering Journal
T1  - Supplementary data for the article: Ilić Đurđić, K.; Ece, S.; Ostafe, R.; Vogel, S.; Schillberg, S.; Fischer, R.; Prodanović, R. Improvement in Oxidative Stability of Versatile Peroxidase by Flow Cytometry-Based High-Throughput Screening System. Biochemical Engineering Journal 2020, 157. https://doi.org/10.1016/j.bej.2020.107555
ER  - 
@misc{
author = "Ilić Đurđić, Karla and Ece, Selin and Ostafe, Raluca and Vogel, Simon and Schillberg, Stefan and Fischer, Rainer and Prodanović, Radivoje",
year = "2020",
publisher = "Elsevier",
journal = "Biochemical Engineering Journal",
title = "Supplementary data for the article: Ilić Đurđić, K.; Ece, S.; Ostafe, R.; Vogel, S.; Schillberg, S.; Fischer, R.; Prodanović, R. Improvement in Oxidative Stability of Versatile Peroxidase by Flow Cytometry-Based High-Throughput Screening System. Biochemical Engineering Journal 2020, 157. https://doi.org/10.1016/j.bej.2020.107555"
}
Ilić Đurđić, K., Ece, S., Ostafe, R., Vogel, S., Schillberg, S., Fischer, R.,& Prodanović, R.. (2020). Supplementary data for the article: Ilić Đurđić, K.; Ece, S.; Ostafe, R.; Vogel, S.; Schillberg, S.; Fischer, R.; Prodanović, R. Improvement in Oxidative Stability of Versatile Peroxidase by Flow Cytometry-Based High-Throughput Screening System. Biochemical Engineering Journal 2020, 157. https://doi.org/10.1016/j.bej.2020.107555. in Biochemical Engineering Journal
Elsevier..
Ilić Đurđić K, Ece S, Ostafe R, Vogel S, Schillberg S, Fischer R, Prodanović R. Supplementary data for the article: Ilić Đurđić, K.; Ece, S.; Ostafe, R.; Vogel, S.; Schillberg, S.; Fischer, R.; Prodanović, R. Improvement in Oxidative Stability of Versatile Peroxidase by Flow Cytometry-Based High-Throughput Screening System. Biochemical Engineering Journal 2020, 157. https://doi.org/10.1016/j.bej.2020.107555. in Biochemical Engineering Journal. 2020;..
Ilić Đurđić, Karla, Ece, Selin, Ostafe, Raluca, Vogel, Simon, Schillberg, Stefan, Fischer, Rainer, Prodanović, Radivoje, "Supplementary data for the article: Ilić Đurđić, K.; Ece, S.; Ostafe, R.; Vogel, S.; Schillberg, S.; Fischer, R.; Prodanović, R. Improvement in Oxidative Stability of Versatile Peroxidase by Flow Cytometry-Based High-Throughput Screening System. Biochemical Engineering Journal 2020, 157. https://doi.org/10.1016/j.bej.2020.107555" in Biochemical Engineering Journal (2020).

A high.throughput screening system based on droplet microfluidics for glucose oxidase gene libraries

Prodanović, Radivoje; Lloyd Ung, W.; Ilić Đurđić, Karla; Fischer, Rainer; Weitz, David A.; Ostafe, Raluca

(MDPI, 2020)

TY  - JOUR
AU  - Prodanović, Radivoje
AU  - Lloyd Ung, W.
AU  - Ilić Đurđić, Karla
AU  - Fischer, Rainer
AU  - Weitz, David A.
AU  - Ostafe, Raluca
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3950
AB  - Glucose oxidase (GOx) is an important industrial enzyme that can be optimized for specific applications by mutagenesis and activity.based screening. To increase the efficiency of this approach, we have developed a new ultrahigh.throughput screening platform based on a microfluidic lab.on.chip device that allows the sorting of GOx mutants from a saturation mutagenesis library expressed on the surface of yeast cells. GOx activity was measured by monitoring the fluorescence of water microdroplets dispersed in perfluorinated oil. The signal was generated via a series of coupled enzyme reactions leading to the formation of fluorescein. Using this new method, we were able to enrich the yeast cell population by more than 35.fold for GOx mutants with higher than wild.type activity after two rounds of sorting, almost double the efficiency of our previously described flow cytometry platform. We identified and characterized novel GOx mutants, the most promising of which (M6) contained a combination of six point mutations that increased the catalytic constant kcat by 2.1.fold compared to wild.type GOx and by 1.4.fold compared to a parental GOx variant. The new microfluidic platform for GOx was therefore more sensitive than flow cytometry and supports comprehensive screens of gene libraries containing multiple mutations per gene. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
PB  - MDPI
T2  - Molecules
T1  - A high.throughput screening system based on droplet microfluidics for glucose oxidase gene libraries
VL  - 25
IS  - 10
DO  - 10.3390/molecules25102418
ER  - 
@article{
author = "Prodanović, Radivoje and Lloyd Ung, W. and Ilić Đurđić, Karla and Fischer, Rainer and Weitz, David A. and Ostafe, Raluca",
year = "2020",
abstract = "Glucose oxidase (GOx) is an important industrial enzyme that can be optimized for specific applications by mutagenesis and activity.based screening. To increase the efficiency of this approach, we have developed a new ultrahigh.throughput screening platform based on a microfluidic lab.on.chip device that allows the sorting of GOx mutants from a saturation mutagenesis library expressed on the surface of yeast cells. GOx activity was measured by monitoring the fluorescence of water microdroplets dispersed in perfluorinated oil. The signal was generated via a series of coupled enzyme reactions leading to the formation of fluorescein. Using this new method, we were able to enrich the yeast cell population by more than 35.fold for GOx mutants with higher than wild.type activity after two rounds of sorting, almost double the efficiency of our previously described flow cytometry platform. We identified and characterized novel GOx mutants, the most promising of which (M6) contained a combination of six point mutations that increased the catalytic constant kcat by 2.1.fold compared to wild.type GOx and by 1.4.fold compared to a parental GOx variant. The new microfluidic platform for GOx was therefore more sensitive than flow cytometry and supports comprehensive screens of gene libraries containing multiple mutations per gene. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).",
publisher = "MDPI",
journal = "Molecules",
title = "A high.throughput screening system based on droplet microfluidics for glucose oxidase gene libraries",
volume = "25",
number = "10",
doi = "10.3390/molecules25102418"
}
Prodanović, R., Lloyd Ung, W., Ilić Đurđić, K., Fischer, R., Weitz, D. A.,& Ostafe, R.. (2020). A high.throughput screening system based on droplet microfluidics for glucose oxidase gene libraries. in Molecules
MDPI., 25(10).
https://doi.org/10.3390/molecules25102418
Prodanović R, Lloyd Ung W, Ilić Đurđić K, Fischer R, Weitz DA, Ostafe R. A high.throughput screening system based on droplet microfluidics for glucose oxidase gene libraries. in Molecules. 2020;25(10).
doi:10.3390/molecules25102418 .
Prodanović, Radivoje, Lloyd Ung, W., Ilić Đurđić, Karla, Fischer, Rainer, Weitz, David A., Ostafe, Raluca, "A high.throughput screening system based on droplet microfluidics for glucose oxidase gene libraries" in Molecules, 25, no. 10 (2020),
https://doi.org/10.3390/molecules25102418 . .
2
3
2

Flow cytometry-based system for screening of lignin peroxidase mutants with higher oxidative stability

Ilić Đurđić, Karla; Ece, Selin; Ostafe, Raluca; Vogel, Simon; Balaž, Ana Marija; Schillberg, Stefan; Fischer, Rainer; Prodanović, Radivoje

(Elsevier, 2020)

TY  - JOUR
AU  - Ilić Đurđić, Karla
AU  - Ece, Selin
AU  - Ostafe, Raluca
AU  - Vogel, Simon
AU  - Balaž, Ana Marija
AU  - Schillberg, Stefan
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3974
AB  - Lignin peroxidase (LiP) is a heme-containing oxidoreductase that oxidizes structurally diverse substrates in an H2O2-dependent manner. Its ability to oxidize many pollutants makes it suitable for bioremediation applications and an ideal candidate for optimization by mutagenesis and selection. In order to increase oxidative stability of LiP we generated a random mutagenesis library comprising 106 mutated LiP genes and screened for expressed enzymes with higher than wild-type activity after incubation in 30 mM H2O2 by flow cytometry with fluorescein-tyramide as a substrate. To preserve the genotype-phenotype connection, the LiP mutants were displayed on the yeast cell surface. Two rounds of sorting were performed, recovered colonies were then screened in microtiter plates, and activity analysis revealed a significant increase in the percentage of cells expressing LiP variants with higher oxidative stability than wtLiP. Two rounds of sorting increased the proportion of more-stable variants from 1.4% in the original library to 52.3%. The most stable variants after two rounds of sorting featured between two and four mutations and retained up to 80% of initial activity after 1 h incubation in 30 mM H2O2. We for the first-time applied flow cytometry for screening of any ligninolytic peroxidase library. Obtained results suggest that developed system may be applied for improvement of industrially important characteristics of lignin peroxidase.
PB  - Elsevier
T2  - Journal of Bioscience and Bioengineering
T1  - Flow cytometry-based system for screening of lignin peroxidase mutants with higher oxidative stability
VL  - 129
IS  - 6
SP  - 664
EP  - 671
DO  - 10.1016/j.jbiosc.2019.12.009
ER  - 
@article{
author = "Ilić Đurđić, Karla and Ece, Selin and Ostafe, Raluca and Vogel, Simon and Balaž, Ana Marija and Schillberg, Stefan and Fischer, Rainer and Prodanović, Radivoje",
year = "2020",
abstract = "Lignin peroxidase (LiP) is a heme-containing oxidoreductase that oxidizes structurally diverse substrates in an H2O2-dependent manner. Its ability to oxidize many pollutants makes it suitable for bioremediation applications and an ideal candidate for optimization by mutagenesis and selection. In order to increase oxidative stability of LiP we generated a random mutagenesis library comprising 106 mutated LiP genes and screened for expressed enzymes with higher than wild-type activity after incubation in 30 mM H2O2 by flow cytometry with fluorescein-tyramide as a substrate. To preserve the genotype-phenotype connection, the LiP mutants were displayed on the yeast cell surface. Two rounds of sorting were performed, recovered colonies were then screened in microtiter plates, and activity analysis revealed a significant increase in the percentage of cells expressing LiP variants with higher oxidative stability than wtLiP. Two rounds of sorting increased the proportion of more-stable variants from 1.4% in the original library to 52.3%. The most stable variants after two rounds of sorting featured between two and four mutations and retained up to 80% of initial activity after 1 h incubation in 30 mM H2O2. We for the first-time applied flow cytometry for screening of any ligninolytic peroxidase library. Obtained results suggest that developed system may be applied for improvement of industrially important characteristics of lignin peroxidase.",
publisher = "Elsevier",
journal = "Journal of Bioscience and Bioengineering",
title = "Flow cytometry-based system for screening of lignin peroxidase mutants with higher oxidative stability",
volume = "129",
number = "6",
pages = "664-671",
doi = "10.1016/j.jbiosc.2019.12.009"
}
Ilić Đurđić, K., Ece, S., Ostafe, R., Vogel, S., Balaž, A. M., Schillberg, S., Fischer, R.,& Prodanović, R.. (2020). Flow cytometry-based system for screening of lignin peroxidase mutants with higher oxidative stability. in Journal of Bioscience and Bioengineering
Elsevier., 129(6), 664-671.
https://doi.org/10.1016/j.jbiosc.2019.12.009
Ilić Đurđić K, Ece S, Ostafe R, Vogel S, Balaž AM, Schillberg S, Fischer R, Prodanović R. Flow cytometry-based system for screening of lignin peroxidase mutants with higher oxidative stability. in Journal of Bioscience and Bioengineering. 2020;129(6):664-671.
doi:10.1016/j.jbiosc.2019.12.009 .
Ilić Đurđić, Karla, Ece, Selin, Ostafe, Raluca, Vogel, Simon, Balaž, Ana Marija, Schillberg, Stefan, Fischer, Rainer, Prodanović, Radivoje, "Flow cytometry-based system for screening of lignin peroxidase mutants with higher oxidative stability" in Journal of Bioscience and Bioengineering, 129, no. 6 (2020):664-671,
https://doi.org/10.1016/j.jbiosc.2019.12.009 . .
4
2

Semi-rational design of cellobiose dehydrogenase for increased stability in the presence of peroxide

Balaž, Ana Marija; Stevanović, Jelena; Ostafe, Raluca; Blazić, Marija; Ilić Đurđić, Karla; Fischer, Rainer; Prodanović, Radivoje

(2020)

TY  - JOUR
AU  - Balaž, Ana Marija
AU  - Stevanović, Jelena
AU  - Ostafe, Raluca
AU  - Blazić, Marija
AU  - Ilić Đurđić, Karla
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4011
AB  - Cellobiose dehydrogenase (CDH, EC 1.1.99.18) from white rot fungi Phanerochaete chrysosporium can be used for constructing biosensors and biofuel cells, for bleaching cotton in textile industry, and recently, the enzyme has found an important application in biomedicine as an antimicrobial and antibiofilm agent. Stability and activity of the wild-type (wt) CDH and mutants at methionine residues in the presence of hydrogen peroxide were investigated. Saturation mutagenesis libraries were made at the only methionine in heme domain M65 and two methionines M685 and M738 in the flavin domain that were closest to the active site. After screening the libraries, three mutants with increased activity and stability in the presence of peroxide were found, M65F with 70% of residual activity after 6 h of incubation in 0.3 M hydrogen peroxide, M738S with 80% of residual activity and M685Y with over 90% of residual activity compared to wild-type CDH that retained 40% of original activity. Combined mutants showed no activity. The most stable mutant M685Y with 5.8 times increased half-life in the presence of peroxide showed also 2.5 times increased kcat for lactose compared to wtCDH and could be good candidate for applications in biofuel cells and biocatalysis for lactobionic acid production.
T2  - Molecular Diversity
T1  - Semi-rational design of cellobiose dehydrogenase for increased stability in the presence of peroxide
VL  - 24
IS  - 3
SP  - 593
EP  - 601
DO  - 10.1007/s11030-019-09965-0
ER  - 
@article{
author = "Balaž, Ana Marija and Stevanović, Jelena and Ostafe, Raluca and Blazić, Marija and Ilić Đurđić, Karla and Fischer, Rainer and Prodanović, Radivoje",
year = "2020",
abstract = "Cellobiose dehydrogenase (CDH, EC 1.1.99.18) from white rot fungi Phanerochaete chrysosporium can be used for constructing biosensors and biofuel cells, for bleaching cotton in textile industry, and recently, the enzyme has found an important application in biomedicine as an antimicrobial and antibiofilm agent. Stability and activity of the wild-type (wt) CDH and mutants at methionine residues in the presence of hydrogen peroxide were investigated. Saturation mutagenesis libraries were made at the only methionine in heme domain M65 and two methionines M685 and M738 in the flavin domain that were closest to the active site. After screening the libraries, three mutants with increased activity and stability in the presence of peroxide were found, M65F with 70% of residual activity after 6 h of incubation in 0.3 M hydrogen peroxide, M738S with 80% of residual activity and M685Y with over 90% of residual activity compared to wild-type CDH that retained 40% of original activity. Combined mutants showed no activity. The most stable mutant M685Y with 5.8 times increased half-life in the presence of peroxide showed also 2.5 times increased kcat for lactose compared to wtCDH and could be good candidate for applications in biofuel cells and biocatalysis for lactobionic acid production.",
journal = "Molecular Diversity",
title = "Semi-rational design of cellobiose dehydrogenase for increased stability in the presence of peroxide",
volume = "24",
number = "3",
pages = "593-601",
doi = "10.1007/s11030-019-09965-0"
}
Balaž, A. M., Stevanović, J., Ostafe, R., Blazić, M., Ilić Đurđić, K., Fischer, R.,& Prodanović, R.. (2020). Semi-rational design of cellobiose dehydrogenase for increased stability in the presence of peroxide. in Molecular Diversity, 24(3), 593-601.
https://doi.org/10.1007/s11030-019-09965-0
Balaž AM, Stevanović J, Ostafe R, Blazić M, Ilić Đurđić K, Fischer R, Prodanović R. Semi-rational design of cellobiose dehydrogenase for increased stability in the presence of peroxide. in Molecular Diversity. 2020;24(3):593-601.
doi:10.1007/s11030-019-09965-0 .
Balaž, Ana Marija, Stevanović, Jelena, Ostafe, Raluca, Blazić, Marija, Ilić Đurđić, Karla, Fischer, Rainer, Prodanović, Radivoje, "Semi-rational design of cellobiose dehydrogenase for increased stability in the presence of peroxide" in Molecular Diversity, 24, no. 3 (2020):593-601,
https://doi.org/10.1007/s11030-019-09965-0 . .
5
3

Expression, purification and characterization of cellobiose dehydrogenase mutants from Phanerochaete chrysosporium in Pichia pastoris KM71H strain

Balaž, Ana Marija; Blažić, Marija; Popović, Nikolina; Prodanović, Olivera; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(Belgrade : Serbian Chemical Society, 2020)

TY  - JOUR
AU  - Balaž, Ana Marija
AU  - Blažić, Marija
AU  - Popović, Nikolina
AU  - Prodanović, Olivera
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4270
AB  - Production of soluble cellobiose dehydrogenase (CDH) mutant proteins previously evolved on the surface of S. cerevisiae yeast cells was established for use in biosensors and biofuel cells. For this purpose, mutant cdh genes tm (D20N, A64T, V592M), H5 (D20N, V22A, A64T, V592M) and H9 (D20N, A64T, T84A, A261P, V592M, E674G, N715S) were cloned to pPICZα plasmid and transformed into Pichia pastoris KM71H strain for high expression in a soluble form and kinetic characterization. After 6 days of expression under methanol induction, the CDHs were purified by ultrafiltration, ion- -exchange chromatography and gel filtration. Sodium dodecyl sulfate electrophoresis confirmed the purity and presence of a single protein band at a molecular weight of 100 kDa. Kinetic characterization showed that the H5 mutant had the highest catalytic constant of 43.5 s-1 for lactose, while the mutant H9 showed the highest specificity constant for lactose of 132 mM-1 s-1. All three mutant proteins did not change the pH optimum that was between 4.5 and 5.5. Compared to the previously obtained wild types and mutants of CDH from Phanerochaete chrysosporium, the variants reported in this article had higher activity and specificity that together with high protein expression rate in P. pastoris, makes them good candidates for use in biotechnology for lactobionic acid production and biosensor manufacture.
AB  - У циљу употребе у биосензорима и биогоривним ћелијама, успостављена је производњарастворних облика целобиоза дехидрогеназе (CDH) претходно еволуираних на површиниквашчевих ћелија S. cerevisiae. У ту сврху су мутанти CDH, tm (D20N, A64T, V592M), H5(D20N, V22A, A64T, V592M) и H9 (D20N, A64T, T84A, A261P, V592M, E674G, N715S)клонирани у pPICZα плазмид и трансформисани у Pichia pastoris KM71H сој за високуекспресију у растворном облику и кинетичку карактеризацију. После 6 дана експресије подиндукцијом метанолом, мутанти су пречишћени ултрафилтрацијом, јоноизмењивачкомхроматографијом и гел-филтрацијом. SDS електрофореза је потврдила чистоћу уз присуствоједне протеинске траке молекулскe масe од 100 kDa. Кинетичка карактеризација је показалада H5 мутирани протеин поседује највећу каталитичку константу од 43,5 s-1 за лактозу, докје H9 имао највећу константу специфичности за лактозу од 132 mM-1 s-1. Сва три мутиранапротеина су имала неизмењен pH оптимум који је био у опсегу од 4,5 до 5,5. У поређењу сапретходно добијеним природним и мутантним облицима CDH протеина из Phanerochaetechrysosporium, облици приказани у овом раду имају већу активност и специфичност, што их,повезано са високом експресијом протеина у P. Pastoris, чини добрим кандидатима за упо-требу у биотехнологији за производњу лактобионске киселине и биосензора.
PB  - Belgrade : Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - Expression, purification and characterization of cellobiose dehydrogenase mutants from Phanerochaete chrysosporium in Pichia pastoris KM71H strain
T1  - Ekspresija, prečišćavanje i karakterizacija mutanata celobioza - dehidrogenaze iz Phanerochaete chrysosporium u Pichia pastoris KM71H soju
VL  - 85
IS  - 1
SP  - 25
EP  - 35
DO  - 10.2298/JSC190320058B
ER  - 
@article{
author = "Balaž, Ana Marija and Blažić, Marija and Popović, Nikolina and Prodanović, Olivera and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2020",
abstract = "Production of soluble cellobiose dehydrogenase (CDH) mutant proteins previously evolved on the surface of S. cerevisiae yeast cells was established for use in biosensors and biofuel cells. For this purpose, mutant cdh genes tm (D20N, A64T, V592M), H5 (D20N, V22A, A64T, V592M) and H9 (D20N, A64T, T84A, A261P, V592M, E674G, N715S) were cloned to pPICZα plasmid and transformed into Pichia pastoris KM71H strain for high expression in a soluble form and kinetic characterization. After 6 days of expression under methanol induction, the CDHs were purified by ultrafiltration, ion- -exchange chromatography and gel filtration. Sodium dodecyl sulfate electrophoresis confirmed the purity and presence of a single protein band at a molecular weight of 100 kDa. Kinetic characterization showed that the H5 mutant had the highest catalytic constant of 43.5 s-1 for lactose, while the mutant H9 showed the highest specificity constant for lactose of 132 mM-1 s-1. All three mutant proteins did not change the pH optimum that was between 4.5 and 5.5. Compared to the previously obtained wild types and mutants of CDH from Phanerochaete chrysosporium, the variants reported in this article had higher activity and specificity that together with high protein expression rate in P. pastoris, makes them good candidates for use in biotechnology for lactobionic acid production and biosensor manufacture., У циљу употребе у биосензорима и биогоривним ћелијама, успостављена је производњарастворних облика целобиоза дехидрогеназе (CDH) претходно еволуираних на површиниквашчевих ћелија S. cerevisiae. У ту сврху су мутанти CDH, tm (D20N, A64T, V592M), H5(D20N, V22A, A64T, V592M) и H9 (D20N, A64T, T84A, A261P, V592M, E674G, N715S)клонирани у pPICZα плазмид и трансформисани у Pichia pastoris KM71H сој за високуекспресију у растворном облику и кинетичку карактеризацију. После 6 дана експресије подиндукцијом метанолом, мутанти су пречишћени ултрафилтрацијом, јоноизмењивачкомхроматографијом и гел-филтрацијом. SDS електрофореза је потврдила чистоћу уз присуствоједне протеинске траке молекулскe масe од 100 kDa. Кинетичка карактеризација је показалада H5 мутирани протеин поседује највећу каталитичку константу од 43,5 s-1 за лактозу, докје H9 имао највећу константу специфичности за лактозу од 132 mM-1 s-1. Сва три мутиранапротеина су имала неизмењен pH оптимум који је био у опсегу од 4,5 до 5,5. У поређењу сапретходно добијеним природним и мутантним облицима CDH протеина из Phanerochaetechrysosporium, облици приказани у овом раду имају већу активност и специфичност, што их,повезано са високом експресијом протеина у P. Pastoris, чини добрим кандидатима за упо-требу у биотехнологији за производњу лактобионске киселине и биосензора.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "Expression, purification and characterization of cellobiose dehydrogenase mutants from Phanerochaete chrysosporium in Pichia pastoris KM71H strain, Ekspresija, prečišćavanje i karakterizacija mutanata celobioza - dehidrogenaze iz Phanerochaete chrysosporium u Pichia pastoris KM71H soju",
volume = "85",
number = "1",
pages = "25-35",
doi = "10.2298/JSC190320058B"
}
Balaž, A. M., Blažić, M., Popović, N., Prodanović, O., Ostafe, R., Fischer, R.,& Prodanović, R.. (2020). Expression, purification and characterization of cellobiose dehydrogenase mutants from Phanerochaete chrysosporium in Pichia pastoris KM71H strain. in Journal of the Serbian Chemical Society
Belgrade : Serbian Chemical Society., 85(1), 25-35.
https://doi.org/10.2298/JSC190320058B
Balaž AM, Blažić M, Popović N, Prodanović O, Ostafe R, Fischer R, Prodanović R. Expression, purification and characterization of cellobiose dehydrogenase mutants from Phanerochaete chrysosporium in Pichia pastoris KM71H strain. in Journal of the Serbian Chemical Society. 2020;85(1):25-35.
doi:10.2298/JSC190320058B .
Balaž, Ana Marija, Blažić, Marija, Popović, Nikolina, Prodanović, Olivera, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Expression, purification and characterization of cellobiose dehydrogenase mutants from Phanerochaete chrysosporium in Pichia pastoris KM71H strain" in Journal of the Serbian Chemical Society, 85, no. 1 (2020):25-35,
https://doi.org/10.2298/JSC190320058B . .

Protein engineering of cellobiose dehydrogenase from Phanerochaete chrysosporium in yeast Saccharomyces cerevisiae InvSc1 for increased activity and stability

Blažić, Marija; Balaž, Ana Marija; Tadić, Vojin; Draganić, Bojana; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(Elsevier, 2019)

TY  - JOUR
AU  - Blažić, Marija
AU  - Balaž, Ana Marija
AU  - Tadić, Vojin
AU  - Draganić, Bojana
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/2898
AB  - Cellobiose dehydrogenase (CDH) can be used in industry for lactobionic acid production, as a part of biosensors for disaccharides and in wound healing. In fungi it is involved in lignocellulose degradation. CDH gene from Phanerochaete chrysosporium has been cloned in pYES2 plasmid for extracellular expression and protein engineering in yeast Saccharomyces cerevisiae InvSC1 for the first time. A CDH gene library was generated using error-prone PCR and screened by spectrophotometric enzymatic assay based on 2,6-dichloroindophenol reduction detection in microtiter plates. Several mutants with increased activity and specificity towards lactose and cellobiose were found, purified and characterized in detail. Recombinant CDH enzymes showed a broad molecular weight between 120 and 150 KDa due to hyper-glycosylation and the best S137 N mutant showed 2.2 times increased k cat and 1.5 and 2 times increased specificity constant for lactose and cellobiose compared to the wild type enzyme. pH optimum of mutants was not changed while thermostability of selected mutants improved and S137 N mutant retained 30% of it's original activity after 15 min at 70 °C compared to 10% of activity that the wild type enzyme retained. Mutants M65S and S137 N showed also 1.6 and 1.5 times increased productivity of hydrogen peroxide in the presence of 30 mM lactose compared to the wild type.
PB  - Elsevier
T2  - Biochemical Engineering Journal
T1  - Protein engineering of cellobiose dehydrogenase from Phanerochaete chrysosporium in yeast Saccharomyces cerevisiae InvSc1 for increased activity and stability
VL  - 146
SP  - 179
EP  - 185
DO  - 10.1016/j.bej.2019.03.025
ER  - 
@article{
author = "Blažić, Marija and Balaž, Ana Marija and Tadić, Vojin and Draganić, Bojana and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2019",
abstract = "Cellobiose dehydrogenase (CDH) can be used in industry for lactobionic acid production, as a part of biosensors for disaccharides and in wound healing. In fungi it is involved in lignocellulose degradation. CDH gene from Phanerochaete chrysosporium has been cloned in pYES2 plasmid for extracellular expression and protein engineering in yeast Saccharomyces cerevisiae InvSC1 for the first time. A CDH gene library was generated using error-prone PCR and screened by spectrophotometric enzymatic assay based on 2,6-dichloroindophenol reduction detection in microtiter plates. Several mutants with increased activity and specificity towards lactose and cellobiose were found, purified and characterized in detail. Recombinant CDH enzymes showed a broad molecular weight between 120 and 150 KDa due to hyper-glycosylation and the best S137 N mutant showed 2.2 times increased k cat and 1.5 and 2 times increased specificity constant for lactose and cellobiose compared to the wild type enzyme. pH optimum of mutants was not changed while thermostability of selected mutants improved and S137 N mutant retained 30% of it's original activity after 15 min at 70 °C compared to 10% of activity that the wild type enzyme retained. Mutants M65S and S137 N showed also 1.6 and 1.5 times increased productivity of hydrogen peroxide in the presence of 30 mM lactose compared to the wild type.",
publisher = "Elsevier",
journal = "Biochemical Engineering Journal",
title = "Protein engineering of cellobiose dehydrogenase from Phanerochaete chrysosporium in yeast Saccharomyces cerevisiae InvSc1 for increased activity and stability",
volume = "146",
pages = "179-185",
doi = "10.1016/j.bej.2019.03.025"
}
Blažić, M., Balaž, A. M., Tadić, V., Draganić, B., Ostafe, R., Fischer, R.,& Prodanović, R.. (2019). Protein engineering of cellobiose dehydrogenase from Phanerochaete chrysosporium in yeast Saccharomyces cerevisiae InvSc1 for increased activity and stability. in Biochemical Engineering Journal
Elsevier., 146, 179-185.
https://doi.org/10.1016/j.bej.2019.03.025
Blažić M, Balaž AM, Tadić V, Draganić B, Ostafe R, Fischer R, Prodanović R. Protein engineering of cellobiose dehydrogenase from Phanerochaete chrysosporium in yeast Saccharomyces cerevisiae InvSc1 for increased activity and stability. in Biochemical Engineering Journal. 2019;146:179-185.
doi:10.1016/j.bej.2019.03.025 .
Blažić, Marija, Balaž, Ana Marija, Tadić, Vojin, Draganić, Bojana, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Protein engineering of cellobiose dehydrogenase from Phanerochaete chrysosporium in yeast Saccharomyces cerevisiae InvSc1 for increased activity and stability" in Biochemical Engineering Journal, 146 (2019):179-185,
https://doi.org/10.1016/j.bej.2019.03.025 . .
8
7

Supplementary data for the article: Kostić, A. Ž.; Gašić, U. M.; Pešić, M. B.; Stanojević, S. P.; Barać, M. B.; Mačukanović-Jocić, M. P.; Avramov, S. N.; Tešić, Ž. L. Phytochemical Analysis and Total Antioxidant Capacity of Rhizome, Above-Ground Vegetative Parts and Flower of Three Iris Species. Chemistry and Biodiversity 2019, 16 (3), 1–17. https://doi.org/10.1002/cbdv.201800565

Blažić, Marija; Balaž, Ana Marija; Tadić, Vojin; Draganić, Bojana; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(Elsevier, 2019)

TY  - DATA
AU  - Blažić, Marija
AU  - Balaž, Ana Marija
AU  - Tadić, Vojin
AU  - Draganić, Bojana
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/2900
PB  - Elsevier
T2  - Biochemical Engineering Journal
T1  - Supplementary data for the article: Kostić, A. Ž.; Gašić, U. M.; Pešić, M. B.; Stanojević, S. P.; Barać, M. B.; Mačukanović-Jocić, M. P.; Avramov, S. N.; Tešić, Ž. L. Phytochemical Analysis and Total Antioxidant Capacity of Rhizome, Above-Ground Vegetative Parts and Flower of Three Iris Species. Chemistry and Biodiversity 2019, 16 (3), 1–17. https://doi.org/10.1002/cbdv.201800565
ER  - 
@misc{
author = "Blažić, Marija and Balaž, Ana Marija and Tadić, Vojin and Draganić, Bojana and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2019",
publisher = "Elsevier",
journal = "Biochemical Engineering Journal",
title = "Supplementary data for the article: Kostić, A. Ž.; Gašić, U. M.; Pešić, M. B.; Stanojević, S. P.; Barać, M. B.; Mačukanović-Jocić, M. P.; Avramov, S. N.; Tešić, Ž. L. Phytochemical Analysis and Total Antioxidant Capacity of Rhizome, Above-Ground Vegetative Parts and Flower of Three Iris Species. Chemistry and Biodiversity 2019, 16 (3), 1–17. https://doi.org/10.1002/cbdv.201800565"
}
Blažić, M., Balaž, A. M., Tadić, V., Draganić, B., Ostafe, R., Fischer, R.,& Prodanović, R.. (2019). Supplementary data for the article: Kostić, A. Ž.; Gašić, U. M.; Pešić, M. B.; Stanojević, S. P.; Barać, M. B.; Mačukanović-Jocić, M. P.; Avramov, S. N.; Tešić, Ž. L. Phytochemical Analysis and Total Antioxidant Capacity of Rhizome, Above-Ground Vegetative Parts and Flower of Three Iris Species. Chemistry and Biodiversity 2019, 16 (3), 1–17. https://doi.org/10.1002/cbdv.201800565. in Biochemical Engineering Journal
Elsevier..
Blažić M, Balaž AM, Tadić V, Draganić B, Ostafe R, Fischer R, Prodanović R. Supplementary data for the article: Kostić, A. Ž.; Gašić, U. M.; Pešić, M. B.; Stanojević, S. P.; Barać, M. B.; Mačukanović-Jocić, M. P.; Avramov, S. N.; Tešić, Ž. L. Phytochemical Analysis and Total Antioxidant Capacity of Rhizome, Above-Ground Vegetative Parts and Flower of Three Iris Species. Chemistry and Biodiversity 2019, 16 (3), 1–17. https://doi.org/10.1002/cbdv.201800565. in Biochemical Engineering Journal. 2019;..
Blažić, Marija, Balaž, Ana Marija, Tadić, Vojin, Draganić, Bojana, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Supplementary data for the article: Kostić, A. Ž.; Gašić, U. M.; Pešić, M. B.; Stanojević, S. P.; Barać, M. B.; Mačukanović-Jocić, M. P.; Avramov, S. N.; Tešić, Ž. L. Phytochemical Analysis and Total Antioxidant Capacity of Rhizome, Above-Ground Vegetative Parts and Flower of Three Iris Species. Chemistry and Biodiversity 2019, 16 (3), 1–17. https://doi.org/10.1002/cbdv.201800565" in Biochemical Engineering Journal (2019).

Directed evolution of cellobiose dehydrogenase on the surface of yeast cells using resazurin-based fluorescent assay

Blažić, Marija; Balaž, Ana Marija; Prodanović, Olivera; Popović, Nikolina; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(Applied sciences, 2019)

TY  - JOUR
AU  - Blažić, Marija
AU  - Balaž, Ana Marija
AU  - Prodanović, Olivera
AU  - Popović, Nikolina
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/2909
AB  - Cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium can be used in lactobionic acid production, biosensor for lactose, biofuel cells, lignocellulose degradation, and wound-healing applications. To make it a better biocatalyst, CDH with higher activity in an immobilized form is desirable. For this purpose, CDH was expressed for the first time on the surface of S. cerevisiae EBY100 cells in an active form as a triple mutant tmCDH (D20N, A64T, V592M) and evolved further for higher activity using resazurin-based fluorescent assay. In order to decrease blank reaction of resazurin with yeast cells and to have linear correlation between enzyme activity on the cell surface and fluorescence signal, the assay was optimized with respect to resazurin concentration (0.1 mM), substrate concentration (10mMlactose and 0.08mMcellobiose), and pH (6.0). Using optimized assay an error prone PCR gene library of tmCDH was screened. Two mutants with 5 (H5) and 7 mutations (H9) were found having two times higher activity than the parent tmCDH enzyme that already had improved activity compared to wild type CDH whose activity could not be detected on the surface of yeast cells.
PB  - Applied sciences
T2  - Applied Sciences (Switzerland)
T1  - Directed evolution of cellobiose dehydrogenase on the surface of yeast cells using resazurin-based fluorescent assay
VL  - 9
IS  - 7
SP  - 1
EP  - 15
DO  - 10.3390/app9071413
ER  - 
@article{
author = "Blažić, Marija and Balaž, Ana Marija and Prodanović, Olivera and Popović, Nikolina and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2019",
abstract = "Cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium can be used in lactobionic acid production, biosensor for lactose, biofuel cells, lignocellulose degradation, and wound-healing applications. To make it a better biocatalyst, CDH with higher activity in an immobilized form is desirable. For this purpose, CDH was expressed for the first time on the surface of S. cerevisiae EBY100 cells in an active form as a triple mutant tmCDH (D20N, A64T, V592M) and evolved further for higher activity using resazurin-based fluorescent assay. In order to decrease blank reaction of resazurin with yeast cells and to have linear correlation between enzyme activity on the cell surface and fluorescence signal, the assay was optimized with respect to resazurin concentration (0.1 mM), substrate concentration (10mMlactose and 0.08mMcellobiose), and pH (6.0). Using optimized assay an error prone PCR gene library of tmCDH was screened. Two mutants with 5 (H5) and 7 mutations (H9) were found having two times higher activity than the parent tmCDH enzyme that already had improved activity compared to wild type CDH whose activity could not be detected on the surface of yeast cells.",
publisher = "Applied sciences",
journal = "Applied Sciences (Switzerland)",
title = "Directed evolution of cellobiose dehydrogenase on the surface of yeast cells using resazurin-based fluorescent assay",
volume = "9",
number = "7",
pages = "1-15",
doi = "10.3390/app9071413"
}
Blažić, M., Balaž, A. M., Prodanović, O., Popović, N., Ostafe, R., Fischer, R.,& Prodanović, R.. (2019). Directed evolution of cellobiose dehydrogenase on the surface of yeast cells using resazurin-based fluorescent assay. in Applied Sciences (Switzerland)
Applied sciences., 9(7), 1-15.
https://doi.org/10.3390/app9071413
Blažić M, Balaž AM, Prodanović O, Popović N, Ostafe R, Fischer R, Prodanović R. Directed evolution of cellobiose dehydrogenase on the surface of yeast cells using resazurin-based fluorescent assay. in Applied Sciences (Switzerland). 2019;9(7):1-15.
doi:10.3390/app9071413 .
Blažić, Marija, Balaž, Ana Marija, Prodanović, Olivera, Popović, Nikolina, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Directed evolution of cellobiose dehydrogenase on the surface of yeast cells using resazurin-based fluorescent assay" in Applied Sciences (Switzerland), 9, no. 7 (2019):1-15,
https://doi.org/10.3390/app9071413 . .
6
6

Supplementary data for the article: Blažić, M.; Balaž, A. M.; Prodanović, O.; Popović, N.; Ostafe, R.; Fischer, R.; Prodanović, R. Directed Evolution of Cellobiose Dehydrogenase on the Surface of Yeast Cells Using Resazurin-Based Fluorescent Assay. Applied Sciences (Switzerland) 2019, 9 (7). https://doi.org/10.3390/app9071413

Blažić, Marija; Balaž, Ana Marija; Prodanović, Olivera; Popović, Nikolina; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(Applied sciences, 2019)

TY  - DATA
AU  - Blažić, Marija
AU  - Balaž, Ana Marija
AU  - Prodanović, Olivera
AU  - Popović, Nikolina
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/2912
PB  - Applied sciences
T2  - Applied Sciences (Switzerland)
T1  - Supplementary data for the article: Blažić, M.; Balaž, A. M.; Prodanović, O.; Popović, N.; Ostafe, R.; Fischer, R.; Prodanović, R. Directed Evolution of Cellobiose Dehydrogenase on the Surface of Yeast Cells Using Resazurin-Based Fluorescent Assay. Applied Sciences (Switzerland) 2019, 9 (7). https://doi.org/10.3390/app9071413
ER  - 
@misc{
author = "Blažić, Marija and Balaž, Ana Marija and Prodanović, Olivera and Popović, Nikolina and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2019",
publisher = "Applied sciences",
journal = "Applied Sciences (Switzerland)",
title = "Supplementary data for the article: Blažić, M.; Balaž, A. M.; Prodanović, O.; Popović, N.; Ostafe, R.; Fischer, R.; Prodanović, R. Directed Evolution of Cellobiose Dehydrogenase on the Surface of Yeast Cells Using Resazurin-Based Fluorescent Assay. Applied Sciences (Switzerland) 2019, 9 (7). https://doi.org/10.3390/app9071413"
}
Blažić, M., Balaž, A. M., Prodanović, O., Popović, N., Ostafe, R., Fischer, R.,& Prodanović, R.. (2019). Supplementary data for the article: Blažić, M.; Balaž, A. M.; Prodanović, O.; Popović, N.; Ostafe, R.; Fischer, R.; Prodanović, R. Directed Evolution of Cellobiose Dehydrogenase on the Surface of Yeast Cells Using Resazurin-Based Fluorescent Assay. Applied Sciences (Switzerland) 2019, 9 (7). https://doi.org/10.3390/app9071413. in Applied Sciences (Switzerland)
Applied sciences..
Blažić M, Balaž AM, Prodanović O, Popović N, Ostafe R, Fischer R, Prodanović R. Supplementary data for the article: Blažić, M.; Balaž, A. M.; Prodanović, O.; Popović, N.; Ostafe, R.; Fischer, R.; Prodanović, R. Directed Evolution of Cellobiose Dehydrogenase on the Surface of Yeast Cells Using Resazurin-Based Fluorescent Assay. Applied Sciences (Switzerland) 2019, 9 (7). https://doi.org/10.3390/app9071413. in Applied Sciences (Switzerland). 2019;..
Blažić, Marija, Balaž, Ana Marija, Prodanović, Olivera, Popović, Nikolina, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Supplementary data for the article: Blažić, M.; Balaž, A. M.; Prodanović, O.; Popović, N.; Ostafe, R.; Fischer, R.; Prodanović, R. Directed Evolution of Cellobiose Dehydrogenase on the Surface of Yeast Cells Using Resazurin-Based Fluorescent Assay. Applied Sciences (Switzerland) 2019, 9 (7). https://doi.org/10.3390/app9071413" in Applied Sciences (Switzerland) (2019).

Influence of methionine residue position on oxidative stability of glucose oxidase from Aspergillus niger

Kovačević, Gordana; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(Elsevier, 2019)

TY  - JOUR
AU  - Kovačević, Gordana
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2019
AB  - Glucose oxidase (GOx) is a promising candidate for construction of implantable miniature biofuel cells and biosensors for continuous glucose monitoring. The main drawback that limits current application of GOx in these devices is its low stability, especially sensitivity to reactive oxygen species. In order to address this problem, we performed saturation mutagenesis at all 11 methionine residues as their interaction with reactive oxygen species inactivates enzymes. For successful screening of these libraries a method based on yeast surface display (YSD) systems was developed. Mutations at methionine positions close to the GOx active site contributed the most to the oxidative stability, and combinations of the four best single mutations were tested. Combined mutants did not show higher stability or activity compared to the parental single mutants. To confirm oxidative stability of YSD expressed GOx mutants they were re-cloned in Pichia pastoris, purified and immobilized on macroporous copolymer. The additional kinetic analysis of immobilized GOx mutants confirmed that the best mutant with only one mutation close to the active site (M561S) has 2.5 times increased half-life in the presence of hydrogen peroxide compared to the wild-type variant.
PB  - Elsevier
T2  - Biochemical Engineering Journal
T1  - Influence of methionine residue position on oxidative stability of glucose oxidase from Aspergillus niger
VL  - 146
SP  - 143
EP  - 149
DO  - 10.1016/j.bej.2019.03.016
ER  - 
@article{
author = "Kovačević, Gordana and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2019",
abstract = "Glucose oxidase (GOx) is a promising candidate for construction of implantable miniature biofuel cells and biosensors for continuous glucose monitoring. The main drawback that limits current application of GOx in these devices is its low stability, especially sensitivity to reactive oxygen species. In order to address this problem, we performed saturation mutagenesis at all 11 methionine residues as their interaction with reactive oxygen species inactivates enzymes. For successful screening of these libraries a method based on yeast surface display (YSD) systems was developed. Mutations at methionine positions close to the GOx active site contributed the most to the oxidative stability, and combinations of the four best single mutations were tested. Combined mutants did not show higher stability or activity compared to the parental single mutants. To confirm oxidative stability of YSD expressed GOx mutants they were re-cloned in Pichia pastoris, purified and immobilized on macroporous copolymer. The additional kinetic analysis of immobilized GOx mutants confirmed that the best mutant with only one mutation close to the active site (M561S) has 2.5 times increased half-life in the presence of hydrogen peroxide compared to the wild-type variant.",
publisher = "Elsevier",
journal = "Biochemical Engineering Journal",
title = "Influence of methionine residue position on oxidative stability of glucose oxidase from Aspergillus niger",
volume = "146",
pages = "143-149",
doi = "10.1016/j.bej.2019.03.016"
}
Kovačević, G., Ostafe, R., Fischer, R.,& Prodanović, R.. (2019). Influence of methionine residue position on oxidative stability of glucose oxidase from Aspergillus niger. in Biochemical Engineering Journal
Elsevier., 146, 143-149.
https://doi.org/10.1016/j.bej.2019.03.016
Kovačević G, Ostafe R, Fischer R, Prodanović R. Influence of methionine residue position on oxidative stability of glucose oxidase from Aspergillus niger. in Biochemical Engineering Journal. 2019;146:143-149.
doi:10.1016/j.bej.2019.03.016 .
Kovačević, Gordana, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Influence of methionine residue position on oxidative stability of glucose oxidase from Aspergillus niger" in Biochemical Engineering Journal, 146 (2019):143-149,
https://doi.org/10.1016/j.bej.2019.03.016 . .
9
8

Biochemical characterization of chitinase A from Bacillus licheniformis DSM8785 expressed in Pichia pastoris KM71H

Menghiu, G.; Ostafe, V.; Prodanović, Radivoje; Fischer, Rainer; Ostafe, Raluca

(2019)

TY  - JOUR
AU  - Menghiu, G.
AU  - Ostafe, V.
AU  - Prodanović, Radivoje
AU  - Fischer, Rainer
AU  - Ostafe, Raluca
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/2798
AB  - Chitin is an abundant biopolymer found mainly in the exoskeleton of crustaceans and insects. The degradation of chitin using chitinases is one way to address the accumulation of chitin waste streams in the environment, and research has therefore focused on the identification, improvement and expression of suitable enzymes. Here we describe the production, purification and characterization of Bacillus licheniformis chitinase A in the Pichia pastoris expression system. Optimal enzyme activity occurred at pH 4.0–5.0 and within the temperature range 50–60 °C. With colloidal chitin as the substrate, the Km (2.307 mM) and Vmax (0.024 mM min−1) of the enzyme were determined using a 3,5-dinitrosalicylic acid assay. The degradation products of colloidal chitin and hexa-N-acetylchitohexaose were compared by thin-layer chromatography. The activity of the glycosylated enzyme produced in P. pastoris was compared with the in vitro deglycosylated and aglycosylated version produced in Escherichia coli. We showed that the glycosylated chitinase was more active than the deglycosylated and aglycosylated variants. © 2018 Elsevier Inc.
T2  - Protein Expression and Purification
T1  - Biochemical characterization of chitinase A from Bacillus licheniformis DSM8785 expressed in Pichia pastoris KM71H
VL  - 154
SP  - 25
EP  - 32
DO  - 10.1016/j.pep.2018.09.007
ER  - 
@article{
author = "Menghiu, G. and Ostafe, V. and Prodanović, Radivoje and Fischer, Rainer and Ostafe, Raluca",
year = "2019",
abstract = "Chitin is an abundant biopolymer found mainly in the exoskeleton of crustaceans and insects. The degradation of chitin using chitinases is one way to address the accumulation of chitin waste streams in the environment, and research has therefore focused on the identification, improvement and expression of suitable enzymes. Here we describe the production, purification and characterization of Bacillus licheniformis chitinase A in the Pichia pastoris expression system. Optimal enzyme activity occurred at pH 4.0–5.0 and within the temperature range 50–60 °C. With colloidal chitin as the substrate, the Km (2.307 mM) and Vmax (0.024 mM min−1) of the enzyme were determined using a 3,5-dinitrosalicylic acid assay. The degradation products of colloidal chitin and hexa-N-acetylchitohexaose were compared by thin-layer chromatography. The activity of the glycosylated enzyme produced in P. pastoris was compared with the in vitro deglycosylated and aglycosylated version produced in Escherichia coli. We showed that the glycosylated chitinase was more active than the deglycosylated and aglycosylated variants. © 2018 Elsevier Inc.",
journal = "Protein Expression and Purification",
title = "Biochemical characterization of chitinase A from Bacillus licheniformis DSM8785 expressed in Pichia pastoris KM71H",
volume = "154",
pages = "25-32",
doi = "10.1016/j.pep.2018.09.007"
}
Menghiu, G., Ostafe, V., Prodanović, R., Fischer, R.,& Ostafe, R.. (2019). Biochemical characterization of chitinase A from Bacillus licheniformis DSM8785 expressed in Pichia pastoris KM71H. in Protein Expression and Purification, 154, 25-32.
https://doi.org/10.1016/j.pep.2018.09.007
Menghiu G, Ostafe V, Prodanović R, Fischer R, Ostafe R. Biochemical characterization of chitinase A from Bacillus licheniformis DSM8785 expressed in Pichia pastoris KM71H. in Protein Expression and Purification. 2019;154:25-32.
doi:10.1016/j.pep.2018.09.007 .
Menghiu, G., Ostafe, V., Prodanović, Radivoje, Fischer, Rainer, Ostafe, Raluca, "Biochemical characterization of chitinase A from Bacillus licheniformis DSM8785 expressed in Pichia pastoris KM71H" in Protein Expression and Purification, 154 (2019):25-32,
https://doi.org/10.1016/j.pep.2018.09.007 . .
13
11

Biochemical characterization of chitinase A from Bacillus licheniformis DSM8785 expressed in Pichia pastoris KM71H

Menghiu, G.; Ostafe, V.; Prodanović, Radivoje; Fischer, Rainer; Ostafe, Raluca

(Elsevier, 2019)

TY  - JOUR
AU  - Menghiu, G.
AU  - Ostafe, V.
AU  - Prodanović, Radivoje
AU  - Fischer, Rainer
AU  - Ostafe, Raluca
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/348
AB  - Chitin is an abundant biopolymer found mainly in the exoskeleton of crustaceans and insects. The degradation of chitin using chitinases is one way to address the accumulation of chitin waste streams in the environment, and research has therefore focused on the identification, improvement and expression of suitable enzymes. Here we describe the production, purification and characterization of Bacillus licheniformis chitinase A in the Pichia pastoris expression system. Optimal enzyme activity occurred at pH 4.0–5.0 and within the temperature range 50–60 °C. With colloidal chitin as the substrate, the Km (2.307 mM) and Vmax (0.024 mM min−1) of the enzyme were determined using a 3,5-dinitrosalicylic acid assay. The degradation products of colloidal chitin and hexa-N-acetylchitohexaose were compared by thin-layer chromatography. The activity of the glycosylated enzyme produced in P. pastoris was compared with the in vitro deglycosylated and aglycosylated version produced in Escherichia coli. We showed that the glycosylated chitinase was more active than the deglycosylated and aglycosylated variants. © 2018 Elsevier Inc.
PB  - Elsevier
T2  - Protein Expression and Purification
T1  - Biochemical characterization of chitinase A from Bacillus licheniformis DSM8785 expressed in Pichia pastoris KM71H
VL  - 154
SP  - 25
EP  - 32
DO  - 10.1016/j.pep.2018.09.007
UR  - Kon_1319
ER  - 
@article{
author = "Menghiu, G. and Ostafe, V. and Prodanović, Radivoje and Fischer, Rainer and Ostafe, Raluca",
year = "2019",
abstract = "Chitin is an abundant biopolymer found mainly in the exoskeleton of crustaceans and insects. The degradation of chitin using chitinases is one way to address the accumulation of chitin waste streams in the environment, and research has therefore focused on the identification, improvement and expression of suitable enzymes. Here we describe the production, purification and characterization of Bacillus licheniformis chitinase A in the Pichia pastoris expression system. Optimal enzyme activity occurred at pH 4.0–5.0 and within the temperature range 50–60 °C. With colloidal chitin as the substrate, the Km (2.307 mM) and Vmax (0.024 mM min−1) of the enzyme were determined using a 3,5-dinitrosalicylic acid assay. The degradation products of colloidal chitin and hexa-N-acetylchitohexaose were compared by thin-layer chromatography. The activity of the glycosylated enzyme produced in P. pastoris was compared with the in vitro deglycosylated and aglycosylated version produced in Escherichia coli. We showed that the glycosylated chitinase was more active than the deglycosylated and aglycosylated variants. © 2018 Elsevier Inc.",
publisher = "Elsevier",
journal = "Protein Expression and Purification",
title = "Biochemical characterization of chitinase A from Bacillus licheniformis DSM8785 expressed in Pichia pastoris KM71H",
volume = "154",
pages = "25-32",
doi = "10.1016/j.pep.2018.09.007",
url = "Kon_1319"
}
Menghiu, G., Ostafe, V., Prodanović, R., Fischer, R.,& Ostafe, R.. (2019). Biochemical characterization of chitinase A from Bacillus licheniformis DSM8785 expressed in Pichia pastoris KM71H. in Protein Expression and Purification
Elsevier., 154, 25-32.
https://doi.org/10.1016/j.pep.2018.09.007
Kon_1319
Menghiu G, Ostafe V, Prodanović R, Fischer R, Ostafe R. Biochemical characterization of chitinase A from Bacillus licheniformis DSM8785 expressed in Pichia pastoris KM71H. in Protein Expression and Purification. 2019;154:25-32.
doi:10.1016/j.pep.2018.09.007
Kon_1319 .
Menghiu, G., Ostafe, V., Prodanović, Radivoje, Fischer, Rainer, Ostafe, Raluca, "Biochemical characterization of chitinase A from Bacillus licheniformis DSM8785 expressed in Pichia pastoris KM71H" in Protein Expression and Purification, 154 (2019):25-32,
https://doi.org/10.1016/j.pep.2018.09.007 .,
Kon_1319 .
13
11