Kilibarda, Nataša

Link to this page

Authority KeyName Variants
102774e1-b852-495b-8d66-870233b15a42
  • Kilibarda, Nataša (2)
  • Kilibarda, Natasa (1)
Projects

Author's Bibliography

Ramonda serbica de novo transcriptome database related to the article: Pantelic, A.; Stevanović, S.; Milic-Komic, S.; Kilibarda, N.; Vidovic, M. Characterization and expression analysis of the late embryogenesis abundant (LEA) proteins family in hydrated and desiccated Ramonda serbica Panc. leaves

Pantelić, Ana; Stevanovic, Strahinja; Milic-Komic, Sonja; Kilibarda, Natasa; Vidović, Marija

(MDPI, 2022)

TY  - DATA
AU  - Pantelić, Ana
AU  - Stevanovic, Strahinja
AU  - Milic-Komic, Sonja
AU  - Kilibarda, Natasa
AU  - Vidović, Marija
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4882
AB  - Ramonda serbica de novo transcriptome database
PB  - MDPI
T2  - International Journal of Molecular Science
T1  - Ramonda serbica de novo transcriptome database related to the article: Pantelic, A.; Stevanović, S.; Milic-Komic, S.; Kilibarda, N.; Vidovic, M. Characterization and expression analysis of the late embryogenesis abundant (LEA) proteins family in hydrated and desiccated Ramonda serbica Panc. leaves
VL  - n/a
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4882
ER  - 
@misc{
author = "Pantelić, Ana and Stevanovic, Strahinja and Milic-Komic, Sonja and Kilibarda, Natasa and Vidović, Marija",
year = "2022",
abstract = "Ramonda serbica de novo transcriptome database",
publisher = "MDPI",
journal = "International Journal of Molecular Science",
title = "Ramonda serbica de novo transcriptome database related to the article: Pantelic, A.; Stevanović, S.; Milic-Komic, S.; Kilibarda, N.; Vidovic, M. Characterization and expression analysis of the late embryogenesis abundant (LEA) proteins family in hydrated and desiccated Ramonda serbica Panc. leaves",
volume = "n/a",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4882"
}
Pantelić, A., Stevanovic, S., Milic-Komic, S., Kilibarda, N.,& Vidović, M.. (2022). Ramonda serbica de novo transcriptome database related to the article: Pantelic, A.; Stevanović, S.; Milic-Komic, S.; Kilibarda, N.; Vidovic, M. Characterization and expression analysis of the late embryogenesis abundant (LEA) proteins family in hydrated and desiccated Ramonda serbica Panc. leaves. in International Journal of Molecular Science
MDPI., n/a.
https://hdl.handle.net/21.15107/rcub_cherry_4882
Pantelić A, Stevanovic S, Milic-Komic S, Kilibarda N, Vidović M. Ramonda serbica de novo transcriptome database related to the article: Pantelic, A.; Stevanović, S.; Milic-Komic, S.; Kilibarda, N.; Vidovic, M. Characterization and expression analysis of the late embryogenesis abundant (LEA) proteins family in hydrated and desiccated Ramonda serbica Panc. leaves. in International Journal of Molecular Science. 2022;n/a.
https://hdl.handle.net/21.15107/rcub_cherry_4882 .
Pantelić, Ana, Stevanovic, Strahinja, Milic-Komic, Sonja, Kilibarda, Natasa, Vidović, Marija, "Ramonda serbica de novo transcriptome database related to the article: Pantelic, A.; Stevanović, S.; Milic-Komic, S.; Kilibarda, N.; Vidovic, M. Characterization and expression analysis of the late embryogenesis abundant (LEA) proteins family in hydrated and desiccated Ramonda serbica Panc. leaves" in International Journal of Molecular Science, n/a (2022),
https://hdl.handle.net/21.15107/rcub_cherry_4882 .

De Novo Transcriptome Sequencing of Ramonda serbica: Identification of Late Embryogenesis Abundant Proteins

Pantelić, Ana; Stevanović, Strahinja; Kilibarda, Nataša; Vidović, Marija

(Novi Sad : Faculty of Sciences, Department of Biology and Ecology, 2021)

TY  - CONF
AU  - Pantelić, Ana
AU  - Stevanović, Strahinja
AU  - Kilibarda, Nataša
AU  - Vidović, Marija
PY  - 2021
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4503
UR  - http://ojs.pmf.uns.ac.rs/index.php/dbe_serbica/index
AB  - An extreme loss of cellular water or desiccation (5-10% of relative water content) leads to protein denaturation, aggregation and degradation, and affects the fluidity of membrane lipids resulting in loss of membrane integrity [1]. The essential constituents of vegetative desiccation tolerance in so-called resurrection plants are late embryogenesis abundant proteins (LEAPs). This heterogeneous group of anhydrobiosis-related intrinsically disordered proteins forms mostly random conformation when fully hydrated, turning into compact α-helices during desiccation [2]. Based on in vitro studies, LEAPs can be involved in water binding, ion sequestration, stabilization of both membrane and enzymes during freezing or drying, while by forming intracellular proteinaceous condensates they increase structural integrity and intracellular viscosity of cells during desiccation.
Here, we identify 164 members of LEA gene family in endemic and relict resurrection species Ramonda serbica by integrating previously done de novo transcriptome and homologues protein motifs. Identified LEAPs were classification into six groups according to Protein family (PFAM) database and the most populated group was LEA4 containing 47% of total identified LEAPs. By using four secondary structure predictors, we showed that this group exhibited a high propensity to form amphipathic α-helices (81% of total sequence length is predicted to form α-helical structure). This implies that charged residues might be exposed to the solvent, while hydrophobic amino acids might interact with lipid bilayers or with other target proteins in the cell. In addition, as predicted by several bioinformatic tools, more than 70% of identified LEAPs were found to be highly disordered (~64%). Structural characterization of LEAPs is a key to understand their function and regulation of their intrinsic structural disorder-to-order transition during desiccation. These findings will promote transformative advancements in various fields, such as the development of new strategies in neurodegenerative disorders, cell preservation technology and the improvement of crop drought tolerance.
PB  - Novi Sad : Faculty of Sciences, Department of Biology and Ecology
C3  - Biologia Serbica
T1  - De Novo Transcriptome Sequencing of Ramonda serbica: Identification of Late Embryogenesis Abundant Proteins
VL  - 43
IS  - 1 (spec. ed.)
SP  - 65
EP  - 65
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4503
ER  - 
@conference{
author = "Pantelić, Ana and Stevanović, Strahinja and Kilibarda, Nataša and Vidović, Marija",
year = "2021",
abstract = "An extreme loss of cellular water or desiccation (5-10% of relative water content) leads to protein denaturation, aggregation and degradation, and affects the fluidity of membrane lipids resulting in loss of membrane integrity [1]. The essential constituents of vegetative desiccation tolerance in so-called resurrection plants are late embryogenesis abundant proteins (LEAPs). This heterogeneous group of anhydrobiosis-related intrinsically disordered proteins forms mostly random conformation when fully hydrated, turning into compact α-helices during desiccation [2]. Based on in vitro studies, LEAPs can be involved in water binding, ion sequestration, stabilization of both membrane and enzymes during freezing or drying, while by forming intracellular proteinaceous condensates they increase structural integrity and intracellular viscosity of cells during desiccation.
Here, we identify 164 members of LEA gene family in endemic and relict resurrection species Ramonda serbica by integrating previously done de novo transcriptome and homologues protein motifs. Identified LEAPs were classification into six groups according to Protein family (PFAM) database and the most populated group was LEA4 containing 47% of total identified LEAPs. By using four secondary structure predictors, we showed that this group exhibited a high propensity to form amphipathic α-helices (81% of total sequence length is predicted to form α-helical structure). This implies that charged residues might be exposed to the solvent, while hydrophobic amino acids might interact with lipid bilayers or with other target proteins in the cell. In addition, as predicted by several bioinformatic tools, more than 70% of identified LEAPs were found to be highly disordered (~64%). Structural characterization of LEAPs is a key to understand their function and regulation of their intrinsic structural disorder-to-order transition during desiccation. These findings will promote transformative advancements in various fields, such as the development of new strategies in neurodegenerative disorders, cell preservation technology and the improvement of crop drought tolerance.",
publisher = "Novi Sad : Faculty of Sciences, Department of Biology and Ecology",
journal = "Biologia Serbica",
title = "De Novo Transcriptome Sequencing of Ramonda serbica: Identification of Late Embryogenesis Abundant Proteins",
volume = "43",
number = "1 (spec. ed.)",
pages = "65-65",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4503"
}
Pantelić, A., Stevanović, S., Kilibarda, N.,& Vidović, M.. (2021). De Novo Transcriptome Sequencing of Ramonda serbica: Identification of Late Embryogenesis Abundant Proteins. in Biologia Serbica
Novi Sad : Faculty of Sciences, Department of Biology and Ecology., 43(1 (spec. ed.)), 65-65.
https://hdl.handle.net/21.15107/rcub_cherry_4503
Pantelić A, Stevanović S, Kilibarda N, Vidović M. De Novo Transcriptome Sequencing of Ramonda serbica: Identification of Late Embryogenesis Abundant Proteins. in Biologia Serbica. 2021;43(1 (spec. ed.)):65-65.
https://hdl.handle.net/21.15107/rcub_cherry_4503 .
Pantelić, Ana, Stevanović, Strahinja, Kilibarda, Nataša, Vidović, Marija, "De Novo Transcriptome Sequencing of Ramonda serbica: Identification of Late Embryogenesis Abundant Proteins" in Biologia Serbica, 43, no. 1 (spec. ed.) (2021):65-65,
https://hdl.handle.net/21.15107/rcub_cherry_4503 .

De Novo Transcriptome Sequencing of Ramonda serbica : Identification of Late Embryogenesis Abundant Proteins

Pantelić, Ana; Stevanović, Strahinja; Kilibarda, Nataša; Vidović, Marija

(Belgrade BioInformatics, 2021)

TY  - GEN
AU  - Pantelić, Ana
AU  - Stevanović, Strahinja
AU  - Kilibarda, Nataša
AU  - Vidović, Marija
PY  - 2021
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4506
PB  - Belgrade BioInformatics
T2  - Belgrade BioInformatics Conference 2021
T1  - De Novo Transcriptome Sequencing of Ramonda serbica : Identification of Late Embryogenesis Abundant Proteins
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4506
ER  - 
@misc{
author = "Pantelić, Ana and Stevanović, Strahinja and Kilibarda, Nataša and Vidović, Marija",
year = "2021",
publisher = "Belgrade BioInformatics",
journal = "Belgrade BioInformatics Conference 2021",
title = "De Novo Transcriptome Sequencing of Ramonda serbica : Identification of Late Embryogenesis Abundant Proteins",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4506"
}
Pantelić, A., Stevanović, S., Kilibarda, N.,& Vidović, M.. (2021). De Novo Transcriptome Sequencing of Ramonda serbica : Identification of Late Embryogenesis Abundant Proteins. in Belgrade BioInformatics Conference 2021
Belgrade BioInformatics..
https://hdl.handle.net/21.15107/rcub_cherry_4506
Pantelić A, Stevanović S, Kilibarda N, Vidović M. De Novo Transcriptome Sequencing of Ramonda serbica : Identification of Late Embryogenesis Abundant Proteins. in Belgrade BioInformatics Conference 2021. 2021;.
https://hdl.handle.net/21.15107/rcub_cherry_4506 .
Pantelić, Ana, Stevanović, Strahinja, Kilibarda, Nataša, Vidović, Marija, "De Novo Transcriptome Sequencing of Ramonda serbica : Identification of Late Embryogenesis Abundant Proteins" in Belgrade BioInformatics Conference 2021 (2021),
https://hdl.handle.net/21.15107/rcub_cherry_4506 .