Reineke, Doris

Link to this page

Authority KeyName Variants
2a52407a-0754-4cb4-b764-4a3bceeb1a55
  • Reineke, Doris (1)
Projects

Author's Bibliography

Chemical Ecology of Cave-Dwelling Millipedes: Defensive Secretions of the Typhloiulini (Diplopoda, Julida, Julidae)

Makarov, Slobodan E.; Bodner, Michaela; Reineke, Doris; Vujisić, Ljubodrag V.; Todosijević, Marina; Antić, Dragan Ž.; Vagalinski, Boyan; Lučić, Luka; Mitić, Bojan M.; Mitov, Plamen; Anđelković, Boban D.; Lucić, Sofija Pavković; Vajs, Vlatka; Tomić, Vladimir T.; Raspotnig, Guenther

(Springer, Dordrecht, 2017)

TY  - JOUR
AU  - Makarov, Slobodan E.
AU  - Bodner, Michaela
AU  - Reineke, Doris
AU  - Vujisić, Ljubodrag V.
AU  - Todosijević, Marina
AU  - Antić, Dragan Ž.
AU  - Vagalinski, Boyan
AU  - Lučić, Luka
AU  - Mitić, Bojan M.
AU  - Mitov, Plamen
AU  - Anđelković, Boban D.
AU  - Lucić, Sofija Pavković
AU  - Vajs, Vlatka
AU  - Tomić, Vladimir T.
AU  - Raspotnig, Guenther
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2450
AB  - Cave animals live under highly constant ecological conditions and in permanent darkness, and many evolutionary adaptations of cave-dwellers have been triggered by their specific environment. A similar "cave effect" leading to pronounced chemical interactions under such conditions may be assumed, but the chemoecology of troglobionts is mostly unknown. We investigated the defensive chemistry of a largely cave-dwelling julid group, the controversial tribe "Typhloiulini", and we included some cave-dwelling and some endogean representatives. While chemical defense in juliform diplopods is known to be highly uniform, and mainly based on methyl- and methoxy-substituted benzoquinones, the defensive secretions of typhloiulines contained ethyl-benzoquinones and related compounds. Interestingly, ethyl-benzoquinones were found in some, but not all cave-dwelling typhloiulines, and some non-cave dwellers also contained these compounds. On the other hand, ethyl-benzoquinones were not detected in troglobiont nor in endogean typhloiuline outgroups. In order to explain the taxonomic pattern of ethyl-benzoquinone occurrence, and to unravel whether a cave-effect triggered ethyl-benzoquinone evolution, we classed the "Typhloiulini" investigated here within a phylogenetic framework of julid taxa, and traced the evolutionary history of ethyl-benzoquinones in typhloiulines in relation to cave-dwelling. The results indicated a cave-independent evolution of ethyl-substituted benzoquinones, indicating the absence of a "cave effect" on the secretions of troglobiont Typhloiulini. Ethyl-benzoquinones probably evolved early in an epi- or endogean ancestor of a clade including several, but not all Typhloiulus (basically comprising a taxonomic entity known as "Typhloiulus sensu stricto") and Serboiulus. Ethyl-benzoquinones are proposed as novel and valuable chemical characters for julid systematics.
PB  - Springer, Dordrecht
T2  - Journal of Chemical Ecology
T1  - Chemical Ecology of Cave-Dwelling Millipedes: Defensive Secretions of the Typhloiulini (Diplopoda, Julida, Julidae)
VL  - 43
IS  - 4
SP  - 317
EP  - 326
DO  - 10.1007/s10886-017-0832-1
ER  - 
@article{
author = "Makarov, Slobodan E. and Bodner, Michaela and Reineke, Doris and Vujisić, Ljubodrag V. and Todosijević, Marina and Antić, Dragan Ž. and Vagalinski, Boyan and Lučić, Luka and Mitić, Bojan M. and Mitov, Plamen and Anđelković, Boban D. and Lucić, Sofija Pavković and Vajs, Vlatka and Tomić, Vladimir T. and Raspotnig, Guenther",
year = "2017",
abstract = "Cave animals live under highly constant ecological conditions and in permanent darkness, and many evolutionary adaptations of cave-dwellers have been triggered by their specific environment. A similar "cave effect" leading to pronounced chemical interactions under such conditions may be assumed, but the chemoecology of troglobionts is mostly unknown. We investigated the defensive chemistry of a largely cave-dwelling julid group, the controversial tribe "Typhloiulini", and we included some cave-dwelling and some endogean representatives. While chemical defense in juliform diplopods is known to be highly uniform, and mainly based on methyl- and methoxy-substituted benzoquinones, the defensive secretions of typhloiulines contained ethyl-benzoquinones and related compounds. Interestingly, ethyl-benzoquinones were found in some, but not all cave-dwelling typhloiulines, and some non-cave dwellers also contained these compounds. On the other hand, ethyl-benzoquinones were not detected in troglobiont nor in endogean typhloiuline outgroups. In order to explain the taxonomic pattern of ethyl-benzoquinone occurrence, and to unravel whether a cave-effect triggered ethyl-benzoquinone evolution, we classed the "Typhloiulini" investigated here within a phylogenetic framework of julid taxa, and traced the evolutionary history of ethyl-benzoquinones in typhloiulines in relation to cave-dwelling. The results indicated a cave-independent evolution of ethyl-substituted benzoquinones, indicating the absence of a "cave effect" on the secretions of troglobiont Typhloiulini. Ethyl-benzoquinones probably evolved early in an epi- or endogean ancestor of a clade including several, but not all Typhloiulus (basically comprising a taxonomic entity known as "Typhloiulus sensu stricto") and Serboiulus. Ethyl-benzoquinones are proposed as novel and valuable chemical characters for julid systematics.",
publisher = "Springer, Dordrecht",
journal = "Journal of Chemical Ecology",
title = "Chemical Ecology of Cave-Dwelling Millipedes: Defensive Secretions of the Typhloiulini (Diplopoda, Julida, Julidae)",
volume = "43",
number = "4",
pages = "317-326",
doi = "10.1007/s10886-017-0832-1"
}
Makarov, S. E., Bodner, M., Reineke, D., Vujisić, L. V., Todosijević, M., Antić, D. Ž., Vagalinski, B., Lučić, L., Mitić, B. M., Mitov, P., Anđelković, B. D., Lucić, S. P., Vajs, V., Tomić, V. T.,& Raspotnig, G.. (2017). Chemical Ecology of Cave-Dwelling Millipedes: Defensive Secretions of the Typhloiulini (Diplopoda, Julida, Julidae). in Journal of Chemical Ecology
Springer, Dordrecht., 43(4), 317-326.
https://doi.org/10.1007/s10886-017-0832-1
Makarov SE, Bodner M, Reineke D, Vujisić LV, Todosijević M, Antić DŽ, Vagalinski B, Lučić L, Mitić BM, Mitov P, Anđelković BD, Lucić SP, Vajs V, Tomić VT, Raspotnig G. Chemical Ecology of Cave-Dwelling Millipedes: Defensive Secretions of the Typhloiulini (Diplopoda, Julida, Julidae). in Journal of Chemical Ecology. 2017;43(4):317-326.
doi:10.1007/s10886-017-0832-1 .
Makarov, Slobodan E., Bodner, Michaela, Reineke, Doris, Vujisić, Ljubodrag V., Todosijević, Marina, Antić, Dragan Ž., Vagalinski, Boyan, Lučić, Luka, Mitić, Bojan M., Mitov, Plamen, Anđelković, Boban D., Lucić, Sofija Pavković, Vajs, Vlatka, Tomić, Vladimir T., Raspotnig, Guenther, "Chemical Ecology of Cave-Dwelling Millipedes: Defensive Secretions of the Typhloiulini (Diplopoda, Julida, Julidae)" in Journal of Chemical Ecology, 43, no. 4 (2017):317-326,
https://doi.org/10.1007/s10886-017-0832-1 . .
9
10
12
6