Tolinački, Maja

Link to this page

Authority KeyName Variants
d7c0f9b2-12b0-4627-8b28-17496982816e
  • Tolinački, Maja (6)
Projects

Author's Bibliography

Orally Administrated Lactiplantibacillus plantarum BGAN8-Derived EPS-AN8 Ameliorates Cd Hazards in Rats

Brdarić, Emilija; Pop, Dušanka; Soković Bajić, Svetlana; Tucović, Dina; Mutić, Jelena; Čakić-Milošević, Maja; Đurđić, Slađana Z.; Tolinački, Maja; Popov Aleksandrov, Aleksandra; Golić, Nataša; Mirkov, Ivana; Živković, Milica

(MDPI, 2023)

TY  - JOUR
AU  - Brdarić, Emilija
AU  - Pop, Dušanka
AU  - Soković Bajić, Svetlana
AU  - Tucović, Dina
AU  - Mutić, Jelena
AU  - Čakić-Milošević, Maja
AU  - Đurđić, Slađana Z.
AU  - Tolinački, Maja
AU  - Popov Aleksandrov, Aleksandra
AU  - Golić, Nataša
AU  - Mirkov, Ivana
AU  - Živković, Milica
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5970
AB  - Cadmium (Cd) is a highly toxic metal that is distributed worldwide. Exposure to it is
correlated with a vast number of diseases and organism malfunctions. Exopolysaccharides (EPS)
derived from Lactiplantibacillus plantarum BGAN8, EPS-AN8, previously showed great potential for
the in vitro protection of intestinal cells from this metal. Here, we investigated the potential of food
supplemented with EPS-AN8 to protect rats from the hazardous effects of Cd exposure. After thirty
days of exposure to lower (5 ppm) and higher (50 ppm)-Cd doses, the administration of EPS-AN8 led to decreased Cd content in the kidneys, liver, and blood compared to only Cd-treated groups, whereas the fecal Cd content was strongly enriched. In addition, EPS-AN8 reversed Cd-provoked effects on the most significant parameters of oxidative stress (MDA, CAT, GST, and GSH) and inflammation (IL-1β, TNF-α, and IFN-γ) in the duodenum. Moreover, micrographs of the duodenum were in line with these findings. As the gut microbiota has an important role in maintaining homeostasis, we used 16S rRNA amplicon sequencing and investigated the effects of Cd and EPS-AN8 on one part of the microbiota presented in the duodenum. Although Cd decreased the growth of lactobacilli and mostly favored the blooming of opportunistic pathogen bacteria, parallel intake of EPS-AN8 reversed those changes. Therefore, our results imply that EPS-AN8 might be extremely noteworthy in combatting this toxic environmental pollutant.
PB  - MDPI
T2  - International Journal of Molecular Sciences
T1  - Orally Administrated Lactiplantibacillus plantarum BGAN8-Derived EPS-AN8 Ameliorates Cd Hazards in Rats
VL  - 24
IS  - 3
SP  - 2845
DO  - 10.3390/ijms24032845
ER  - 
@article{
author = "Brdarić, Emilija and Pop, Dušanka and Soković Bajić, Svetlana and Tucović, Dina and Mutić, Jelena and Čakić-Milošević, Maja and Đurđić, Slađana Z. and Tolinački, Maja and Popov Aleksandrov, Aleksandra and Golić, Nataša and Mirkov, Ivana and Živković, Milica",
year = "2023",
abstract = "Cadmium (Cd) is a highly toxic metal that is distributed worldwide. Exposure to it is
correlated with a vast number of diseases and organism malfunctions. Exopolysaccharides (EPS)
derived from Lactiplantibacillus plantarum BGAN8, EPS-AN8, previously showed great potential for
the in vitro protection of intestinal cells from this metal. Here, we investigated the potential of food
supplemented with EPS-AN8 to protect rats from the hazardous effects of Cd exposure. After thirty
days of exposure to lower (5 ppm) and higher (50 ppm)-Cd doses, the administration of EPS-AN8 led to decreased Cd content in the kidneys, liver, and blood compared to only Cd-treated groups, whereas the fecal Cd content was strongly enriched. In addition, EPS-AN8 reversed Cd-provoked effects on the most significant parameters of oxidative stress (MDA, CAT, GST, and GSH) and inflammation (IL-1β, TNF-α, and IFN-γ) in the duodenum. Moreover, micrographs of the duodenum were in line with these findings. As the gut microbiota has an important role in maintaining homeostasis, we used 16S rRNA amplicon sequencing and investigated the effects of Cd and EPS-AN8 on one part of the microbiota presented in the duodenum. Although Cd decreased the growth of lactobacilli and mostly favored the blooming of opportunistic pathogen bacteria, parallel intake of EPS-AN8 reversed those changes. Therefore, our results imply that EPS-AN8 might be extremely noteworthy in combatting this toxic environmental pollutant.",
publisher = "MDPI",
journal = "International Journal of Molecular Sciences",
title = "Orally Administrated Lactiplantibacillus plantarum BGAN8-Derived EPS-AN8 Ameliorates Cd Hazards in Rats",
volume = "24",
number = "3",
pages = "2845",
doi = "10.3390/ijms24032845"
}
Brdarić, E., Pop, D., Soković Bajić, S., Tucović, D., Mutić, J., Čakić-Milošević, M., Đurđić, S. Z., Tolinački, M., Popov Aleksandrov, A., Golić, N., Mirkov, I.,& Živković, M.. (2023). Orally Administrated Lactiplantibacillus plantarum BGAN8-Derived EPS-AN8 Ameliorates Cd Hazards in Rats. in International Journal of Molecular Sciences
MDPI., 24(3), 2845.
https://doi.org/10.3390/ijms24032845
Brdarić E, Pop D, Soković Bajić S, Tucović D, Mutić J, Čakić-Milošević M, Đurđić SZ, Tolinački M, Popov Aleksandrov A, Golić N, Mirkov I, Živković M. Orally Administrated Lactiplantibacillus plantarum BGAN8-Derived EPS-AN8 Ameliorates Cd Hazards in Rats. in International Journal of Molecular Sciences. 2023;24(3):2845.
doi:10.3390/ijms24032845 .
Brdarić, Emilija, Pop, Dušanka, Soković Bajić, Svetlana, Tucović, Dina, Mutić, Jelena, Čakić-Milošević, Maja, Đurđić, Slađana Z., Tolinački, Maja, Popov Aleksandrov, Aleksandra, Golić, Nataša, Mirkov, Ivana, Živković, Milica, "Orally Administrated Lactiplantibacillus plantarum BGAN8-Derived EPS-AN8 Ameliorates Cd Hazards in Rats" in International Journal of Molecular Sciences, 24, no. 3 (2023):2845,
https://doi.org/10.3390/ijms24032845 . .
1
5
2
2

Protective Effect of an Exopolysaccharide Produced by Lactiplantibacillus plantarum BGAN8 Against Cadmium-Induced Toxicity in Caco-2 Cells

Brdarić, Emilija; Soković Bajić, Svetlana; Đokić, Jelena; Đurđić, Slađana Z.; Ruas-Madiedo, Patricia; Stevanović, Magdalena; Tolinački, Maja; Dinić, Miroslav; Mutić, Jelena; Golić, Nataša; Živković, Milica

(Frontiers, 2021)

TY  - JOUR
AU  - Brdarić, Emilija
AU  - Soković Bajić, Svetlana
AU  - Đokić, Jelena
AU  - Đurđić, Slađana Z.
AU  - Ruas-Madiedo, Patricia
AU  - Stevanović, Magdalena
AU  - Tolinački, Maja
AU  - Dinić, Miroslav
AU  - Mutić, Jelena
AU  - Golić, Nataša
AU  - Živković, Milica
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4785
AB  - Cadmium (Cd) ranks seventh on the list of most significant potential threats to human health based on its suspected toxicity and the possibility of exposure to it. It has been reported that some bacterial exopolysaccharides (EPSs) have the ability to bind heavy metal ions. We therefore investigated the capacity of eight EPS-producing lactobacilli to adsorb Cd in the present study, and Lactiplantibacillus plantarum BGAN8 was chosen as the best candidate. In addition, we demonstrate that an EPS derived from BGAN8 (EPS-AN8) exhibits a high Cd-binding capacity and prevents Cd-mediated toxicity in intestinal epithelial Caco-2 cells. Simultaneous use of EPS-AN8 with Cd treatment prevents inflammation, disruption of tight-junction proteins, and oxidative stress. Our results indicate that the EPS in question has a strong potential to be used as a postbiotic in combatting the adverse effects of Cd. Moreover, we show that higher concentrations of EPS-AN8 can alleviate Cd-induced cell damage.
PB  - Frontiers
T2  - Frontiers in Microbiology
T1  - Protective Effect of an Exopolysaccharide Produced by Lactiplantibacillus plantarum BGAN8 Against Cadmium-Induced Toxicity in Caco-2 Cells
VL  - 12
SP  - 3222
DO  - 10.3389/fmicb.2021.759378
ER  - 
@article{
author = "Brdarić, Emilija and Soković Bajić, Svetlana and Đokić, Jelena and Đurđić, Slađana Z. and Ruas-Madiedo, Patricia and Stevanović, Magdalena and Tolinački, Maja and Dinić, Miroslav and Mutić, Jelena and Golić, Nataša and Živković, Milica",
year = "2021",
abstract = "Cadmium (Cd) ranks seventh on the list of most significant potential threats to human health based on its suspected toxicity and the possibility of exposure to it. It has been reported that some bacterial exopolysaccharides (EPSs) have the ability to bind heavy metal ions. We therefore investigated the capacity of eight EPS-producing lactobacilli to adsorb Cd in the present study, and Lactiplantibacillus plantarum BGAN8 was chosen as the best candidate. In addition, we demonstrate that an EPS derived from BGAN8 (EPS-AN8) exhibits a high Cd-binding capacity and prevents Cd-mediated toxicity in intestinal epithelial Caco-2 cells. Simultaneous use of EPS-AN8 with Cd treatment prevents inflammation, disruption of tight-junction proteins, and oxidative stress. Our results indicate that the EPS in question has a strong potential to be used as a postbiotic in combatting the adverse effects of Cd. Moreover, we show that higher concentrations of EPS-AN8 can alleviate Cd-induced cell damage.",
publisher = "Frontiers",
journal = "Frontiers in Microbiology",
title = "Protective Effect of an Exopolysaccharide Produced by Lactiplantibacillus plantarum BGAN8 Against Cadmium-Induced Toxicity in Caco-2 Cells",
volume = "12",
pages = "3222",
doi = "10.3389/fmicb.2021.759378"
}
Brdarić, E., Soković Bajić, S., Đokić, J., Đurđić, S. Z., Ruas-Madiedo, P., Stevanović, M., Tolinački, M., Dinić, M., Mutić, J., Golić, N.,& Živković, M.. (2021). Protective Effect of an Exopolysaccharide Produced by Lactiplantibacillus plantarum BGAN8 Against Cadmium-Induced Toxicity in Caco-2 Cells. in Frontiers in Microbiology
Frontiers., 12, 3222.
https://doi.org/10.3389/fmicb.2021.759378
Brdarić E, Soković Bajić S, Đokić J, Đurđić SZ, Ruas-Madiedo P, Stevanović M, Tolinački M, Dinić M, Mutić J, Golić N, Živković M. Protective Effect of an Exopolysaccharide Produced by Lactiplantibacillus plantarum BGAN8 Against Cadmium-Induced Toxicity in Caco-2 Cells. in Frontiers in Microbiology. 2021;12:3222.
doi:10.3389/fmicb.2021.759378 .
Brdarić, Emilija, Soković Bajić, Svetlana, Đokić, Jelena, Đurđić, Slađana Z., Ruas-Madiedo, Patricia, Stevanović, Magdalena, Tolinački, Maja, Dinić, Miroslav, Mutić, Jelena, Golić, Nataša, Živković, Milica, "Protective Effect of an Exopolysaccharide Produced by Lactiplantibacillus plantarum BGAN8 Against Cadmium-Induced Toxicity in Caco-2 Cells" in Frontiers in Microbiology, 12 (2021):3222,
https://doi.org/10.3389/fmicb.2021.759378 . .
1
14
12
10

Antioxidant and Antiproliferative Activity of Allium ursinum and Their Associated Microbiota During Simulated in vitro Digestion in the Presence of Food Matrix

Stanisavljević, Nemanja S.; Soković Bajić, Svetlana; Jovanović, Živko S.; Matić, Ivana; Tolinački, Maja; Popović, Dušanka; Popović, Nikola; Terzić-Vidojević, Amarela; Golić, Nataša; Beškoski, Vladimir; Samardžić, Jelena

(Frontiers, 2020)

TY  - JOUR
AU  - Stanisavljević, Nemanja S.
AU  - Soković Bajić, Svetlana
AU  - Jovanović, Živko S.
AU  - Matić, Ivana
AU  - Tolinački, Maja
AU  - Popović, Dušanka
AU  - Popović, Nikola
AU  - Terzić-Vidojević, Amarela
AU  - Golić, Nataša
AU  - Beškoski, Vladimir
AU  - Samardžić, Jelena
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4300
AB  - In this study, for the first time, the comprehensive analysis of antiproliferative and antioxidant activities of ramson, followed by the analysis of its associated microbiota and health-promoting effects of lactic acid bacteria (LAB), was performed. Ramson (Allium ursinum) is recognized as a medicinal plant with a long history of use in traditional medicine due to its antimicrobial and antioxidant activity. In this study the influence of in vitro gastrointestinal digestion on the cytotoxic activity of A. ursinum extracts against human malignant cell lines was demonstrated. Seven sulfur compounds, the degradation products of thiosulfinates, including diallyl disulfide were shown to inhibit proliferation of malignant cells by inducing accumulation within G2/M phase as well as to induce apoptosis through activation of caspase-3 and mitochondrial signaling pathway. Further, the A. ursinum microbiota, particularly LAB with potential probiotic effects, was analyzed by culture-dependent method and culture-independent method [denaturing gradient gel electrophoresis (DGGE)]. The obtained results revealed that the most abundant genera were Streptococcus, Lactobacillus, and Bacillus. The Lactobacillus genus was mainly represented by L. fermentum. The pulsed-field gel electrophoresis (PFGE) analysis revealed the presence of two PFGE pulsotypes. The probiotic potential of the strain L. fermentum BGSR163 belonging to PFGE pulsotype 1 and the strain L. fermentum BGSR227 belonging to the PFGE pulsotype 2 was characterized. The results revealed that both strains are safe for human use, successfully survive the simulated gastrointestinal conditions, have potential to transiently colonize the gastrointestinal tract (GIT) and have a protective immunomodulatory effect, inducing the production of proinflammatory cytokine IL17 and regulatory cytokine IL10, while decreasing the production of proinflammatory cytokine IFN-γ. In conclusion, the results of this study suggest that consumption of A. ursinum might have health-promoting properties, including anticancer effects, while L. fermentum strains isolated from A. ursinum leaves could be used as probiotics for human consumption.
PB  - Frontiers
T2  - Frontiers in Microbiology
T1  - Antioxidant and Antiproliferative Activity of Allium ursinum and Their Associated Microbiota During Simulated in vitro Digestion in the Presence of Food Matrix
VL  - 11
DO  - 10.3389/fmicb.2020.601616
ER  - 
@article{
author = "Stanisavljević, Nemanja S. and Soković Bajić, Svetlana and Jovanović, Živko S. and Matić, Ivana and Tolinački, Maja and Popović, Dušanka and Popović, Nikola and Terzić-Vidojević, Amarela and Golić, Nataša and Beškoski, Vladimir and Samardžić, Jelena",
year = "2020",
abstract = "In this study, for the first time, the comprehensive analysis of antiproliferative and antioxidant activities of ramson, followed by the analysis of its associated microbiota and health-promoting effects of lactic acid bacteria (LAB), was performed. Ramson (Allium ursinum) is recognized as a medicinal plant with a long history of use in traditional medicine due to its antimicrobial and antioxidant activity. In this study the influence of in vitro gastrointestinal digestion on the cytotoxic activity of A. ursinum extracts against human malignant cell lines was demonstrated. Seven sulfur compounds, the degradation products of thiosulfinates, including diallyl disulfide were shown to inhibit proliferation of malignant cells by inducing accumulation within G2/M phase as well as to induce apoptosis through activation of caspase-3 and mitochondrial signaling pathway. Further, the A. ursinum microbiota, particularly LAB with potential probiotic effects, was analyzed by culture-dependent method and culture-independent method [denaturing gradient gel electrophoresis (DGGE)]. The obtained results revealed that the most abundant genera were Streptococcus, Lactobacillus, and Bacillus. The Lactobacillus genus was mainly represented by L. fermentum. The pulsed-field gel electrophoresis (PFGE) analysis revealed the presence of two PFGE pulsotypes. The probiotic potential of the strain L. fermentum BGSR163 belonging to PFGE pulsotype 1 and the strain L. fermentum BGSR227 belonging to the PFGE pulsotype 2 was characterized. The results revealed that both strains are safe for human use, successfully survive the simulated gastrointestinal conditions, have potential to transiently colonize the gastrointestinal tract (GIT) and have a protective immunomodulatory effect, inducing the production of proinflammatory cytokine IL17 and regulatory cytokine IL10, while decreasing the production of proinflammatory cytokine IFN-γ. In conclusion, the results of this study suggest that consumption of A. ursinum might have health-promoting properties, including anticancer effects, while L. fermentum strains isolated from A. ursinum leaves could be used as probiotics for human consumption.",
publisher = "Frontiers",
journal = "Frontiers in Microbiology",
title = "Antioxidant and Antiproliferative Activity of Allium ursinum and Their Associated Microbiota During Simulated in vitro Digestion in the Presence of Food Matrix",
volume = "11",
doi = "10.3389/fmicb.2020.601616"
}
Stanisavljević, N. S., Soković Bajić, S., Jovanović, Ž. S., Matić, I., Tolinački, M., Popović, D., Popović, N., Terzić-Vidojević, A., Golić, N., Beškoski, V.,& Samardžić, J.. (2020). Antioxidant and Antiproliferative Activity of Allium ursinum and Their Associated Microbiota During Simulated in vitro Digestion in the Presence of Food Matrix. in Frontiers in Microbiology
Frontiers., 11.
https://doi.org/10.3389/fmicb.2020.601616
Stanisavljević NS, Soković Bajić S, Jovanović ŽS, Matić I, Tolinački M, Popović D, Popović N, Terzić-Vidojević A, Golić N, Beškoski V, Samardžić J. Antioxidant and Antiproliferative Activity of Allium ursinum and Their Associated Microbiota During Simulated in vitro Digestion in the Presence of Food Matrix. in Frontiers in Microbiology. 2020;11.
doi:10.3389/fmicb.2020.601616 .
Stanisavljević, Nemanja S., Soković Bajić, Svetlana, Jovanović, Živko S., Matić, Ivana, Tolinački, Maja, Popović, Dušanka, Popović, Nikola, Terzić-Vidojević, Amarela, Golić, Nataša, Beškoski, Vladimir, Samardžić, Jelena, "Antioxidant and Antiproliferative Activity of Allium ursinum and Their Associated Microbiota During Simulated in vitro Digestion in the Presence of Food Matrix" in Frontiers in Microbiology, 11 (2020),
https://doi.org/10.3389/fmicb.2020.601616 . .
1
22
5
20
14

Antioxidant and Antiproliferative Activity of Allium ursinum and Their Associated Microbiota During Simulated in vitro Digestion in the Presence of Food Matrix

Stanisavljević, Nemanja S.; Soković Bajić, Svetlana; Jovanović, Živko S.; Matić, Ivana; Tolinački, Maja; Popović, Dušanka; Popović, Nikola; Terzić-Vidojević, Amarela; Golić, Nataša; Beškoski, Vladimir; Samardžić, Jelena

(Frontiers, 2020)

TY  - JOUR
AU  - Stanisavljević, Nemanja S.
AU  - Soković Bajić, Svetlana
AU  - Jovanović, Živko S.
AU  - Matić, Ivana
AU  - Tolinački, Maja
AU  - Popović, Dušanka
AU  - Popović, Nikola
AU  - Terzić-Vidojević, Amarela
AU  - Golić, Nataša
AU  - Beškoski, Vladimir
AU  - Samardžić, Jelena
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5387
AB  - In this study, for the first time, the comprehensive analysis of antiproliferative and antioxidant activities of ramson, followed by the analysis of its associated microbiota and health-promoting effects of lactic acid bacteria (LAB), was performed. Ramson (Allium ursinum) is recognized as a medicinal plant with a long history of use in traditional medicine due to its antimicrobial and antioxidant activity. In this study the influence of in vitro gastrointestinal digestion on the cytotoxic activity of A. ursinum extracts against human malignant cell lines was demonstrated. Seven sulfur compounds, the degradation products of thiosulfinates, including diallyl disulfide were shown to inhibit proliferation of malignant cells by inducing accumulation within G2/M phase as well as to induce apoptosis through activation of caspase-3 and mitochondrial signaling pathway. Further, the A. ursinum microbiota, particularly LAB with potential probiotic effects, was analyzed by culture-dependent method and culture-independent method [denaturing gradient gel electrophoresis (DGGE)]. The obtained results revealed that the most abundant genera were Streptococcus, Lactobacillus, and Bacillus. The Lactobacillus genus was mainly represented by L. fermentum. The pulsed-field gel electrophoresis (PFGE) analysis revealed the presence of two PFGE pulsotypes. The probiotic potential of the strain L. fermentum BGSR163 belonging to PFGE pulsotype 1 and the strain L. fermentum BGSR227 belonging to the PFGE pulsotype 2 was characterized. The results revealed that both strains are safe for human use, successfully survive the simulated gastrointestinal conditions, have potential to transiently colonize the gastrointestinal tract (GIT) and have a protective immunomodulatory effect, inducing the production of proinflammatory cytokine IL17 and regulatory cytokine IL10, while decreasing the production of proinflammatory cytokine IFN-γ. In conclusion, the results of this study suggest that consumption of A. ursinum might have health-promoting properties, including anticancer effects, while L. fermentum strains isolated from A. ursinum leaves could be used as probiotics for human consumption.
PB  - Frontiers
T2  - Frontiers in Microbiology
T1  - Antioxidant and Antiproliferative Activity of Allium ursinum and Their Associated Microbiota During Simulated in vitro Digestion in the Presence of Food Matrix
VL  - 11
DO  - 10.3389/fmicb.2020.601616
ER  - 
@article{
author = "Stanisavljević, Nemanja S. and Soković Bajić, Svetlana and Jovanović, Živko S. and Matić, Ivana and Tolinački, Maja and Popović, Dušanka and Popović, Nikola and Terzić-Vidojević, Amarela and Golić, Nataša and Beškoski, Vladimir and Samardžić, Jelena",
year = "2020",
abstract = "In this study, for the first time, the comprehensive analysis of antiproliferative and antioxidant activities of ramson, followed by the analysis of its associated microbiota and health-promoting effects of lactic acid bacteria (LAB), was performed. Ramson (Allium ursinum) is recognized as a medicinal plant with a long history of use in traditional medicine due to its antimicrobial and antioxidant activity. In this study the influence of in vitro gastrointestinal digestion on the cytotoxic activity of A. ursinum extracts against human malignant cell lines was demonstrated. Seven sulfur compounds, the degradation products of thiosulfinates, including diallyl disulfide were shown to inhibit proliferation of malignant cells by inducing accumulation within G2/M phase as well as to induce apoptosis through activation of caspase-3 and mitochondrial signaling pathway. Further, the A. ursinum microbiota, particularly LAB with potential probiotic effects, was analyzed by culture-dependent method and culture-independent method [denaturing gradient gel electrophoresis (DGGE)]. The obtained results revealed that the most abundant genera were Streptococcus, Lactobacillus, and Bacillus. The Lactobacillus genus was mainly represented by L. fermentum. The pulsed-field gel electrophoresis (PFGE) analysis revealed the presence of two PFGE pulsotypes. The probiotic potential of the strain L. fermentum BGSR163 belonging to PFGE pulsotype 1 and the strain L. fermentum BGSR227 belonging to the PFGE pulsotype 2 was characterized. The results revealed that both strains are safe for human use, successfully survive the simulated gastrointestinal conditions, have potential to transiently colonize the gastrointestinal tract (GIT) and have a protective immunomodulatory effect, inducing the production of proinflammatory cytokine IL17 and regulatory cytokine IL10, while decreasing the production of proinflammatory cytokine IFN-γ. In conclusion, the results of this study suggest that consumption of A. ursinum might have health-promoting properties, including anticancer effects, while L. fermentum strains isolated from A. ursinum leaves could be used as probiotics for human consumption.",
publisher = "Frontiers",
journal = "Frontiers in Microbiology",
title = "Antioxidant and Antiproliferative Activity of Allium ursinum and Their Associated Microbiota During Simulated in vitro Digestion in the Presence of Food Matrix",
volume = "11",
doi = "10.3389/fmicb.2020.601616"
}
Stanisavljević, N. S., Soković Bajić, S., Jovanović, Ž. S., Matić, I., Tolinački, M., Popović, D., Popović, N., Terzić-Vidojević, A., Golić, N., Beškoski, V.,& Samardžić, J.. (2020). Antioxidant and Antiproliferative Activity of Allium ursinum and Their Associated Microbiota During Simulated in vitro Digestion in the Presence of Food Matrix. in Frontiers in Microbiology
Frontiers., 11.
https://doi.org/10.3389/fmicb.2020.601616
Stanisavljević NS, Soković Bajić S, Jovanović ŽS, Matić I, Tolinački M, Popović D, Popović N, Terzić-Vidojević A, Golić N, Beškoski V, Samardžić J. Antioxidant and Antiproliferative Activity of Allium ursinum and Their Associated Microbiota During Simulated in vitro Digestion in the Presence of Food Matrix. in Frontiers in Microbiology. 2020;11.
doi:10.3389/fmicb.2020.601616 .
Stanisavljević, Nemanja S., Soković Bajić, Svetlana, Jovanović, Živko S., Matić, Ivana, Tolinački, Maja, Popović, Dušanka, Popović, Nikola, Terzić-Vidojević, Amarela, Golić, Nataša, Beškoski, Vladimir, Samardžić, Jelena, "Antioxidant and Antiproliferative Activity of Allium ursinum and Their Associated Microbiota During Simulated in vitro Digestion in the Presence of Food Matrix" in Frontiers in Microbiology, 11 (2020),
https://doi.org/10.3389/fmicb.2020.601616 . .
1
22
5
20
14

Strain differences in toxicity of oral cadmium intake in rats

Ninkov, Marina; Popov-Aleksandrov, Aleksandra; Mirkov, Ivana; Demenesku, Jelena; Mileusnić, Dina; Jovanović-Stojanov, Sofija; Golić, Nataša; Tolinački, Maja; Zolotarevski, Lidija; Kataranovski, Dragan; Brčeski, Ilija; Kataranovski, Milena

(Pergamon-Elsevier Science Ltd, Oxford, 2016)

TY  - JOUR
AU  - Ninkov, Marina
AU  - Popov-Aleksandrov, Aleksandra
AU  - Mirkov, Ivana
AU  - Demenesku, Jelena
AU  - Mileusnić, Dina
AU  - Jovanović-Stojanov, Sofija
AU  - Golić, Nataša
AU  - Tolinački, Maja
AU  - Zolotarevski, Lidija
AU  - Kataranovski, Dragan
AU  - Brčeski, Ilija
AU  - Kataranovski, Milena
PY  - 2016
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2312
AB  - Influence of genetic background on toxicity of oral cadmium (Cd) administration (30 days, in drinking water; 5 ppm and 50 ppm of cadmium) was examined in Albino Oxford (AO) and Dark Agouti (DA) rats. Similar cadmium deposition was noted in gut and draining mesenteric lymph nodes (MLN) of both strains but intensity and/or the pattern of responses to cadmium in these tissues differ. Less intense intestinal damage and leukocyte infiltration was observed in gut of cadmium-exposed AO rats. While gut-associated lymph node cells of DA rats responded to cadmium with an increase of cell proliferation, oxidative activity, IFN-gamma, IL-17 production and expression, no changes of these activities of MLN cells of cadmium-treated AO rats were observed. Spleen, which accumulated cadmium comparable to MLN, responded to metal by drop in cell viability and by reduced responsiveness of proliferation and cytokine production to stimulation in DA rats solely, which suggest tissue dependence of cadmium effects. More pronounced cadmium effects on MLN and spleen cells of DA rats (which accumulated similar cadmium doses as AO rats), showed greater susceptibility of this strain to cadmium. The results presented, for the first time, depict the influence of genetic background to effects of oral cadmium administration. (C) 2016 Elsevier Ltd. All rights reserved.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Food and Chemical Toxicology
T1  - Strain differences in toxicity of oral cadmium intake in rats
VL  - 96
SP  - 11
EP  - 23
DO  - 10.1016/j.fct.2016.07.021
ER  - 
@article{
author = "Ninkov, Marina and Popov-Aleksandrov, Aleksandra and Mirkov, Ivana and Demenesku, Jelena and Mileusnić, Dina and Jovanović-Stojanov, Sofija and Golić, Nataša and Tolinački, Maja and Zolotarevski, Lidija and Kataranovski, Dragan and Brčeski, Ilija and Kataranovski, Milena",
year = "2016",
abstract = "Influence of genetic background on toxicity of oral cadmium (Cd) administration (30 days, in drinking water; 5 ppm and 50 ppm of cadmium) was examined in Albino Oxford (AO) and Dark Agouti (DA) rats. Similar cadmium deposition was noted in gut and draining mesenteric lymph nodes (MLN) of both strains but intensity and/or the pattern of responses to cadmium in these tissues differ. Less intense intestinal damage and leukocyte infiltration was observed in gut of cadmium-exposed AO rats. While gut-associated lymph node cells of DA rats responded to cadmium with an increase of cell proliferation, oxidative activity, IFN-gamma, IL-17 production and expression, no changes of these activities of MLN cells of cadmium-treated AO rats were observed. Spleen, which accumulated cadmium comparable to MLN, responded to metal by drop in cell viability and by reduced responsiveness of proliferation and cytokine production to stimulation in DA rats solely, which suggest tissue dependence of cadmium effects. More pronounced cadmium effects on MLN and spleen cells of DA rats (which accumulated similar cadmium doses as AO rats), showed greater susceptibility of this strain to cadmium. The results presented, for the first time, depict the influence of genetic background to effects of oral cadmium administration. (C) 2016 Elsevier Ltd. All rights reserved.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Food and Chemical Toxicology",
title = "Strain differences in toxicity of oral cadmium intake in rats",
volume = "96",
pages = "11-23",
doi = "10.1016/j.fct.2016.07.021"
}
Ninkov, M., Popov-Aleksandrov, A., Mirkov, I., Demenesku, J., Mileusnić, D., Jovanović-Stojanov, S., Golić, N., Tolinački, M., Zolotarevski, L., Kataranovski, D., Brčeski, I.,& Kataranovski, M.. (2016). Strain differences in toxicity of oral cadmium intake in rats. in Food and Chemical Toxicology
Pergamon-Elsevier Science Ltd, Oxford., 96, 11-23.
https://doi.org/10.1016/j.fct.2016.07.021
Ninkov M, Popov-Aleksandrov A, Mirkov I, Demenesku J, Mileusnić D, Jovanović-Stojanov S, Golić N, Tolinački M, Zolotarevski L, Kataranovski D, Brčeski I, Kataranovski M. Strain differences in toxicity of oral cadmium intake in rats. in Food and Chemical Toxicology. 2016;96:11-23.
doi:10.1016/j.fct.2016.07.021 .
Ninkov, Marina, Popov-Aleksandrov, Aleksandra, Mirkov, Ivana, Demenesku, Jelena, Mileusnić, Dina, Jovanović-Stojanov, Sofija, Golić, Nataša, Tolinački, Maja, Zolotarevski, Lidija, Kataranovski, Dragan, Brčeski, Ilija, Kataranovski, Milena, "Strain differences in toxicity of oral cadmium intake in rats" in Food and Chemical Toxicology, 96 (2016):11-23,
https://doi.org/10.1016/j.fct.2016.07.021 . .
22
16
23
18

Toxicity of oral cadmium intake: Impact on gut immunity

Ninkov, Marina; Popov-Aleksandrov, Aleksandra; Demenesku, Jelena; Mirkov, Ivana; Mileusnić, Dina; Petrović, Anja; Grigorov, Ilijana; Zolotarevski, Lidija; Tolinački, Maja; Kataranovski, Dragan; Brčeski, Ilija; Kataranovski, Milena

(Elsevier Ireland Ltd, Clare, 2015)

TY  - JOUR
AU  - Ninkov, Marina
AU  - Popov-Aleksandrov, Aleksandra
AU  - Demenesku, Jelena
AU  - Mirkov, Ivana
AU  - Mileusnić, Dina
AU  - Petrović, Anja
AU  - Grigorov, Ilijana
AU  - Zolotarevski, Lidija
AU  - Tolinački, Maja
AU  - Kataranovski, Dragan
AU  - Brčeski, Ilija
AU  - Kataranovski, Milena
PY  - 2015
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/1730
AB  - Gastrointestinal tract is one of the main targets of cadmium (Cd), an important food and drinking water contaminant. In the present study, the effect of subchronic (30 days) oral (in water) intake of 5ppm and 50ppm of cadmium on immune responses in the gut was examined in rats. Cadmium consumption resulted in reduction of bacteria corresponding to Lactobacillus strain, tissue damage and intestinal inflammation [increases in high mobility group box 1 (HMGB1 molecules), superoxide dismutase (SOD) and catalase (CAT) activity and proinflammatory cytokine (TNF, IL-1 beta, IFN-gamma, IL-17) content]. Draining (mesenteric) lymph node (MLN) stress response was observed [elevation of MLN glutathione (GSH) and metallothionein (MT) mRNA levels] and stimulation of both adaptive [cellularity, proliferation, proinflammatory (IFN-gamma and IL-17) MLN cell cytokine responses] as well as innate immune activity (increases in numbers of NK and CD68(+) cells, oxidative activities, IL-1 beta). In contrast to proinflammatory milieu in MLN, decreased or unchanged antiinflammatory IL-10 response was observed. Stimulation of immune activities of MLN cells have, most probably, resulted from sensing of cadmium-induced tissue injury, but also from bacterial antigens that breached compromised intestinal barrier. These effects of cadmium should be taken into account when assessing dietary cadmium as health risk factor. (C) 2015 Elsevier Ireland Ltd. All rights reserved.
PB  - Elsevier Ireland Ltd, Clare
T2  - Toxicology Letters
T1  - Toxicity of oral cadmium intake: Impact on gut immunity
VL  - 237
IS  - 2
SP  - 89
EP  - 99
DO  - 10.1016/j.toxlet.2015.06.002
ER  - 
@article{
author = "Ninkov, Marina and Popov-Aleksandrov, Aleksandra and Demenesku, Jelena and Mirkov, Ivana and Mileusnić, Dina and Petrović, Anja and Grigorov, Ilijana and Zolotarevski, Lidija and Tolinački, Maja and Kataranovski, Dragan and Brčeski, Ilija and Kataranovski, Milena",
year = "2015",
abstract = "Gastrointestinal tract is one of the main targets of cadmium (Cd), an important food and drinking water contaminant. In the present study, the effect of subchronic (30 days) oral (in water) intake of 5ppm and 50ppm of cadmium on immune responses in the gut was examined in rats. Cadmium consumption resulted in reduction of bacteria corresponding to Lactobacillus strain, tissue damage and intestinal inflammation [increases in high mobility group box 1 (HMGB1 molecules), superoxide dismutase (SOD) and catalase (CAT) activity and proinflammatory cytokine (TNF, IL-1 beta, IFN-gamma, IL-17) content]. Draining (mesenteric) lymph node (MLN) stress response was observed [elevation of MLN glutathione (GSH) and metallothionein (MT) mRNA levels] and stimulation of both adaptive [cellularity, proliferation, proinflammatory (IFN-gamma and IL-17) MLN cell cytokine responses] as well as innate immune activity (increases in numbers of NK and CD68(+) cells, oxidative activities, IL-1 beta). In contrast to proinflammatory milieu in MLN, decreased or unchanged antiinflammatory IL-10 response was observed. Stimulation of immune activities of MLN cells have, most probably, resulted from sensing of cadmium-induced tissue injury, but also from bacterial antigens that breached compromised intestinal barrier. These effects of cadmium should be taken into account when assessing dietary cadmium as health risk factor. (C) 2015 Elsevier Ireland Ltd. All rights reserved.",
publisher = "Elsevier Ireland Ltd, Clare",
journal = "Toxicology Letters",
title = "Toxicity of oral cadmium intake: Impact on gut immunity",
volume = "237",
number = "2",
pages = "89-99",
doi = "10.1016/j.toxlet.2015.06.002"
}
Ninkov, M., Popov-Aleksandrov, A., Demenesku, J., Mirkov, I., Mileusnić, D., Petrović, A., Grigorov, I., Zolotarevski, L., Tolinački, M., Kataranovski, D., Brčeski, I.,& Kataranovski, M.. (2015). Toxicity of oral cadmium intake: Impact on gut immunity. in Toxicology Letters
Elsevier Ireland Ltd, Clare., 237(2), 89-99.
https://doi.org/10.1016/j.toxlet.2015.06.002
Ninkov M, Popov-Aleksandrov A, Demenesku J, Mirkov I, Mileusnić D, Petrović A, Grigorov I, Zolotarevski L, Tolinački M, Kataranovski D, Brčeski I, Kataranovski M. Toxicity of oral cadmium intake: Impact on gut immunity. in Toxicology Letters. 2015;237(2):89-99.
doi:10.1016/j.toxlet.2015.06.002 .
Ninkov, Marina, Popov-Aleksandrov, Aleksandra, Demenesku, Jelena, Mirkov, Ivana, Mileusnić, Dina, Petrović, Anja, Grigorov, Ilijana, Zolotarevski, Lidija, Tolinački, Maja, Kataranovski, Dragan, Brčeski, Ilija, Kataranovski, Milena, "Toxicity of oral cadmium intake: Impact on gut immunity" in Toxicology Letters, 237, no. 2 (2015):89-99,
https://doi.org/10.1016/j.toxlet.2015.06.002 . .
1
89
67
87
81