Ilić, Ilija

Link to this page

Authority KeyName Variants
5596ae0b-fc12-48cc-a88c-20b004e542d7
  • Ilić, Ilija (4)
Projects

Author's Bibliography

Oxidative degradation of aromatic N-compounds using cobalt containing montmorillonite-based catalysts

Ilić, Ilija; Milutinović-Nikolić, Aleksandra D.; Mojović, Zorica D.; Vuković, Zoran; Vulić, Predrag J.; Gržetić, Ivan; Banković, Predrag; Jović-Jovičić, Nataša

(Elsevier, 2020)

TY  - JOUR
AU  - Ilić, Ilija
AU  - Milutinović-Nikolić, Aleksandra D.
AU  - Mojović, Zorica D.
AU  - Vuković, Zoran
AU  - Vulić, Predrag J.
AU  - Gržetić, Ivan
AU  - Banković, Predrag
AU  - Jović-Jovičić, Nataša
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4045
AB  - The goal of this work was the synthesis of a montmorillonite based catalyst for advanced oxidative degradation of organic water pollutants. Montmorillonite (Mt) –rich bentonite was acid-activated (MtA), and impregnated with cobalt (II) solution using the incipient wetness impregnation method. The impregnation was followed by heat treatment. Cobalt(II) ions were added in the quantities corresponding to 0.5 and 1.0 of the cation exchange capacity value. All samples were characterized by using chemical analysis, X-ray powder diffraction (XRPD), Electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM) coupled with Energy-dispersive X-ray spectroscopy (EDS), Transmission electron microscopy (TEM) and low temperature N2 physisorption. The incorporation of the cobalt in the impregnated samples and the development of porous structure in the acid-activated ones were confirmed. The montmorillonite (Mt) was used as a catalyst support, while the cobalt in its oxide form was responsible for the generation of sulfo-radicals from Oxone®. Two aromatic N-compounds were tested as model pollutants: diazo dye - Acid Orange 10 (AO10) and nicotine. It was found that the synthesized catalysts could be used for the degradation of both pollutants, although more efficiently in AO10 degradation. The acid activation, higher cobalt loading, and temperature were found to be beneficial for the degradation of AO10.
PB  - Elsevier
T2  - Applied Clay Science
T1  - Oxidative degradation of aromatic N-compounds using cobalt containing montmorillonite-based catalysts
VL  - 193
SP  - 105668
DO  - 10.1016/j.clay.2020.105668
ER  - 
@article{
author = "Ilić, Ilija and Milutinović-Nikolić, Aleksandra D. and Mojović, Zorica D. and Vuković, Zoran and Vulić, Predrag J. and Gržetić, Ivan and Banković, Predrag and Jović-Jovičić, Nataša",
year = "2020",
abstract = "The goal of this work was the synthesis of a montmorillonite based catalyst for advanced oxidative degradation of organic water pollutants. Montmorillonite (Mt) –rich bentonite was acid-activated (MtA), and impregnated with cobalt (II) solution using the incipient wetness impregnation method. The impregnation was followed by heat treatment. Cobalt(II) ions were added in the quantities corresponding to 0.5 and 1.0 of the cation exchange capacity value. All samples were characterized by using chemical analysis, X-ray powder diffraction (XRPD), Electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM) coupled with Energy-dispersive X-ray spectroscopy (EDS), Transmission electron microscopy (TEM) and low temperature N2 physisorption. The incorporation of the cobalt in the impregnated samples and the development of porous structure in the acid-activated ones were confirmed. The montmorillonite (Mt) was used as a catalyst support, while the cobalt in its oxide form was responsible for the generation of sulfo-radicals from Oxone®. Two aromatic N-compounds were tested as model pollutants: diazo dye - Acid Orange 10 (AO10) and nicotine. It was found that the synthesized catalysts could be used for the degradation of both pollutants, although more efficiently in AO10 degradation. The acid activation, higher cobalt loading, and temperature were found to be beneficial for the degradation of AO10.",
publisher = "Elsevier",
journal = "Applied Clay Science",
title = "Oxidative degradation of aromatic N-compounds using cobalt containing montmorillonite-based catalysts",
volume = "193",
pages = "105668",
doi = "10.1016/j.clay.2020.105668"
}
Ilić, I., Milutinović-Nikolić, A. D., Mojović, Z. D., Vuković, Z., Vulić, P. J., Gržetić, I., Banković, P.,& Jović-Jovičić, N.. (2020). Oxidative degradation of aromatic N-compounds using cobalt containing montmorillonite-based catalysts. in Applied Clay Science
Elsevier., 193, 105668.
https://doi.org/10.1016/j.clay.2020.105668
Ilić I, Milutinović-Nikolić AD, Mojović ZD, Vuković Z, Vulić PJ, Gržetić I, Banković P, Jović-Jovičić N. Oxidative degradation of aromatic N-compounds using cobalt containing montmorillonite-based catalysts. in Applied Clay Science. 2020;193:105668.
doi:10.1016/j.clay.2020.105668 .
Ilić, Ilija, Milutinović-Nikolić, Aleksandra D., Mojović, Zorica D., Vuković, Zoran, Vulić, Predrag J., Gržetić, Ivan, Banković, Predrag, Jović-Jovičić, Nataša, "Oxidative degradation of aromatic N-compounds using cobalt containing montmorillonite-based catalysts" in Applied Clay Science, 193 (2020):105668,
https://doi.org/10.1016/j.clay.2020.105668 . .
6
2
6
5

Supplementary data for the article: Ilić, I.; Milutinović-Nikolić, A.; Mojović, Z.; Vuković, Z.; Vulić, P.; Gržetić, I.; Banković, P.; Jović-Jovičić, N. Oxidative Degradation of Aromatic N-Compounds Using Cobalt Containing Montmorillonite-Based Catalysts. Applied Clay Science 2020, 193, 105668. https://doi.org/10.1016/j.clay.2020.105668

Ilić, Ilija; Milutinović-Nikolić, Aleksandra D.; Mojović, Zorica D.; Vuković, Zoran; Vulić, Predrag J.; Gržetić, Ivan; Banković, Predrag; Jović-Jovičić, Nataša

(Elsevier, 2020)

TY  - DATA
AU  - Ilić, Ilija
AU  - Milutinović-Nikolić, Aleksandra D.
AU  - Mojović, Zorica D.
AU  - Vuković, Zoran
AU  - Vulić, Predrag J.
AU  - Gržetić, Ivan
AU  - Banković, Predrag
AU  - Jović-Jovičić, Nataša
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4046
PB  - Elsevier
T2  - Applied Clay Science
T1  - Supplementary data for the article: Ilić, I.; Milutinović-Nikolić, A.; Mojović, Z.; Vuković, Z.; Vulić, P.; Gržetić, I.; Banković, P.; Jović-Jovičić, N. Oxidative Degradation of Aromatic N-Compounds Using Cobalt Containing Montmorillonite-Based Catalysts. Applied Clay Science 2020, 193, 105668. https://doi.org/10.1016/j.clay.2020.105668
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4046
ER  - 
@misc{
author = "Ilić, Ilija and Milutinović-Nikolić, Aleksandra D. and Mojović, Zorica D. and Vuković, Zoran and Vulić, Predrag J. and Gržetić, Ivan and Banković, Predrag and Jović-Jovičić, Nataša",
year = "2020",
publisher = "Elsevier",
journal = "Applied Clay Science",
title = "Supplementary data for the article: Ilić, I.; Milutinović-Nikolić, A.; Mojović, Z.; Vuković, Z.; Vulić, P.; Gržetić, I.; Banković, P.; Jović-Jovičić, N. Oxidative Degradation of Aromatic N-Compounds Using Cobalt Containing Montmorillonite-Based Catalysts. Applied Clay Science 2020, 193, 105668. https://doi.org/10.1016/j.clay.2020.105668",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4046"
}
Ilić, I., Milutinović-Nikolić, A. D., Mojović, Z. D., Vuković, Z., Vulić, P. J., Gržetić, I., Banković, P.,& Jović-Jovičić, N.. (2020). Supplementary data for the article: Ilić, I.; Milutinović-Nikolić, A.; Mojović, Z.; Vuković, Z.; Vulić, P.; Gržetić, I.; Banković, P.; Jović-Jovičić, N. Oxidative Degradation of Aromatic N-Compounds Using Cobalt Containing Montmorillonite-Based Catalysts. Applied Clay Science 2020, 193, 105668. https://doi.org/10.1016/j.clay.2020.105668. in Applied Clay Science
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_4046
Ilić I, Milutinović-Nikolić AD, Mojović ZD, Vuković Z, Vulić PJ, Gržetić I, Banković P, Jović-Jovičić N. Supplementary data for the article: Ilić, I.; Milutinović-Nikolić, A.; Mojović, Z.; Vuković, Z.; Vulić, P.; Gržetić, I.; Banković, P.; Jović-Jovičić, N. Oxidative Degradation of Aromatic N-Compounds Using Cobalt Containing Montmorillonite-Based Catalysts. Applied Clay Science 2020, 193, 105668. https://doi.org/10.1016/j.clay.2020.105668. in Applied Clay Science. 2020;.
https://hdl.handle.net/21.15107/rcub_cherry_4046 .
Ilić, Ilija, Milutinović-Nikolić, Aleksandra D., Mojović, Zorica D., Vuković, Zoran, Vulić, Predrag J., Gržetić, Ivan, Banković, Predrag, Jović-Jovičić, Nataša, "Supplementary data for the article: Ilić, I.; Milutinović-Nikolić, A.; Mojović, Z.; Vuković, Z.; Vulić, P.; Gržetić, I.; Banković, P.; Jović-Jovičić, N. Oxidative Degradation of Aromatic N-Compounds Using Cobalt Containing Montmorillonite-Based Catalysts. Applied Clay Science 2020, 193, 105668. https://doi.org/10.1016/j.clay.2020.105668" in Applied Clay Science (2020),
https://hdl.handle.net/21.15107/rcub_cherry_4046 .

Conteptual design for treatment of mining and metallurgical wastewaters which contains arsenic and antimony

Kamberović, Željko; Korać, Marija; Anđić, Zoran; Štulović, Marija; Kovačević, Tihomir; Vujović, Aleksandar; Ilić, Ilija

(Association of Metallurgical Engineers of Serbia AMES, 2012)

TY  - JOUR
AU  - Kamberović, Željko
AU  - Korać, Marija
AU  - Anđić, Zoran
AU  - Štulović, Marija
AU  - Kovačević, Tihomir
AU  - Vujović, Aleksandar
AU  - Ilić, Ilija
PY  - 2012
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5326
AB  - This paper presents a preliminary design for treatment of mining and metallurgical
wastewaters (MMW) from the basin of antimony “Zajača“, which contains high
concentrations of arsenic and antimony. MMW have been investigated in laboratory,
due to large difference in concentrations of pollutants. Metallurgical wastewaters were
treated using iron (II)-sulfate and lime milk used to adjust the pH value at 7. After
chemical treatment of metallurgical wastewater and its joining with mining wastewater,
residual amount of arsenic in water was below maximum allowed concentrations, while
the concentration of antimony, remained above the maximum allowed value. The final
phase of purification process was performed using ion exchange resin. After treatment
of MMW, they can be used as technical water in the smelting process of secondary raw
lead materials.
PB  - Association of Metallurgical Engineers of Serbia AMES
T2  - Metallurgical and Materials Engineering
T1  - Conteptual design for treatment of mining and metallurgical wastewaters which contains arsenic and antimony
VL  - 18
IS  - 4
SP  - 321
EP  - 331
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5326
ER  - 
@article{
author = "Kamberović, Željko and Korać, Marija and Anđić, Zoran and Štulović, Marija and Kovačević, Tihomir and Vujović, Aleksandar and Ilić, Ilija",
year = "2012",
abstract = "This paper presents a preliminary design for treatment of mining and metallurgical
wastewaters (MMW) from the basin of antimony “Zajača“, which contains high
concentrations of arsenic and antimony. MMW have been investigated in laboratory,
due to large difference in concentrations of pollutants. Metallurgical wastewaters were
treated using iron (II)-sulfate and lime milk used to adjust the pH value at 7. After
chemical treatment of metallurgical wastewater and its joining with mining wastewater,
residual amount of arsenic in water was below maximum allowed concentrations, while
the concentration of antimony, remained above the maximum allowed value. The final
phase of purification process was performed using ion exchange resin. After treatment
of MMW, they can be used as technical water in the smelting process of secondary raw
lead materials.",
publisher = "Association of Metallurgical Engineers of Serbia AMES",
journal = "Metallurgical and Materials Engineering",
title = "Conteptual design for treatment of mining and metallurgical wastewaters which contains arsenic and antimony",
volume = "18",
number = "4",
pages = "321-331",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5326"
}
Kamberović, Ž., Korać, M., Anđić, Z., Štulović, M., Kovačević, T., Vujović, A.,& Ilić, I.. (2012). Conteptual design for treatment of mining and metallurgical wastewaters which contains arsenic and antimony. in Metallurgical and Materials Engineering
Association of Metallurgical Engineers of Serbia AMES., 18(4), 321-331.
https://hdl.handle.net/21.15107/rcub_cherry_5326
Kamberović Ž, Korać M, Anđić Z, Štulović M, Kovačević T, Vujović A, Ilić I. Conteptual design for treatment of mining and metallurgical wastewaters which contains arsenic and antimony. in Metallurgical and Materials Engineering. 2012;18(4):321-331.
https://hdl.handle.net/21.15107/rcub_cherry_5326 .
Kamberović, Željko, Korać, Marija, Anđić, Zoran, Štulović, Marija, Kovačević, Tihomir, Vujović, Aleksandar, Ilić, Ilija, "Conteptual design for treatment of mining and metallurgical wastewaters which contains arsenic and antimony" in Metallurgical and Materials Engineering, 18, no. 4 (2012):321-331,
https://hdl.handle.net/21.15107/rcub_cherry_5326 .

Conceptual design for treatment of mining and metallurgical wastewaters which contains arsenic and antimony

Kamberović, Željko; Korać, Marija; Anđić, Zoran; Štulović, Marija; Kovačević, Tihomir; Vujović, Aleksandar; Ilić, Ilija

(2012)

TY  - JOUR
AU  - Kamberović, Željko
AU  - Korać, Marija
AU  - Anđić, Zoran
AU  - Štulović, Marija
AU  - Kovačević, Tihomir
AU  - Vujović, Aleksandar
AU  - Ilić, Ilija
PY  - 2012
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/178
AB  - This paper presents a preliminary design for treatment of mining and metallurgical wastewaters (MMW) from the basin of antimony 'Zajača', which contains high concentrations of arsenic and antimony. MMW have been investigated in laboratory, due to large difference in concentrations of pollutants. Metallurgical wastewaters were treated using iron (II)-sulfate and lime milk used to adjust the pH value at 7. After chemical treatment of metallurgical wastewater and its joining with mining wastewater, residual amount of arsenic in water was below maximum allowed concentrations, while the concentration of antimony, remained above the maximum allowed value. The final phase of purification process was performed using ion exchange resin. After treatment of MMW, they can be used as technical water in the smelting process of secondary raw lead materials.
T2  - Metallurgical and Materials Engineering
T1  - Conceptual design for treatment of mining and metallurgical wastewaters which contains arsenic and antimony
VL  - 18
IS  - 4
SP  - 321
EP  - 331
UR  - https://hdl.handle.net/21.15107/rcub_cherry_178
ER  - 
@article{
author = "Kamberović, Željko and Korać, Marija and Anđić, Zoran and Štulović, Marija and Kovačević, Tihomir and Vujović, Aleksandar and Ilić, Ilija",
year = "2012",
abstract = "This paper presents a preliminary design for treatment of mining and metallurgical wastewaters (MMW) from the basin of antimony 'Zajača', which contains high concentrations of arsenic and antimony. MMW have been investigated in laboratory, due to large difference in concentrations of pollutants. Metallurgical wastewaters were treated using iron (II)-sulfate and lime milk used to adjust the pH value at 7. After chemical treatment of metallurgical wastewater and its joining with mining wastewater, residual amount of arsenic in water was below maximum allowed concentrations, while the concentration of antimony, remained above the maximum allowed value. The final phase of purification process was performed using ion exchange resin. After treatment of MMW, they can be used as technical water in the smelting process of secondary raw lead materials.",
journal = "Metallurgical and Materials Engineering",
title = "Conceptual design for treatment of mining and metallurgical wastewaters which contains arsenic and antimony",
volume = "18",
number = "4",
pages = "321-331",
url = "https://hdl.handle.net/21.15107/rcub_cherry_178"
}
Kamberović, Ž., Korać, M., Anđić, Z., Štulović, M., Kovačević, T., Vujović, A.,& Ilić, I.. (2012). Conceptual design for treatment of mining and metallurgical wastewaters which contains arsenic and antimony. in Metallurgical and Materials Engineering, 18(4), 321-331.
https://hdl.handle.net/21.15107/rcub_cherry_178
Kamberović Ž, Korać M, Anđić Z, Štulović M, Kovačević T, Vujović A, Ilić I. Conceptual design for treatment of mining and metallurgical wastewaters which contains arsenic and antimony. in Metallurgical and Materials Engineering. 2012;18(4):321-331.
https://hdl.handle.net/21.15107/rcub_cherry_178 .
Kamberović, Željko, Korać, Marija, Anđić, Zoran, Štulović, Marija, Kovačević, Tihomir, Vujović, Aleksandar, Ilić, Ilija, "Conceptual design for treatment of mining and metallurgical wastewaters which contains arsenic and antimony" in Metallurgical and Materials Engineering, 18, no. 4 (2012):321-331,
https://hdl.handle.net/21.15107/rcub_cherry_178 .