Stanković, Vesna

Link to this page

Authority KeyName Variants
3dd5c020-674a-4b47-9751-850a034fedd9
  • Stanković, Vesna (11)
Projects

Author's Bibliography

Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection

Đurđić, Slađana; Stanković, Vesna; Vlahović, Filip; Ognjanović, Miloš; Kalcher, Kurt; Manojlović, Dragan D.; Mutić, Jelena; Stanković, Dalibor

(2021)

TY  - JOUR
AU  - Đurđić, Slađana
AU  - Stanković, Vesna
AU  - Vlahović, Filip
AU  - Ognjanović, Miloš
AU  - Kalcher, Kurt
AU  - Manojlović, Dragan D.
AU  - Mutić, Jelena
AU  - Stanković, Dalibor
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0026265X21005002
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4543
AB  - L-DOPA (L-3,4-dihydroxyphenylalanine), the precursor of dopamine, is widely used in the treatment of Parkinson’s disease, thus determining and monitoring the concentration of L-DOPA is of utmost importance for both medical and scientific purposes. Although many analytical approaches, designed for drug detection and quantification, already exist, there is a constant need for modification of old and tailoring of new, faster, and selective methods. Redox active chemical species, such as L-DOPA, can be measured directly by electrochemical means, whereas electrochemical sensors combine sensitivity and selectivity within a small analytical device. This work demonstrates the development of such electrochemical sensor, based on carboxylated single-wall carbon nanotubes (SWCNT-COOH) decorated with SiO2 coated-Nd2O3 nanoparticles, and further application for the detection of L-DOPA. Developed SWCNT-COOH@Nd2O3-SiO2 sensor shows linear response in the range from 2 µmol L−1 to 52 µmol L−1 analyte concentration, and beside the low detection limit, it is characterized by a fast response time, as well as good life-time, reproducibility and repeatability.
T2  - Microchemical Journal
T1  - Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection
VL  - 168
SP  - 106416
DO  - 10.1016/j.microc.2021.106416
ER  - 
@article{
author = "Đurđić, Slađana and Stanković, Vesna and Vlahović, Filip and Ognjanović, Miloš and Kalcher, Kurt and Manojlović, Dragan D. and Mutić, Jelena and Stanković, Dalibor",
year = "2021",
abstract = "L-DOPA (L-3,4-dihydroxyphenylalanine), the precursor of dopamine, is widely used in the treatment of Parkinson’s disease, thus determining and monitoring the concentration of L-DOPA is of utmost importance for both medical and scientific purposes. Although many analytical approaches, designed for drug detection and quantification, already exist, there is a constant need for modification of old and tailoring of new, faster, and selective methods. Redox active chemical species, such as L-DOPA, can be measured directly by electrochemical means, whereas electrochemical sensors combine sensitivity and selectivity within a small analytical device. This work demonstrates the development of such electrochemical sensor, based on carboxylated single-wall carbon nanotubes (SWCNT-COOH) decorated with SiO2 coated-Nd2O3 nanoparticles, and further application for the detection of L-DOPA. Developed SWCNT-COOH@Nd2O3-SiO2 sensor shows linear response in the range from 2 µmol L−1 to 52 µmol L−1 analyte concentration, and beside the low detection limit, it is characterized by a fast response time, as well as good life-time, reproducibility and repeatability.",
journal = "Microchemical Journal",
title = "Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection",
volume = "168",
pages = "106416",
doi = "10.1016/j.microc.2021.106416"
}
Đurđić, S., Stanković, V., Vlahović, F., Ognjanović, M., Kalcher, K., Manojlović, D. D., Mutić, J.,& Stanković, D.. (2021). Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection. in Microchemical Journal, 168, 106416.
https://doi.org/10.1016/j.microc.2021.106416
Đurđić S, Stanković V, Vlahović F, Ognjanović M, Kalcher K, Manojlović DD, Mutić J, Stanković D. Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection. in Microchemical Journal. 2021;168:106416.
doi:10.1016/j.microc.2021.106416 .
Đurđić, Slađana, Stanković, Vesna, Vlahović, Filip, Ognjanović, Miloš, Kalcher, Kurt, Manojlović, Dragan D., Mutić, Jelena, Stanković, Dalibor, "Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection" in Microchemical Journal, 168 (2021):106416,
https://doi.org/10.1016/j.microc.2021.106416 . .

Supplementary data for the article: Đurđić, S.; Stanković, V.; Vlahović, F.; Ognjanović, M.; Kalcher, K.; Manojlović, D.; Mutić, J.; Stanković, D. M. Carboxylated Single-Wall Carbon Nanotubes Decorated with SiO2 Coated-Nd2O3 Nanoparticles as an Electrochemical Sensor for L-DOPA Detection. Microchemical Journal 2021, 168, 106416. https://doi.org/10.1016/j.microc.2021.106416.

Đurđić, Slađana; Stanković, Vesna; Vlahović, Filip; Ognjanović, Miloš; Kalcher, Kurt; Manojlović, Dragan D.; Mutić, Jelena; Stanković, Dalibor

(2021)

TY  - DATA
AU  - Đurđić, Slađana
AU  - Stanković, Vesna
AU  - Vlahović, Filip
AU  - Ognjanović, Miloš
AU  - Kalcher, Kurt
AU  - Manojlović, Dragan D.
AU  - Mutić, Jelena
AU  - Stanković, Dalibor
PY  - 2021
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4544
T2  - Microchemical Journal
T1  - Supplementary data for the article: Đurđić, S.; Stanković, V.; Vlahović, F.; Ognjanović, M.; Kalcher, K.; Manojlović, D.; Mutić, J.; Stanković, D. M. Carboxylated Single-Wall Carbon Nanotubes Decorated with SiO2 Coated-Nd2O3 Nanoparticles as an Electrochemical Sensor for L-DOPA Detection. Microchemical Journal 2021, 168, 106416. https://doi.org/10.1016/j.microc.2021.106416.
ER  - 
@misc{
author = "Đurđić, Slađana and Stanković, Vesna and Vlahović, Filip and Ognjanović, Miloš and Kalcher, Kurt and Manojlović, Dragan D. and Mutić, Jelena and Stanković, Dalibor",
year = "2021",
journal = "Microchemical Journal",
title = "Supplementary data for the article: Đurđić, S.; Stanković, V.; Vlahović, F.; Ognjanović, M.; Kalcher, K.; Manojlović, D.; Mutić, J.; Stanković, D. M. Carboxylated Single-Wall Carbon Nanotubes Decorated with SiO2 Coated-Nd2O3 Nanoparticles as an Electrochemical Sensor for L-DOPA Detection. Microchemical Journal 2021, 168, 106416. https://doi.org/10.1016/j.microc.2021.106416."
}
Đurđić, S., Stanković, V., Vlahović, F., Ognjanović, M., Kalcher, K., Manojlović, D. D., Mutić, J.,& Stanković, D.. (2021). Supplementary data for the article: Đurđić, S.; Stanković, V.; Vlahović, F.; Ognjanović, M.; Kalcher, K.; Manojlović, D.; Mutić, J.; Stanković, D. M. Carboxylated Single-Wall Carbon Nanotubes Decorated with SiO2 Coated-Nd2O3 Nanoparticles as an Electrochemical Sensor for L-DOPA Detection. Microchemical Journal 2021, 168, 106416. https://doi.org/10.1016/j.microc.2021.106416.. in Microchemical Journal.
Đurđić S, Stanković V, Vlahović F, Ognjanović M, Kalcher K, Manojlović DD, Mutić J, Stanković D. Supplementary data for the article: Đurđić, S.; Stanković, V.; Vlahović, F.; Ognjanović, M.; Kalcher, K.; Manojlović, D.; Mutić, J.; Stanković, D. M. Carboxylated Single-Wall Carbon Nanotubes Decorated with SiO2 Coated-Nd2O3 Nanoparticles as an Electrochemical Sensor for L-DOPA Detection. Microchemical Journal 2021, 168, 106416. https://doi.org/10.1016/j.microc.2021.106416.. in Microchemical Journal. 2021;..
Đurđić, Slađana, Stanković, Vesna, Vlahović, Filip, Ognjanović, Miloš, Kalcher, Kurt, Manojlović, Dragan D., Mutić, Jelena, Stanković, Dalibor, "Supplementary data for the article: Đurđić, S.; Stanković, V.; Vlahović, F.; Ognjanović, M.; Kalcher, K.; Manojlović, D.; Mutić, J.; Stanković, D. M. Carboxylated Single-Wall Carbon Nanotubes Decorated with SiO2 Coated-Nd2O3 Nanoparticles as an Electrochemical Sensor for L-DOPA Detection. Microchemical Journal 2021, 168, 106416. https://doi.org/10.1016/j.microc.2021.106416." in Microchemical Journal (2021).

Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment?

Đurđić, Slađana; Stanković, Vesna; Ražić, Slavica; Mutić, Jelena

(Frontiers Media, 2021)

TY  - JOUR
AU  - Đurđić, Slađana
AU  - Stanković, Vesna
AU  - Ražić, Slavica
AU  - Mutić, Jelena
PY  - 2021
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4748
AB  - Lead isotope ratio pattern (206Pb/207Pb, 208Pb/206Pb, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb) was analyzed in 59 samples of Serbian wine, from four geographical regions. By utilization of powerful inductively coupled plasma mass spectrometry (ICP-QMS), lead isotope ratios were used as unique “fingerprint”, when combined with multivariate methods of analysis (Principal Component Analysis), provided information on the geographical origin of wine. In validation of ICP- QMS method and quantitative analysis, the certified reference material NIST SRM 981 was employed to test the mass-bias correction and thallium isotopes 203Tl and 205Tl (NIST SRM 997) as an internal standard. The obtained results were discussed in correlation with the corresponding values of LIRs of different European and Australian wines. In addition, the impact of anthropogenic Pb from different sources on the total Pb isotopic composition in Serbian wines was analyzed too. On the other side, the obtained values of Pb content were compared with the applicable health safety standards, according to the International Code of Oenological Practices.
PB  - Frontiers Media
T2  - Frontiers in Chemistry
T1  - Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment?
VL  - 9
SP  - 842
DO  - 10.3389/fchem.2021.746695
ER  - 
@article{
author = "Đurđić, Slađana and Stanković, Vesna and Ražić, Slavica and Mutić, Jelena",
year = "2021",
abstract = "Lead isotope ratio pattern (206Pb/207Pb, 208Pb/206Pb, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb) was analyzed in 59 samples of Serbian wine, from four geographical regions. By utilization of powerful inductively coupled plasma mass spectrometry (ICP-QMS), lead isotope ratios were used as unique “fingerprint”, when combined with multivariate methods of analysis (Principal Component Analysis), provided information on the geographical origin of wine. In validation of ICP- QMS method and quantitative analysis, the certified reference material NIST SRM 981 was employed to test the mass-bias correction and thallium isotopes 203Tl and 205Tl (NIST SRM 997) as an internal standard. The obtained results were discussed in correlation with the corresponding values of LIRs of different European and Australian wines. In addition, the impact of anthropogenic Pb from different sources on the total Pb isotopic composition in Serbian wines was analyzed too. On the other side, the obtained values of Pb content were compared with the applicable health safety standards, according to the International Code of Oenological Practices.",
publisher = "Frontiers Media",
journal = "Frontiers in Chemistry",
title = "Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment?",
volume = "9",
pages = "842",
doi = "10.3389/fchem.2021.746695"
}
Đurđić, S., Stanković, V., Ražić, S.,& Mutić, J.. (2021). Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment?. in Frontiers in Chemistry
Frontiers Media., 9, 842.
https://doi.org/10.3389/fchem.2021.746695
Đurđić S, Stanković V, Ražić S, Mutić J. Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment?. in Frontiers in Chemistry. 2021;9:842.
doi:10.3389/fchem.2021.746695 .
Đurđić, Slađana, Stanković, Vesna, Ražić, Slavica, Mutić, Jelena, "Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment?" in Frontiers in Chemistry, 9 (2021):842,
https://doi.org/10.3389/fchem.2021.746695 . .
1

Supplementary data for the article: Đurđić, S.; Stanković, V.; Ražić, S.; Mutić, J. Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment? Frontiers in Chemistry 2021, 9, 842. https://doi.org/10.3389/fchem.2021.746695.

Đurđić, Slađana; Stanković, Vesna; Ražić, Slavica; Mutić, Jelena

(Frontiers Media, 2021)

TY  - DATA
AU  - Đurđić, Slađana
AU  - Stanković, Vesna
AU  - Ražić, Slavica
AU  - Mutić, Jelena
PY  - 2021
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4749
PB  - Frontiers Media
T2  - Frontiers in Chemistry
T1  - Supplementary data for the article: Đurđić, S.; Stanković, V.; Ražić, S.; Mutić, J. Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment? Frontiers in Chemistry 2021, 9, 842. https://doi.org/10.3389/fchem.2021.746695.
ER  - 
@misc{
author = "Đurđić, Slađana and Stanković, Vesna and Ražić, Slavica and Mutić, Jelena",
year = "2021",
publisher = "Frontiers Media",
journal = "Frontiers in Chemistry",
title = "Supplementary data for the article: Đurđić, S.; Stanković, V.; Ražić, S.; Mutić, J. Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment? Frontiers in Chemistry 2021, 9, 842. https://doi.org/10.3389/fchem.2021.746695."
}
Đurđić, S., Stanković, V., Ražić, S.,& Mutić, J.. (2021). Supplementary data for the article: Đurđić, S.; Stanković, V.; Ražić, S.; Mutić, J. Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment? Frontiers in Chemistry 2021, 9, 842. https://doi.org/10.3389/fchem.2021.746695.. in Frontiers in Chemistry
Frontiers Media..
Đurđić S, Stanković V, Ražić S, Mutić J. Supplementary data for the article: Đurđić, S.; Stanković, V.; Ražić, S.; Mutić, J. Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment? Frontiers in Chemistry 2021, 9, 842. https://doi.org/10.3389/fchem.2021.746695.. in Frontiers in Chemistry. 2021;..
Đurđić, Slađana, Stanković, Vesna, Ražić, Slavica, Mutić, Jelena, "Supplementary data for the article: Đurđić, S.; Stanković, V.; Ražić, S.; Mutić, J. Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment? Frontiers in Chemistry 2021, 9, 842. https://doi.org/10.3389/fchem.2021.746695." in Frontiers in Chemistry (2021).

Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product

Stanković, Dalibor; Milanović, Zorana; Švorc, Ljubomir; Stanković, Vesna; Janković, Drina; Mirković, Marija D.; Vranješ-Đurić, Sanja

(2021)

TY  - JOUR
AU  - Stanković, Dalibor
AU  - Milanović, Zorana
AU  - Švorc, Ljubomir
AU  - Stanković, Vesna
AU  - Janković, Drina
AU  - Mirković, Marija D.
AU  - Vranješ-Đurić, Sanja
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0925963521000406
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4450
AB  - This work presents advanced electrochemical platform based on screen printed diamond electrode (SPDE) system for the single drop “point-of-care” testing. Proposed approach was applied for the quantification of doxorubicin hydrochloride (DOX) in biological fluids and pharmaceutical product. Using a single drop (~30 μL) of the tested solution at the electrode surface, DOX showed high electroactivity over a wide range of pHs. In these conditions, single oval shaped, well-defined and pH dependent oxidation peak was observed in the potential range from 0.5 V to 1.3 V. In the reverse scan, two cathodic peaks, were noted – around 0.3 V and – 0.5 V. Similarly, first reduction peak was pH dependent, while second one was independent in the studied range. Experimental conditions for DOX quantification were optimized and natures of the electrode reactions were investigated. Working linear range obtained for DOX detection was from 0.1 to 2.5 μM. Diffusion controlled electrode reaction reveal long life time of the proposed electrode as well high potential for practical application. Developed procedure was successfully applied for the DOX analysis in biological fluids – urine and pharmaceutical formulation. Obtained results clearly indicated that given procedure can be easily implemented for pharmaceutical control and medical analysis, in both, laboratory and field conditions.
T2  - Diamond and Related Materials
T1  - Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product
VL  - 113
SP  - 108277
DO  - 10.1016/j.diamond.2021.108277
ER  - 
@article{
author = "Stanković, Dalibor and Milanović, Zorana and Švorc, Ljubomir and Stanković, Vesna and Janković, Drina and Mirković, Marija D. and Vranješ-Đurić, Sanja",
year = "2021",
abstract = "This work presents advanced electrochemical platform based on screen printed diamond electrode (SPDE) system for the single drop “point-of-care” testing. Proposed approach was applied for the quantification of doxorubicin hydrochloride (DOX) in biological fluids and pharmaceutical product. Using a single drop (~30 μL) of the tested solution at the electrode surface, DOX showed high electroactivity over a wide range of pHs. In these conditions, single oval shaped, well-defined and pH dependent oxidation peak was observed in the potential range from 0.5 V to 1.3 V. In the reverse scan, two cathodic peaks, were noted – around 0.3 V and – 0.5 V. Similarly, first reduction peak was pH dependent, while second one was independent in the studied range. Experimental conditions for DOX quantification were optimized and natures of the electrode reactions were investigated. Working linear range obtained for DOX detection was from 0.1 to 2.5 μM. Diffusion controlled electrode reaction reveal long life time of the proposed electrode as well high potential for practical application. Developed procedure was successfully applied for the DOX analysis in biological fluids – urine and pharmaceutical formulation. Obtained results clearly indicated that given procedure can be easily implemented for pharmaceutical control and medical analysis, in both, laboratory and field conditions.",
journal = "Diamond and Related Materials",
title = "Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product",
volume = "113",
pages = "108277",
doi = "10.1016/j.diamond.2021.108277"
}
Stanković, D., Milanović, Z., Švorc, L., Stanković, V., Janković, D., Mirković, M. D.,& Vranješ-Đurić, S.. (2021). Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product. in Diamond and Related Materials, 113, 108277.
https://doi.org/10.1016/j.diamond.2021.108277
Stanković D, Milanović Z, Švorc L, Stanković V, Janković D, Mirković MD, Vranješ-Đurić S. Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product. in Diamond and Related Materials. 2021;113:108277.
doi:10.1016/j.diamond.2021.108277 .
Stanković, Dalibor, Milanović, Zorana, Švorc, Ljubomir, Stanković, Vesna, Janković, Drina, Mirković, Marija D., Vranješ-Đurić, Sanja, "Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product" in Diamond and Related Materials, 113 (2021):108277,
https://doi.org/10.1016/j.diamond.2021.108277 . .
1
1
1

Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor

Stanković, Vesna; Đurđić, Slađana Z.; Ognjanović, Miloš; Antić, Bratislav; Kalcher, Kurt; Mutić, Jelena; Stanković, Dalibor

(Elsevier, 2020)

TY  - JOUR
AU  - Stanković, Vesna
AU  - Đurđić, Slađana Z.
AU  - Ognjanović, Miloš
AU  - Antić, Bratislav
AU  - Kalcher, Kurt
AU  - Mutić, Jelena
AU  - Stanković, Dalibor
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3881
AB  - Diagnosis and treatment of some important diseased and metabolic disorders is based on successful detection of albumin. In this work, we aim to develop a simple immunosensor for the detection of human serum albumin in biological fluids. Anti-human albumin antibody was covalently attached to the activated surface of screen-printed carbon electrodes enriched with carboxyl graphene/gold nanoparticles composite. Microstructure (TEM, FE-SEM, XRD) and electrochemical (CV, EIS) characterization methods were used to investigate composite properties and to confirm the successful modification of the electrodes. Under the optimal conditions, linear working range and limit of detection were 2.5–500 μg/mL and 1.55 μg/mL, respectively. Additionally, the effect of some possibly interfering compounds was investigated and the immunosensor was used for real sample analysis. The results showed that the sensor exhibited accurate, precise and sensitive characteristics and can be promising replacement to the convention methods for albumin detection in clinical practice.
PB  - Elsevier
T2  - Journal of Electroanalytical Chemistry
T1  - Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor
VL  - 860
DO  - 10.1016/j.jelechem.2020.113928
ER  - 
@article{
author = "Stanković, Vesna and Đurđić, Slađana Z. and Ognjanović, Miloš and Antić, Bratislav and Kalcher, Kurt and Mutić, Jelena and Stanković, Dalibor",
year = "2020",
abstract = "Diagnosis and treatment of some important diseased and metabolic disorders is based on successful detection of albumin. In this work, we aim to develop a simple immunosensor for the detection of human serum albumin in biological fluids. Anti-human albumin antibody was covalently attached to the activated surface of screen-printed carbon electrodes enriched with carboxyl graphene/gold nanoparticles composite. Microstructure (TEM, FE-SEM, XRD) and electrochemical (CV, EIS) characterization methods were used to investigate composite properties and to confirm the successful modification of the electrodes. Under the optimal conditions, linear working range and limit of detection were 2.5–500 μg/mL and 1.55 μg/mL, respectively. Additionally, the effect of some possibly interfering compounds was investigated and the immunosensor was used for real sample analysis. The results showed that the sensor exhibited accurate, precise and sensitive characteristics and can be promising replacement to the convention methods for albumin detection in clinical practice.",
publisher = "Elsevier",
journal = "Journal of Electroanalytical Chemistry",
title = "Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor",
volume = "860",
doi = "10.1016/j.jelechem.2020.113928"
}
Stanković, V., Đurđić, S. Z., Ognjanović, M., Antić, B., Kalcher, K., Mutić, J.,& Stanković, D.. (2020). Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor. in Journal of Electroanalytical Chemistry
Elsevier., 860.
https://doi.org/10.1016/j.jelechem.2020.113928
Stanković V, Đurđić SZ, Ognjanović M, Antić B, Kalcher K, Mutić J, Stanković D. Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor. in Journal of Electroanalytical Chemistry. 2020;860.
doi:10.1016/j.jelechem.2020.113928 .
Stanković, Vesna, Đurđić, Slađana Z., Ognjanović, Miloš, Antić, Bratislav, Kalcher, Kurt, Mutić, Jelena, Stanković, Dalibor, "Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor" in Journal of Electroanalytical Chemistry, 860 (2020),
https://doi.org/10.1016/j.jelechem.2020.113928 . .
10
9
10

Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor

Stanković, Vesna; Đurđić, Slađana Z.; Ognjanović, Miloš; Antić, Bratislav; Kalcher, Kurt; Mutić, Jelena; Stanković, Dalibor

(Elsevier, 2020)

TY  - JOUR
AU  - Stanković, Vesna
AU  - Đurđić, Slađana Z.
AU  - Ognjanović, Miloš
AU  - Antić, Bratislav
AU  - Kalcher, Kurt
AU  - Mutić, Jelena
AU  - Stanković, Dalibor
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3891
AB  - Diagnosis and treatment of some important diseased and metabolic disorders is based on successful detection of albumin. In this work, we aim to develop a simple immunosensor for the detection of human serum albumin in biological fluids. Anti-human albumin antibody was covalently attached to the activated surface of screen-printed carbon electrodes enriched with carboxyl graphene/gold nanoparticles composite. Microstructure (TEM, FE-SEM, XRD) and electrochemical (CV, EIS) characterization methods were used to investigate composite properties and to confirm the successful modification of the electrodes. Under the optimal conditions, linear working range and limit of detection were 2.5–500 μg/mL and 1.55 μg/mL, respectively. Additionally, the effect of some possibly interfering compounds was investigated and the immunosensor was used for real sample analysis. The results showed that the sensor exhibited accurate, precise and sensitive characteristics and can be promising replacement to the convention methods for albumin detection in clinical practice.
PB  - Elsevier
T2  - Journal of Electroanalytical Chemistry
T1  - Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor
VL  - 860
SP  - 113928
DO  - 10.1016/j.jelechem.2020.113928
ER  - 
@article{
author = "Stanković, Vesna and Đurđić, Slađana Z. and Ognjanović, Miloš and Antić, Bratislav and Kalcher, Kurt and Mutić, Jelena and Stanković, Dalibor",
year = "2020",
abstract = "Diagnosis and treatment of some important diseased and metabolic disorders is based on successful detection of albumin. In this work, we aim to develop a simple immunosensor for the detection of human serum albumin in biological fluids. Anti-human albumin antibody was covalently attached to the activated surface of screen-printed carbon electrodes enriched with carboxyl graphene/gold nanoparticles composite. Microstructure (TEM, FE-SEM, XRD) and electrochemical (CV, EIS) characterization methods were used to investigate composite properties and to confirm the successful modification of the electrodes. Under the optimal conditions, linear working range and limit of detection were 2.5–500 μg/mL and 1.55 μg/mL, respectively. Additionally, the effect of some possibly interfering compounds was investigated and the immunosensor was used for real sample analysis. The results showed that the sensor exhibited accurate, precise and sensitive characteristics and can be promising replacement to the convention methods for albumin detection in clinical practice.",
publisher = "Elsevier",
journal = "Journal of Electroanalytical Chemistry",
title = "Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor",
volume = "860",
pages = "113928",
doi = "10.1016/j.jelechem.2020.113928"
}
Stanković, V., Đurđić, S. Z., Ognjanović, M., Antić, B., Kalcher, K., Mutić, J.,& Stanković, D.. (2020). Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor. in Journal of Electroanalytical Chemistry
Elsevier., 860, 113928.
https://doi.org/10.1016/j.jelechem.2020.113928
Stanković V, Đurđić SZ, Ognjanović M, Antić B, Kalcher K, Mutić J, Stanković D. Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor. in Journal of Electroanalytical Chemistry. 2020;860:113928.
doi:10.1016/j.jelechem.2020.113928 .
Stanković, Vesna, Đurđić, Slađana Z., Ognjanović, Miloš, Antić, Bratislav, Kalcher, Kurt, Mutić, Jelena, Stanković, Dalibor, "Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor" in Journal of Electroanalytical Chemistry, 860 (2020):113928,
https://doi.org/10.1016/j.jelechem.2020.113928 . .
10
9
10

Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Antić, B.; Kalcher, K.; Mutić, J.; Stanković, D. M. Anti-Human Albumin Monoclonal Antibody Immobilized on EDC-NHS Functionalized Carboxylic Graphene/AuNPs Composite as Promising Electrochemical HSA Immunosensor. Journal of Electroanalytical Chemistry 2020, 860. https://doi.org/10.1016/j.jelechem.2020.113928

Stanković, Vesna; Đurđić, Slađana Z.; Ognjanović, Miloš; Antić, Bratislav; Kalcher, Kurt; Mutić, Jelena; Stanković, Dalibor

(Elsevier, 2020)

TY  - DATA
AU  - Stanković, Vesna
AU  - Đurđić, Slađana Z.
AU  - Ognjanović, Miloš
AU  - Antić, Bratislav
AU  - Kalcher, Kurt
AU  - Mutić, Jelena
AU  - Stanković, Dalibor
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3892
PB  - Elsevier
T2  - Journal of Electroanalytical Chemistry
T1  - Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Antić, B.; Kalcher, K.; Mutić, J.; Stanković, D. M. Anti-Human Albumin Monoclonal Antibody Immobilized on EDC-NHS Functionalized Carboxylic Graphene/AuNPs Composite as Promising Electrochemical HSA Immunosensor. Journal of Electroanalytical Chemistry 2020, 860. https://doi.org/10.1016/j.jelechem.2020.113928
ER  - 
@misc{
author = "Stanković, Vesna and Đurđić, Slađana Z. and Ognjanović, Miloš and Antić, Bratislav and Kalcher, Kurt and Mutić, Jelena and Stanković, Dalibor",
year = "2020",
publisher = "Elsevier",
journal = "Journal of Electroanalytical Chemistry",
title = "Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Antić, B.; Kalcher, K.; Mutić, J.; Stanković, D. M. Anti-Human Albumin Monoclonal Antibody Immobilized on EDC-NHS Functionalized Carboxylic Graphene/AuNPs Composite as Promising Electrochemical HSA Immunosensor. Journal of Electroanalytical Chemistry 2020, 860. https://doi.org/10.1016/j.jelechem.2020.113928"
}
Stanković, V., Đurđić, S. Z., Ognjanović, M., Antić, B., Kalcher, K., Mutić, J.,& Stanković, D.. (2020). Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Antić, B.; Kalcher, K.; Mutić, J.; Stanković, D. M. Anti-Human Albumin Monoclonal Antibody Immobilized on EDC-NHS Functionalized Carboxylic Graphene/AuNPs Composite as Promising Electrochemical HSA Immunosensor. Journal of Electroanalytical Chemistry 2020, 860. https://doi.org/10.1016/j.jelechem.2020.113928. in Journal of Electroanalytical Chemistry
Elsevier..
Stanković V, Đurđić SZ, Ognjanović M, Antić B, Kalcher K, Mutić J, Stanković D. Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Antić, B.; Kalcher, K.; Mutić, J.; Stanković, D. M. Anti-Human Albumin Monoclonal Antibody Immobilized on EDC-NHS Functionalized Carboxylic Graphene/AuNPs Composite as Promising Electrochemical HSA Immunosensor. Journal of Electroanalytical Chemistry 2020, 860. https://doi.org/10.1016/j.jelechem.2020.113928. in Journal of Electroanalytical Chemistry. 2020;..
Stanković, Vesna, Đurđić, Slađana Z., Ognjanović, Miloš, Antić, Bratislav, Kalcher, Kurt, Mutić, Jelena, Stanković, Dalibor, "Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Antić, B.; Kalcher, K.; Mutić, J.; Stanković, D. M. Anti-Human Albumin Monoclonal Antibody Immobilized on EDC-NHS Functionalized Carboxylic Graphene/AuNPs Composite as Promising Electrochemical HSA Immunosensor. Journal of Electroanalytical Chemistry 2020, 860. https://doi.org/10.1016/j.jelechem.2020.113928" in Journal of Electroanalytical Chemistry (2020).

A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode

Stanković, Vesna; Đurđić, Slađana Z.; Ognjanović, Miloš; Mutić, Jelena; Kalcher, Kurt; Stanković, Dalibor

(Elsevier, 2020)

TY  - JOUR
AU  - Stanković, Vesna
AU  - Đurđić, Slađana Z.
AU  - Ognjanović, Miloš
AU  - Mutić, Jelena
AU  - Kalcher, Kurt
AU  - Stanković, Dalibor
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4033
AB  - A nonenzymatic hydrogen-peroxide sensor was developed by utilization of silver nanoparticles and graphene nanoribbons. The mentioned composite was inflicted on a screen-printed carbon electrode which provides disposable, ready-to-use sensor. The structure and morphology of the nanocomposite were analyzed by scanning electron microscopy and X-ray diffraction. The sensor has excellent performance toward H2O2 amperometric detection. Figures of merit include dynamic response range from 0.05 to 5 mM and detection limit of 20 μM (at S/N = 3). The fabricated sensor was used for the determination of H2O2 in milk samples. The obtained results showed that the proposed AgNp@GNR/SPCE sensor can be used for the determination of hydrogen peroxide in real samples.
PB  - Elsevier
T2  - Journal of Electroanalytical Chemistry
T1  - A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode
VL  - 876
SP  - 114487
DO  - 10.1016/j.jelechem.2020.114487
ER  - 
@article{
author = "Stanković, Vesna and Đurđić, Slađana Z. and Ognjanović, Miloš and Mutić, Jelena and Kalcher, Kurt and Stanković, Dalibor",
year = "2020",
abstract = "A nonenzymatic hydrogen-peroxide sensor was developed by utilization of silver nanoparticles and graphene nanoribbons. The mentioned composite was inflicted on a screen-printed carbon electrode which provides disposable, ready-to-use sensor. The structure and morphology of the nanocomposite were analyzed by scanning electron microscopy and X-ray diffraction. The sensor has excellent performance toward H2O2 amperometric detection. Figures of merit include dynamic response range from 0.05 to 5 mM and detection limit of 20 μM (at S/N = 3). The fabricated sensor was used for the determination of H2O2 in milk samples. The obtained results showed that the proposed AgNp@GNR/SPCE sensor can be used for the determination of hydrogen peroxide in real samples.",
publisher = "Elsevier",
journal = "Journal of Electroanalytical Chemistry",
title = "A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode",
volume = "876",
pages = "114487",
doi = "10.1016/j.jelechem.2020.114487"
}
Stanković, V., Đurđić, S. Z., Ognjanović, M., Mutić, J., Kalcher, K.,& Stanković, D.. (2020). A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode. in Journal of Electroanalytical Chemistry
Elsevier., 876, 114487.
https://doi.org/10.1016/j.jelechem.2020.114487
Stanković V, Đurđić SZ, Ognjanović M, Mutić J, Kalcher K, Stanković D. A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode. in Journal of Electroanalytical Chemistry. 2020;876:114487.
doi:10.1016/j.jelechem.2020.114487 .
Stanković, Vesna, Đurđić, Slađana Z., Ognjanović, Miloš, Mutić, Jelena, Kalcher, Kurt, Stanković, Dalibor, "A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode" in Journal of Electroanalytical Chemistry, 876 (2020):114487,
https://doi.org/10.1016/j.jelechem.2020.114487 . .
10
9
10

Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Mutić, J.; Kalcher, K.; Stanković, D. M. A Novel Nonenzymatic Hydrogen Peroxide Amperometric Sensor Based on AgNp@GNR Nanocomposites Modified Screen-Printed Carbon Electrode. Journal of Electroanalytical Chemistry 2020, 876, 114487. https://doi.org/10.1016/j.jelechem.2020.114487

Stanković, Vesna; Đurđić, Slađana Z.; Ognjanović, Miloš; Mutić, Jelena; Kalcher, Kurt; Stanković, Dalibor

(Elsevier, 2020)

TY  - DATA
AU  - Stanković, Vesna
AU  - Đurđić, Slađana Z.
AU  - Ognjanović, Miloš
AU  - Mutić, Jelena
AU  - Kalcher, Kurt
AU  - Stanković, Dalibor
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4034
PB  - Elsevier
T2  - Journal of Electroanalytical Chemistry
T1  - Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Mutić, J.; Kalcher, K.; Stanković, D. M. A Novel Nonenzymatic Hydrogen Peroxide Amperometric Sensor Based on AgNp@GNR Nanocomposites Modified Screen-Printed Carbon Electrode. Journal of Electroanalytical Chemistry 2020, 876, 114487. https://doi.org/10.1016/j.jelechem.2020.114487
ER  - 
@misc{
author = "Stanković, Vesna and Đurđić, Slađana Z. and Ognjanović, Miloš and Mutić, Jelena and Kalcher, Kurt and Stanković, Dalibor",
year = "2020",
publisher = "Elsevier",
journal = "Journal of Electroanalytical Chemistry",
title = "Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Mutić, J.; Kalcher, K.; Stanković, D. M. A Novel Nonenzymatic Hydrogen Peroxide Amperometric Sensor Based on AgNp@GNR Nanocomposites Modified Screen-Printed Carbon Electrode. Journal of Electroanalytical Chemistry 2020, 876, 114487. https://doi.org/10.1016/j.jelechem.2020.114487"
}
Stanković, V., Đurđić, S. Z., Ognjanović, M., Mutić, J., Kalcher, K.,& Stanković, D.. (2020). Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Mutić, J.; Kalcher, K.; Stanković, D. M. A Novel Nonenzymatic Hydrogen Peroxide Amperometric Sensor Based on AgNp@GNR Nanocomposites Modified Screen-Printed Carbon Electrode. Journal of Electroanalytical Chemistry 2020, 876, 114487. https://doi.org/10.1016/j.jelechem.2020.114487. in Journal of Electroanalytical Chemistry
Elsevier..
Stanković V, Đurđić SZ, Ognjanović M, Mutić J, Kalcher K, Stanković D. Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Mutić, J.; Kalcher, K.; Stanković, D. M. A Novel Nonenzymatic Hydrogen Peroxide Amperometric Sensor Based on AgNp@GNR Nanocomposites Modified Screen-Printed Carbon Electrode. Journal of Electroanalytical Chemistry 2020, 876, 114487. https://doi.org/10.1016/j.jelechem.2020.114487. in Journal of Electroanalytical Chemistry. 2020;..
Stanković, Vesna, Đurđić, Slađana Z., Ognjanović, Miloš, Mutić, Jelena, Kalcher, Kurt, Stanković, Dalibor, "Supplementary data for the article: Stanković, V.; Đurđić, S.; Ognjanović, M.; Mutić, J.; Kalcher, K.; Stanković, D. M. A Novel Nonenzymatic Hydrogen Peroxide Amperometric Sensor Based on AgNp@GNR Nanocomposites Modified Screen-Printed Carbon Electrode. Journal of Electroanalytical Chemistry 2020, 876, 114487. https://doi.org/10.1016/j.jelechem.2020.114487" in Journal of Electroanalytical Chemistry (2020).

TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor

Ognjanović, Miloš; Stanković, Vesna; Knežević, Sara; Antić, Bratislav; Vranješ-Đurić, Sanja; Stanković, Dalibor

(Elsevier, 2020)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Stanković, Vesna
AU  - Knežević, Sara
AU  - Antić, Bratislav
AU  - Vranješ-Đurić, Sanja
AU  - Stanković, Dalibor
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4023
AB  - Herein, we proposed a novel approach and state-of-the-art technology for the improvement of the materials and enzyme immobilization at the electrode surface and construction of impedimetric glucose biosensor. We silanized titanium dioxide nanoparticles using (3-aminopropyl)triethoxysilane (APTES), for the preparation of cross-linked material nanoparticles, with carboxylic graphene. The silanization of titanium dioxide nanoparticles and an increase in electron shuttle was proven feasible when this composite was able to achieve about 30% higher current than non-silanized material. The proposed approach was used for the modification of the printed three-electrode system and the development of the impedimetric glucose biosensor. The material morphology and electrochemical characteristics were confirmed by spectroscopic and electrochemical methods. The present combination effectively modified the electrode surface and serve as a promising basis for the construction of Point-of-Care devices. Developed biosensor possesses wide operating linear range toward glucose detection from 50 µmol to 1000 µmol, with the limit of detection of 24 µmol. Finally, negligible interference effect and application in the real sample indicate that the proposed mechanism can be successfully applied to the assessment of glucose level in only one drop of real sample.
PB  - Elsevier
T2  - Microchemical Journal
T1  - TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor
VL  - 158
DO  - 10.1016/j.microc.2020.105150
ER  - 
@article{
author = "Ognjanović, Miloš and Stanković, Vesna and Knežević, Sara and Antić, Bratislav and Vranješ-Đurić, Sanja and Stanković, Dalibor",
year = "2020",
abstract = "Herein, we proposed a novel approach and state-of-the-art technology for the improvement of the materials and enzyme immobilization at the electrode surface and construction of impedimetric glucose biosensor. We silanized titanium dioxide nanoparticles using (3-aminopropyl)triethoxysilane (APTES), for the preparation of cross-linked material nanoparticles, with carboxylic graphene. The silanization of titanium dioxide nanoparticles and an increase in electron shuttle was proven feasible when this composite was able to achieve about 30% higher current than non-silanized material. The proposed approach was used for the modification of the printed three-electrode system and the development of the impedimetric glucose biosensor. The material morphology and electrochemical characteristics were confirmed by spectroscopic and electrochemical methods. The present combination effectively modified the electrode surface and serve as a promising basis for the construction of Point-of-Care devices. Developed biosensor possesses wide operating linear range toward glucose detection from 50 µmol to 1000 µmol, with the limit of detection of 24 µmol. Finally, negligible interference effect and application in the real sample indicate that the proposed mechanism can be successfully applied to the assessment of glucose level in only one drop of real sample.",
publisher = "Elsevier",
journal = "Microchemical Journal",
title = "TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor",
volume = "158",
doi = "10.1016/j.microc.2020.105150"
}
Ognjanović, M., Stanković, V., Knežević, S., Antić, B., Vranješ-Đurić, S.,& Stanković, D.. (2020). TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor. in Microchemical Journal
Elsevier., 158.
https://doi.org/10.1016/j.microc.2020.105150
Ognjanović M, Stanković V, Knežević S, Antić B, Vranješ-Đurić S, Stanković D. TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor. in Microchemical Journal. 2020;158.
doi:10.1016/j.microc.2020.105150 .
Ognjanović, Miloš, Stanković, Vesna, Knežević, Sara, Antić, Bratislav, Vranješ-Đurić, Sanja, Stanković, Dalibor, "TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor" in Microchemical Journal, 158 (2020),
https://doi.org/10.1016/j.microc.2020.105150 . .
7
4
6