Vujčić, Zoran

Link to this page

Authority KeyName Variants
orcid::0000-0002-8963-2439
  • Vujčić, Zoran (116)
Projects
Production, purification and characterization of enzymes and small molecules and their application as soluble or immobilized in food biotechnology, biofuels production and environmental protection Interakcije prirodnih proizvoda i njihovih analoga sa proteinima i nukleinskim kiselinama
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry)
Spanish MICINN [CTQ2011-28398-CO2-01] FEBS Collaborative Experimental Scholarship, Oslo, Norway
Mechanistic studies of the reactions of transition metal ion complexes with biologically relevant molecules project ApliMetaFarma [RC.2.2.08-0046]
STSM Grant from COST Action [BM1403] ICGEB [CRP/YUG11-02]
ICGEB research project [CRP/YUG11-02] Reinforcement of the Faculty of Chemistry, University of Belgrade, towards becoming a Center of Excellence in the region of WB for Molecular Biotechnology and Food research
HTP-GLYCOMET - Methods for high-throughput glycoproteomic analysis The synthesis of aminoquinoline-based antimalarials and botulinum neurotoxin A inhibitors
Development of molecules with antiinflammatory and cardioprotective activity: structural modifications, modelling, physicochemical characterization and formulation investigations Biotechnology in vitro - crop, medicinal and endangered plant species
Microbial diversity study and characterization of beneficial environmental microorganisms Nanostructured Functional and Composite Materials in Catalytic and Sorption Processes
Unapređenje tehnologije konvencionalnog sušenja drveta sa aspekta kvaliteta i utroška energije The Impact of Mining Wastes from RTB Bor on the Pollution of Surrounding Water Systems with the Proposal of Measures and Procedures for Reduction the Harmful Effects on the Environment
International Centre for Genetic Engineering and Biotechnology (ICGEB) [CRP/YUG11-02] Joint Serbian-Spanish Action
Joint Serbian-Spanish Action [A IB2010 SE-00122] Spanish MICINN [CTQ2008-00578]
Austrian Science Fund (FWF) Project Number P 25613 B20 to ISD Deutscher Akademischer Austausch Dienst (DAAD)
Federation of European Biochemical Societies ICGEB research [CRP/YUG11-02]
ICGEB Research Grant [CRP/YUG11-02] Study of structure-function relationships in the plant cell wall and modifications of the wall structure by enzyme engineering

Author's Bibliography

Aspergillus welwitschiae inulinase enzyme cocktails obtained on agro-material inducers for the purpose of fructooligosaccharides production

Stojanović, Sanja; Ristović, Marina; Stepanović, Jelena; Margetić, Aleksandra; Duduk, Bojan; Vujčić, Zoran; Dojnov, Biljana

(Elsevier, 2022)

TY  - JOUR
AU  - Stojanović, Sanja
AU  - Ristović, Marina
AU  - Stepanović, Jelena
AU  - Margetić, Aleksandra
AU  - Duduk, Bojan
AU  - Vujčić, Zoran
AU  - Dojnov, Biljana
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5517
AB  - Production of fructooligosaccharides (FOS) is a trending topic due to their prebiotic effect becoming increasingly important for the modern human diet. The most suitable process for FOS production is the one using fungal inulinases. Introduction of new fungal inulinase producers and their implementation in production of inulinase enzymes is therefore gaining interest. This study provides a new approach to FOS synthesis by fungal enzyme complex without prior separation of any specific enzyme. Inulinase enzyme complexes could be used for the synthesis of FOS in two possible ways – hydrolysis of inulin (FOSh) and transfructosylation process of sucrose (FOSs), as demonstrated here. Depending on the fungal growth inducing substrate, a variety of inulinase enzyme complexes was obtained – one of which was most successful in production of FOSh and another one of FOSs. Substrates derived from crops: triticale, wheat bran, Jerusalem artichoke and Aspergillus welwitschiae isolate, previously proven as safe for use in food, were utilized for production of inulinase enzyme cocktails. The highest FOSs production was obtained by enzyme complex rich in β-fructofuranosidase, while the highest FOSh production was obtained by enzyme complex rich in endoinulinase. Both FOSh and FOSs showed antioxidant potential according to ABTS and ORAC, which classifies them as a suitable additive in functional food. Simultaneous zymographic detection of inulinase enzymes, which could contribute to expansion of the knowledge on fungal enzymes, was developed and applied here. It demonstrated the presence of different inulinase isoforms depending on fungal growth substrate. These findings, which rely on the innate ability of fungi to co-produce all inulinases from a cocktail, could be useful as a new, easy approach to FOS production by fungal enzymes without their separation and purification, contributing to cheaper and faster production processes.
PB  - Elsevier
T2  - Food Research International
T2  - Food Research International
T1  - Aspergillus welwitschiae inulinase enzyme cocktails obtained on agro-material inducers for the purpose of fructooligosaccharides production
VL  - 160
DO  - 10.1016/j.foodres.2022.111755
ER  - 
@article{
author = "Stojanović, Sanja and Ristović, Marina and Stepanović, Jelena and Margetić, Aleksandra and Duduk, Bojan and Vujčić, Zoran and Dojnov, Biljana",
year = "2022",
abstract = "Production of fructooligosaccharides (FOS) is a trending topic due to their prebiotic effect becoming increasingly important for the modern human diet. The most suitable process for FOS production is the one using fungal inulinases. Introduction of new fungal inulinase producers and their implementation in production of inulinase enzymes is therefore gaining interest. This study provides a new approach to FOS synthesis by fungal enzyme complex without prior separation of any specific enzyme. Inulinase enzyme complexes could be used for the synthesis of FOS in two possible ways – hydrolysis of inulin (FOSh) and transfructosylation process of sucrose (FOSs), as demonstrated here. Depending on the fungal growth inducing substrate, a variety of inulinase enzyme complexes was obtained – one of which was most successful in production of FOSh and another one of FOSs. Substrates derived from crops: triticale, wheat bran, Jerusalem artichoke and Aspergillus welwitschiae isolate, previously proven as safe for use in food, were utilized for production of inulinase enzyme cocktails. The highest FOSs production was obtained by enzyme complex rich in β-fructofuranosidase, while the highest FOSh production was obtained by enzyme complex rich in endoinulinase. Both FOSh and FOSs showed antioxidant potential according to ABTS and ORAC, which classifies them as a suitable additive in functional food. Simultaneous zymographic detection of inulinase enzymes, which could contribute to expansion of the knowledge on fungal enzymes, was developed and applied here. It demonstrated the presence of different inulinase isoforms depending on fungal growth substrate. These findings, which rely on the innate ability of fungi to co-produce all inulinases from a cocktail, could be useful as a new, easy approach to FOS production by fungal enzymes without their separation and purification, contributing to cheaper and faster production processes.",
publisher = "Elsevier",
journal = "Food Research International, Food Research International",
title = "Aspergillus welwitschiae inulinase enzyme cocktails obtained on agro-material inducers for the purpose of fructooligosaccharides production",
volume = "160",
doi = "10.1016/j.foodres.2022.111755"
}
Stojanović, S., Ristović, M., Stepanović, J., Margetić, A., Duduk, B., Vujčić, Z.,& Dojnov, B.. (2022). Aspergillus welwitschiae inulinase enzyme cocktails obtained on agro-material inducers for the purpose of fructooligosaccharides production. in Food Research International
Elsevier., 160.
https://doi.org/10.1016/j.foodres.2022.111755
Stojanović S, Ristović M, Stepanović J, Margetić A, Duduk B, Vujčić Z, Dojnov B. Aspergillus welwitschiae inulinase enzyme cocktails obtained on agro-material inducers for the purpose of fructooligosaccharides production. in Food Research International. 2022;160.
doi:10.1016/j.foodres.2022.111755 .
Stojanović, Sanja, Ristović, Marina, Stepanović, Jelena, Margetić, Aleksandra, Duduk, Bojan, Vujčić, Zoran, Dojnov, Biljana, "Aspergillus welwitschiae inulinase enzyme cocktails obtained on agro-material inducers for the purpose of fructooligosaccharides production" in Food Research International, 160 (2022),
https://doi.org/10.1016/j.foodres.2022.111755 . .
1

Fungal oxidative and hydrolyzing enzymes as designers in the biological production of dietary fibers from triticale

Margetić, Aleksandra; Stojanović, Sanja; Ristović, Marina; Vujčić, Zoran; Dojnov, Biljana

(Elsevier, 2021)

TY  - JOUR
AU  - Margetić, Aleksandra
AU  - Stojanović, Sanja
AU  - Ristović, Marina
AU  - Vujčić, Zoran
AU  - Dojnov, Biljana
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4801
AB  - There is an urgent need to increase the daily intake of insoluble dietary fiber, and at the same time to find new sources and new production technologies. We hypothesized that fungal enzymes directly involved in lignocellulosic material hydrolysis (Aspergillus and Trichoderma enzyme cocktails) will change the fiber structure particularly efficiently after the action of laccase (Trametes versicolor enzyme cocktail). Enzymes production on an inducing substrate (same as starting material for obtainment of insoluble dietary fibers) and their usage resulted in obtainment of novel insoluble dietary fibers with better characteristics, 24% higher swelling, 43% higher WRC and 57% higher ORC compared to insoluble dietary fibers from triticale (already proven to be a good food additive). Changes in structure were analyzed by FTIR and microscopic analysis. Antioxidative performance of the obtained products, new insoluble and released soluble dietary fibers, was analyzed in detail. Newly obtained soluble dietary fibers demonstrated up to 20 times higher antioxidant activity compared to untreated fibers (ABTS and DPPH tests). These results suggest their good performance as a future food additive. At the same time, they prove the hypothesis that the use of enzyme cocktails rich in laccase is a good choice for biological pretreatment in this process.
PB  - Elsevier
T2  - LWT - Food Science and Technology
T1  - Fungal oxidative and hydrolyzing enzymes as designers in the biological production of dietary fibers from triticale
VL  - 145
SP  - 111291
DO  - 10.1016/j.lwt.2021.111291
ER  - 
@article{
author = "Margetić, Aleksandra and Stojanović, Sanja and Ristović, Marina and Vujčić, Zoran and Dojnov, Biljana",
year = "2021",
abstract = "There is an urgent need to increase the daily intake of insoluble dietary fiber, and at the same time to find new sources and new production technologies. We hypothesized that fungal enzymes directly involved in lignocellulosic material hydrolysis (Aspergillus and Trichoderma enzyme cocktails) will change the fiber structure particularly efficiently after the action of laccase (Trametes versicolor enzyme cocktail). Enzymes production on an inducing substrate (same as starting material for obtainment of insoluble dietary fibers) and their usage resulted in obtainment of novel insoluble dietary fibers with better characteristics, 24% higher swelling, 43% higher WRC and 57% higher ORC compared to insoluble dietary fibers from triticale (already proven to be a good food additive). Changes in structure were analyzed by FTIR and microscopic analysis. Antioxidative performance of the obtained products, new insoluble and released soluble dietary fibers, was analyzed in detail. Newly obtained soluble dietary fibers demonstrated up to 20 times higher antioxidant activity compared to untreated fibers (ABTS and DPPH tests). These results suggest their good performance as a future food additive. At the same time, they prove the hypothesis that the use of enzyme cocktails rich in laccase is a good choice for biological pretreatment in this process.",
publisher = "Elsevier",
journal = "LWT - Food Science and Technology",
title = "Fungal oxidative and hydrolyzing enzymes as designers in the biological production of dietary fibers from triticale",
volume = "145",
pages = "111291",
doi = "10.1016/j.lwt.2021.111291"
}
Margetić, A., Stojanović, S., Ristović, M., Vujčić, Z.,& Dojnov, B.. (2021). Fungal oxidative and hydrolyzing enzymes as designers in the biological production of dietary fibers from triticale. in LWT - Food Science and Technology
Elsevier., 145, 111291.
https://doi.org/10.1016/j.lwt.2021.111291
Margetić A, Stojanović S, Ristović M, Vujčić Z, Dojnov B. Fungal oxidative and hydrolyzing enzymes as designers in the biological production of dietary fibers from triticale. in LWT - Food Science and Technology. 2021;145:111291.
doi:10.1016/j.lwt.2021.111291 .
Margetić, Aleksandra, Stojanović, Sanja, Ristović, Marina, Vujčić, Zoran, Dojnov, Biljana, "Fungal oxidative and hydrolyzing enzymes as designers in the biological production of dietary fibers from triticale" in LWT - Food Science and Technology, 145 (2021):111291,
https://doi.org/10.1016/j.lwt.2021.111291 . .
2
2

Supplementary data for the article: Margetić, A.; Stojanović, S.; Ristović, M.; Vujčić, Z.; Dojnov, B. Fungal Oxidative and Hydrolyzing Enzymes as Designers in the Biological Production of Dietary Fibers from Triticale. LWT 2021, 145, 111291. https://doi.org/10.1016/j.lwt.2021.111291.

Margetić, Aleksandra; Stojanović, Sanja; Ristović, Marina; Vujčić, Zoran; Dojnov, Biljana

(Elsevier, 2021)

TY  - DATA
AU  - Margetić, Aleksandra
AU  - Stojanović, Sanja
AU  - Ristović, Marina
AU  - Vujčić, Zoran
AU  - Dojnov, Biljana
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4802
PB  - Elsevier
T2  - LWT - Food Science and Technology
T1  - Supplementary data for the article: Margetić, A.; Stojanović, S.; Ristović, M.; Vujčić, Z.; Dojnov, B. Fungal Oxidative and Hydrolyzing Enzymes as Designers in the Biological Production of Dietary Fibers from Triticale. LWT 2021, 145, 111291. https://doi.org/10.1016/j.lwt.2021.111291.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4802
ER  - 
@misc{
author = "Margetić, Aleksandra and Stojanović, Sanja and Ristović, Marina and Vujčić, Zoran and Dojnov, Biljana",
year = "2021",
publisher = "Elsevier",
journal = "LWT - Food Science and Technology",
title = "Supplementary data for the article: Margetić, A.; Stojanović, S.; Ristović, M.; Vujčić, Z.; Dojnov, B. Fungal Oxidative and Hydrolyzing Enzymes as Designers in the Biological Production of Dietary Fibers from Triticale. LWT 2021, 145, 111291. https://doi.org/10.1016/j.lwt.2021.111291.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4802"
}
Margetić, A., Stojanović, S., Ristović, M., Vujčić, Z.,& Dojnov, B.. (2021). Supplementary data for the article: Margetić, A.; Stojanović, S.; Ristović, M.; Vujčić, Z.; Dojnov, B. Fungal Oxidative and Hydrolyzing Enzymes as Designers in the Biological Production of Dietary Fibers from Triticale. LWT 2021, 145, 111291. https://doi.org/10.1016/j.lwt.2021.111291.. in LWT - Food Science and Technology
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_4802
Margetić A, Stojanović S, Ristović M, Vujčić Z, Dojnov B. Supplementary data for the article: Margetić, A.; Stojanović, S.; Ristović, M.; Vujčić, Z.; Dojnov, B. Fungal Oxidative and Hydrolyzing Enzymes as Designers in the Biological Production of Dietary Fibers from Triticale. LWT 2021, 145, 111291. https://doi.org/10.1016/j.lwt.2021.111291.. in LWT - Food Science and Technology. 2021;.
https://hdl.handle.net/21.15107/rcub_cherry_4802 .
Margetić, Aleksandra, Stojanović, Sanja, Ristović, Marina, Vujčić, Zoran, Dojnov, Biljana, "Supplementary data for the article: Margetić, A.; Stojanović, S.; Ristović, M.; Vujčić, Z.; Dojnov, B. Fungal Oxidative and Hydrolyzing Enzymes as Designers in the Biological Production of Dietary Fibers from Triticale. LWT 2021, 145, 111291. https://doi.org/10.1016/j.lwt.2021.111291." in LWT - Food Science and Technology (2021),
https://hdl.handle.net/21.15107/rcub_cherry_4802 .

Antioxidative Responses of Duckweed (Lemna minor L.) to Phenol and Rhizosphere-Associated Bacterial Strain Hafnia paralvei C32-106/3

Radulović, Olga; Stanković, Slaviša; Stanojević, Olja; Vujčić, Zoran; Dojnov, Biljana; Trifunović-Momčilov, Milana; Marković, Marija

(MDPI, 2021)

TY  - JOUR
AU  - Radulović, Olga
AU  - Stanković, Slaviša
AU  - Stanojević, Olja
AU  - Vujčić, Zoran
AU  - Dojnov, Biljana
AU  - Trifunović-Momčilov, Milana
AU  - Marković, Marija
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4763
AB  - Duckweed (L. minor) is a cosmopolitan aquatic plant of simplified morphology and rapid vegetative reproduction. In this study, an H. paralvei bacterial strain and its influence on the antioxidative response of the duckweeds to phenol, a recalcitrant environmental pollutant, were investigated. Sterile duckweed cultures were inoculated with H. paralvei in vitro and cultivated in the presence or absence of phenol (500 mg L−1), in order to investigate bacterial effects on plant oxidative stress during 5 days. Total soluble proteins, guaiacol peroxidase expression, concentration of hydrogen peroxide and malondialdehyde as well as the total ascorbic acid of the plants were monitored. Moreover, bacterial production of indole-3-acetic acid (IAA) was measured in order to investigate H. paralvei’s influence on plant growth. In general, the addition of phenol elevated all biochemical parameters in L. minor except AsA and total soluble proteins. Phenol as well as bacteria influenced the expression of guaiacol peroxidase. Different isoforms were associated with phenol compared to isoforms expressed in phenol-free medium. Considering that duckweeds showed increased antioxidative parameters in the presence of phenol, it can be assumed that the measured parameters might be involved in the plant’s defense system. H. paralvei is an IAA producer and its presence in the rhizosphere of duckweeds decreased the oxidative stress of the plants, which can be taken as evidence that this bacterial strain acts protectively on the plants during phenol exposure.
PB  - MDPI
T2  - Antioxidants
T1  - Antioxidative Responses of Duckweed (Lemna minor L.) to Phenol and Rhizosphere-Associated Bacterial Strain Hafnia paralvei C32-106/3
VL  - 10
IS  - 11
SP  - 1719
DO  - 10.3390/antiox10111719
ER  - 
@article{
author = "Radulović, Olga and Stanković, Slaviša and Stanojević, Olja and Vujčić, Zoran and Dojnov, Biljana and Trifunović-Momčilov, Milana and Marković, Marija",
year = "2021",
abstract = "Duckweed (L. minor) is a cosmopolitan aquatic plant of simplified morphology and rapid vegetative reproduction. In this study, an H. paralvei bacterial strain and its influence on the antioxidative response of the duckweeds to phenol, a recalcitrant environmental pollutant, were investigated. Sterile duckweed cultures were inoculated with H. paralvei in vitro and cultivated in the presence or absence of phenol (500 mg L−1), in order to investigate bacterial effects on plant oxidative stress during 5 days. Total soluble proteins, guaiacol peroxidase expression, concentration of hydrogen peroxide and malondialdehyde as well as the total ascorbic acid of the plants were monitored. Moreover, bacterial production of indole-3-acetic acid (IAA) was measured in order to investigate H. paralvei’s influence on plant growth. In general, the addition of phenol elevated all biochemical parameters in L. minor except AsA and total soluble proteins. Phenol as well as bacteria influenced the expression of guaiacol peroxidase. Different isoforms were associated with phenol compared to isoforms expressed in phenol-free medium. Considering that duckweeds showed increased antioxidative parameters in the presence of phenol, it can be assumed that the measured parameters might be involved in the plant’s defense system. H. paralvei is an IAA producer and its presence in the rhizosphere of duckweeds decreased the oxidative stress of the plants, which can be taken as evidence that this bacterial strain acts protectively on the plants during phenol exposure.",
publisher = "MDPI",
journal = "Antioxidants",
title = "Antioxidative Responses of Duckweed (Lemna minor L.) to Phenol and Rhizosphere-Associated Bacterial Strain Hafnia paralvei C32-106/3",
volume = "10",
number = "11",
pages = "1719",
doi = "10.3390/antiox10111719"
}
Radulović, O., Stanković, S., Stanojević, O., Vujčić, Z., Dojnov, B., Trifunović-Momčilov, M.,& Marković, M.. (2021). Antioxidative Responses of Duckweed (Lemna minor L.) to Phenol and Rhizosphere-Associated Bacterial Strain Hafnia paralvei C32-106/3. in Antioxidants
MDPI., 10(11), 1719.
https://doi.org/10.3390/antiox10111719
Radulović O, Stanković S, Stanojević O, Vujčić Z, Dojnov B, Trifunović-Momčilov M, Marković M. Antioxidative Responses of Duckweed (Lemna minor L.) to Phenol and Rhizosphere-Associated Bacterial Strain Hafnia paralvei C32-106/3. in Antioxidants. 2021;10(11):1719.
doi:10.3390/antiox10111719 .
Radulović, Olga, Stanković, Slaviša, Stanojević, Olja, Vujčić, Zoran, Dojnov, Biljana, Trifunović-Momčilov, Milana, Marković, Marija, "Antioxidative Responses of Duckweed (Lemna minor L.) to Phenol and Rhizosphere-Associated Bacterial Strain Hafnia paralvei C32-106/3" in Antioxidants, 10, no. 11 (2021):1719,
https://doi.org/10.3390/antiox10111719 . .
2
3

Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase

Božić, Nataša; Rozeboom, Henriëtte J.; Lončar, Nikola L.; Šokarda-Slavić, Marinela; Janssen, Dick B.; Vujčić, Zoran

(Elsevier, 2020)

TY  - JOUR
AU  - Božić, Nataša
AU  - Rozeboom, Henriëtte J.
AU  - Lončar, Nikola L.
AU  - Šokarda-Slavić, Marinela
AU  - Janssen, Dick B.
AU  - Vujčić, Zoran
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4262
AB  - α-Amylase from Bacillus paralicheniformis (BliAmy), belonging to GH13_5 subfamily of glycoside hydrolases, was proven to be a highly efficient raw starch digesting enzyme. The ability of some α-amylases to hydrolyze raw starch is related to the existence of surface binding sites (SBSs) for polysaccharides that can be distant from the active site. Crystallographic studies performed on BliAmy in the apo form and of enzyme bound with different oligosaccharides and oligosaccharide precursors revealed binding of these ligands to one SBS with two amino acids F257 and Y358 mainly involved in complex formation. The role of this SBS in starch binding and degradation was probed by designing enzyme variants mutated in this region (F257A and Y358A). Kinetic studies with different substrates show that starch binding through the SBS is disrupted in the mutants and that F257 and Y358 contributed cumulatively to binding and hydrolysis. Mutation of both sites (F257A/Y358A) resulted in a 5-fold lower efficacy with raw starch as substrate and at least 5.5-fold weaker binding compared to the wild type BliAmy, suggesting that the ability of BliAmy to hydrolyze raw starch with high efficiency is related to the level of its adsorption onto starch granules.
PB  - Elsevier
T2  - International Journal of Biological Macromolecules
T1  - Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase
VL  - 165
IS  - A
SP  - 1529
EP  - 1539
DO  - 10.1016/j.ijbiomac.2020.10.025
ER  - 
@article{
author = "Božić, Nataša and Rozeboom, Henriëtte J. and Lončar, Nikola L. and Šokarda-Slavić, Marinela and Janssen, Dick B. and Vujčić, Zoran",
year = "2020",
abstract = "α-Amylase from Bacillus paralicheniformis (BliAmy), belonging to GH13_5 subfamily of glycoside hydrolases, was proven to be a highly efficient raw starch digesting enzyme. The ability of some α-amylases to hydrolyze raw starch is related to the existence of surface binding sites (SBSs) for polysaccharides that can be distant from the active site. Crystallographic studies performed on BliAmy in the apo form and of enzyme bound with different oligosaccharides and oligosaccharide precursors revealed binding of these ligands to one SBS with two amino acids F257 and Y358 mainly involved in complex formation. The role of this SBS in starch binding and degradation was probed by designing enzyme variants mutated in this region (F257A and Y358A). Kinetic studies with different substrates show that starch binding through the SBS is disrupted in the mutants and that F257 and Y358 contributed cumulatively to binding and hydrolysis. Mutation of both sites (F257A/Y358A) resulted in a 5-fold lower efficacy with raw starch as substrate and at least 5.5-fold weaker binding compared to the wild type BliAmy, suggesting that the ability of BliAmy to hydrolyze raw starch with high efficiency is related to the level of its adsorption onto starch granules.",
publisher = "Elsevier",
journal = "International Journal of Biological Macromolecules",
title = "Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase",
volume = "165",
number = "A",
pages = "1529-1539",
doi = "10.1016/j.ijbiomac.2020.10.025"
}
Božić, N., Rozeboom, H. J., Lončar, N. L., Šokarda-Slavić, M., Janssen, D. B.,& Vujčić, Z.. (2020). Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase. in International Journal of Biological Macromolecules
Elsevier., 165(A), 1529-1539.
https://doi.org/10.1016/j.ijbiomac.2020.10.025
Božić N, Rozeboom HJ, Lončar NL, Šokarda-Slavić M, Janssen DB, Vujčić Z. Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase. in International Journal of Biological Macromolecules. 2020;165(A):1529-1539.
doi:10.1016/j.ijbiomac.2020.10.025 .
Božić, Nataša, Rozeboom, Henriëtte J., Lončar, Nikola L., Šokarda-Slavić, Marinela, Janssen, Dick B., Vujčić, Zoran, "Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase" in International Journal of Biological Macromolecules, 165, no. A (2020):1529-1539,
https://doi.org/10.1016/j.ijbiomac.2020.10.025 . .
13
4
13

Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase

Božić, Nataša; Rozeboom, Henriëtte J.; Lončar, Nikola L.; Šokarda-Slavić, Marinela; Janssen, Dick B.; Vujčić, Zoran

(Elsevier, 2020)

TY  - JOUR
AU  - Božić, Nataša
AU  - Rozeboom, Henriëtte J.
AU  - Lončar, Nikola L.
AU  - Šokarda-Slavić, Marinela
AU  - Janssen, Dick B.
AU  - Vujčić, Zoran
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4261
AB  - α-Amylase from Bacillus paralicheniformis (BliAmy), belonging to GH13_5 subfamily of glycoside hydrolases, was proven to be a highly efficient raw starch digesting enzyme. The ability of some α-amylases to hydrolyze raw starch is related to the existence of surface binding sites (SBSs) for polysaccharides that can be distant from the active site. Crystallographic studies performed on BliAmy in the apo form and of enzyme bound with different oligosaccharides and oligosaccharide precursors revealed binding of these ligands to one SBS with two amino acids F257 and Y358 mainly involved in complex formation. The role of this SBS in starch binding and degradation was probed by designing enzyme variants mutated in this region (F257A and Y358A). Kinetic studies with different substrates show that starch binding through the SBS is disrupted in the mutants and that F257 and Y358 contributed cumulatively to binding and hydrolysis. Mutation of both sites (F257A/Y358A) resulted in a 5-fold lower efficacy with raw starch as substrate and at least 5.5-fold weaker binding compared to the wild type BliAmy, suggesting that the ability of BliAmy to hydrolyze raw starch with high efficiency is related to the level of its adsorption onto starch granules.
PB  - Elsevier
T2  - International Journal of Biological Macromolecules
T1  - Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase
VL  - 165
IS  - A
SP  - 1529
EP  - 1539
DO  - 10.1016/j.ijbiomac.2020.10.025
ER  - 
@article{
author = "Božić, Nataša and Rozeboom, Henriëtte J. and Lončar, Nikola L. and Šokarda-Slavić, Marinela and Janssen, Dick B. and Vujčić, Zoran",
year = "2020",
abstract = "α-Amylase from Bacillus paralicheniformis (BliAmy), belonging to GH13_5 subfamily of glycoside hydrolases, was proven to be a highly efficient raw starch digesting enzyme. The ability of some α-amylases to hydrolyze raw starch is related to the existence of surface binding sites (SBSs) for polysaccharides that can be distant from the active site. Crystallographic studies performed on BliAmy in the apo form and of enzyme bound with different oligosaccharides and oligosaccharide precursors revealed binding of these ligands to one SBS with two amino acids F257 and Y358 mainly involved in complex formation. The role of this SBS in starch binding and degradation was probed by designing enzyme variants mutated in this region (F257A and Y358A). Kinetic studies with different substrates show that starch binding through the SBS is disrupted in the mutants and that F257 and Y358 contributed cumulatively to binding and hydrolysis. Mutation of both sites (F257A/Y358A) resulted in a 5-fold lower efficacy with raw starch as substrate and at least 5.5-fold weaker binding compared to the wild type BliAmy, suggesting that the ability of BliAmy to hydrolyze raw starch with high efficiency is related to the level of its adsorption onto starch granules.",
publisher = "Elsevier",
journal = "International Journal of Biological Macromolecules",
title = "Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase",
volume = "165",
number = "A",
pages = "1529-1539",
doi = "10.1016/j.ijbiomac.2020.10.025"
}
Božić, N., Rozeboom, H. J., Lončar, N. L., Šokarda-Slavić, M., Janssen, D. B.,& Vujčić, Z.. (2020). Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase. in International Journal of Biological Macromolecules
Elsevier., 165(A), 1529-1539.
https://doi.org/10.1016/j.ijbiomac.2020.10.025
Božić N, Rozeboom HJ, Lončar NL, Šokarda-Slavić M, Janssen DB, Vujčić Z. Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase. in International Journal of Biological Macromolecules. 2020;165(A):1529-1539.
doi:10.1016/j.ijbiomac.2020.10.025 .
Božić, Nataša, Rozeboom, Henriëtte J., Lončar, Nikola L., Šokarda-Slavić, Marinela, Janssen, Dick B., Vujčić, Zoran, "Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase" in International Journal of Biological Macromolecules, 165, no. A (2020):1529-1539,
https://doi.org/10.1016/j.ijbiomac.2020.10.025 . .
13
4
13

Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines

Simić, Stefan; Jeremić, Sanja; Đokić, Lidija; Božić, Nataša; Vujčić, Zoran; Lončar, Nikola L.; Senthamaraikannan, Ramsankar; Babu, Ramesh P.; Opsenica, Igor; Nikodinović-Runić, Jasmina

(2020)

TY  - JOUR
AU  - Simić, Stefan
AU  - Jeremić, Sanja
AU  - Đokić, Lidija
AU  - Božić, Nataša
AU  - Vujčić, Zoran
AU  - Lončar, Nikola L.
AU  - Senthamaraikannan, Ramsankar
AU  - Babu, Ramesh P.
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3356
AB  - Biocatalytic oxidations mediated by laccases are gaining importance due to their versatility and beneficial environmental effects. In this study, the oxidation of 1,4-dihydropyridines has been performed using three different types of bacterial laccase-based catalysts: purified laccase from Bacillus licheniformis ATCC 9945a (BliLacc), Escherichia coli whole cells expressing this laccase, and bacterial nanocellulose (BNC) supported BliLacc catalysts. The catalysts based on bacterial laccase were compared to the commercially available Trametes versicolor laccase (TvLacc). The oxidation product of 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate was obtained within 7–24 h with good yields (70–99%) with all three biocatalysts. The substrate scope was examined with five additional 1,4-dihydropyridines, one of which was oxidized in high yield. Whole-cell biocatalyst was stable when stored for up to 1-month at 4 °C. In addition, evidence has been provided that multicopper oxidase CueO from the E. coli expression host contributed to the oxidation efficiency of the whole-cell biocatalyst. The immobilized whole-cell biocatalyst showed satisfactory activity and retained 37% of its original activity after three biotransformation cycles.
T2  - Enzyme and Microbial Technology
T1  - Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines
VL  - 132
DO  - 10.1016/j.enzmictec.2019.109411
ER  - 
@article{
author = "Simić, Stefan and Jeremić, Sanja and Đokić, Lidija and Božić, Nataša and Vujčić, Zoran and Lončar, Nikola L. and Senthamaraikannan, Ramsankar and Babu, Ramesh P. and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2020",
abstract = "Biocatalytic oxidations mediated by laccases are gaining importance due to their versatility and beneficial environmental effects. In this study, the oxidation of 1,4-dihydropyridines has been performed using three different types of bacterial laccase-based catalysts: purified laccase from Bacillus licheniformis ATCC 9945a (BliLacc), Escherichia coli whole cells expressing this laccase, and bacterial nanocellulose (BNC) supported BliLacc catalysts. The catalysts based on bacterial laccase were compared to the commercially available Trametes versicolor laccase (TvLacc). The oxidation product of 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate was obtained within 7–24 h with good yields (70–99%) with all three biocatalysts. The substrate scope was examined with five additional 1,4-dihydropyridines, one of which was oxidized in high yield. Whole-cell biocatalyst was stable when stored for up to 1-month at 4 °C. In addition, evidence has been provided that multicopper oxidase CueO from the E. coli expression host contributed to the oxidation efficiency of the whole-cell biocatalyst. The immobilized whole-cell biocatalyst showed satisfactory activity and retained 37% of its original activity after three biotransformation cycles.",
journal = "Enzyme and Microbial Technology",
title = "Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines",
volume = "132",
doi = "10.1016/j.enzmictec.2019.109411"
}
Simić, S., Jeremić, S., Đokić, L., Božić, N., Vujčić, Z., Lončar, N. L., Senthamaraikannan, R., Babu, R. P., Opsenica, I.,& Nikodinović-Runić, J.. (2020). Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines. in Enzyme and Microbial Technology, 132.
https://doi.org/10.1016/j.enzmictec.2019.109411
Simić S, Jeremić S, Đokić L, Božić N, Vujčić Z, Lončar NL, Senthamaraikannan R, Babu RP, Opsenica I, Nikodinović-Runić J. Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines. in Enzyme and Microbial Technology. 2020;132.
doi:10.1016/j.enzmictec.2019.109411 .
Simić, Stefan, Jeremić, Sanja, Đokić, Lidija, Božić, Nataša, Vujčić, Zoran, Lončar, Nikola L., Senthamaraikannan, Ramsankar, Babu, Ramesh P., Opsenica, Igor, Nikodinović-Runić, Jasmina, "Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines" in Enzyme and Microbial Technology, 132 (2020),
https://doi.org/10.1016/j.enzmictec.2019.109411 . .
12
6
12

Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411

Simić, Stefan; Jeremić, Sanja; Đokić, Lidija; Božić, Nataša; Vujčić, Zoran; Lončar, Nikola L.; Senthamaraikannan, Ramsankar; Babu, Ramesh P.; Opsenica, Igor; Nikodinović-Runić, Jasmina

(2020)

TY  - DATA
AU  - Simić, Stefan
AU  - Jeremić, Sanja
AU  - Đokić, Lidija
AU  - Božić, Nataša
AU  - Vujčić, Zoran
AU  - Lončar, Nikola L.
AU  - Senthamaraikannan, Ramsankar
AU  - Babu, Ramesh P.
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3357
T2  - Enzyme and Microbial Technology
T1  - Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3357
ER  - 
@misc{
author = "Simić, Stefan and Jeremić, Sanja and Đokić, Lidija and Božić, Nataša and Vujčić, Zoran and Lončar, Nikola L. and Senthamaraikannan, Ramsankar and Babu, Ramesh P. and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2020",
journal = "Enzyme and Microbial Technology",
title = "Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3357"
}
Simić, S., Jeremić, S., Đokić, L., Božić, N., Vujčić, Z., Lončar, N. L., Senthamaraikannan, R., Babu, R. P., Opsenica, I.,& Nikodinović-Runić, J.. (2020). Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411. in Enzyme and Microbial Technology.
https://hdl.handle.net/21.15107/rcub_cherry_3357
Simić S, Jeremić S, Đokić L, Božić N, Vujčić Z, Lončar NL, Senthamaraikannan R, Babu RP, Opsenica I, Nikodinović-Runić J. Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411. in Enzyme and Microbial Technology. 2020;.
https://hdl.handle.net/21.15107/rcub_cherry_3357 .
Simić, Stefan, Jeremić, Sanja, Đokić, Lidija, Božić, Nataša, Vujčić, Zoran, Lončar, Nikola L., Senthamaraikannan, Ramsankar, Babu, Ramesh P., Opsenica, Igor, Nikodinović-Runić, Jasmina, "Supplementary data for article: Simić, S.; Jeremic, S.; Djokic, L.; Božić, N.; Vujčić, Z.; Lončar, N.; Senthamaraikannan, R.; Babu, R.; Opsenica, I. M.; Nikodinovic-Runic, J. Development of an Efficient Biocatalytic System Based on Bacterial Laccase for the Oxidation of Selected 1,4-Dihydropyridines. Enzyme and Microbial Technology 2020, 132. https://doi.org/10.1016/j.enzmictec.2019.109411" in Enzyme and Microbial Technology (2020),
https://hdl.handle.net/21.15107/rcub_cherry_3357 .

Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase

Anđelković, Uroš; Gudelj, Ivan; Klarić, Thomas; Hinneburg, Hannes; Vinković, Marijana; Wittine, Karlo; Dovezenski, Nebojša; Vikić-Topić, Dražen; Lauc, Gordan; Vujčić, Zoran; Josić, Đuro

(Wiley, 2020)

TY  - JOUR
AU  - Anđelković, Uroš
AU  - Gudelj, Ivan
AU  - Klarić, Thomas
AU  - Hinneburg, Hannes
AU  - Vinković, Marijana
AU  - Wittine, Karlo
AU  - Dovezenski, Nebojša
AU  - Vikić-Topić, Dražen
AU  - Lauc, Gordan
AU  - Vujčić, Zoran
AU  - Josić, Đuro
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4977
AB  - Invertases are glycosidases applied for synthesis of alkyl glycosides that are important and effective surfactants. Stability of invertases in the environment with increased content of organic solvent is crucial for increase of productivity of glycosidases. Their stabilityis significantly influenced by N-glycosylation. However, yeast N-glycosylation pathways may synthesize plethora of N-glycan structures. A total natural crude mixture of invertase glycoforms (EINV) extracted from Saccharomyces cerevisiae was subfractionatedby anion-exchange chromatography on industrial monolithic supports to obtain different glycoforms (EINV1–EINV3). Separated glycoforms exhibited different stabilities in wateralcohol solutions that are in direct correlation with the amount of phosphate bound to N-glycans. Observed differences in stability of different invertase glycoforms were used to improve productivity of methyl β-d-fructofuranoside (MF) synthesis. The efficiency and yield of MF synthesis were improved more than 50% when the most stabile glycoform bearing the lowest amount of phosphorylated N-glycans is selected and utilized. These data underline the importance of analysis of glycan structures attached to glycoproteins, demonstrate different impact of N-glycans on the surface charge and enzyme stability inregard to particular reaction environment, and provide a platform for improvement of yield of industrial enzymatic synthesis by chromatographic selection of glycoforms on monolithic supports.
PB  - Wiley
T2  - Electrophoresis
T1  - Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase
VL  - n/a
DO  - 10.1002/elps.202000092
ER  - 
@article{
author = "Anđelković, Uroš and Gudelj, Ivan and Klarić, Thomas and Hinneburg, Hannes and Vinković, Marijana and Wittine, Karlo and Dovezenski, Nebojša and Vikić-Topić, Dražen and Lauc, Gordan and Vujčić, Zoran and Josić, Đuro",
year = "2020",
abstract = "Invertases are glycosidases applied for synthesis of alkyl glycosides that are important and effective surfactants. Stability of invertases in the environment with increased content of organic solvent is crucial for increase of productivity of glycosidases. Their stabilityis significantly influenced by N-glycosylation. However, yeast N-glycosylation pathways may synthesize plethora of N-glycan structures. A total natural crude mixture of invertase glycoforms (EINV) extracted from Saccharomyces cerevisiae was subfractionatedby anion-exchange chromatography on industrial monolithic supports to obtain different glycoforms (EINV1–EINV3). Separated glycoforms exhibited different stabilities in wateralcohol solutions that are in direct correlation with the amount of phosphate bound to N-glycans. Observed differences in stability of different invertase glycoforms were used to improve productivity of methyl β-d-fructofuranoside (MF) synthesis. The efficiency and yield of MF synthesis were improved more than 50% when the most stabile glycoform bearing the lowest amount of phosphorylated N-glycans is selected and utilized. These data underline the importance of analysis of glycan structures attached to glycoproteins, demonstrate different impact of N-glycans on the surface charge and enzyme stability inregard to particular reaction environment, and provide a platform for improvement of yield of industrial enzymatic synthesis by chromatographic selection of glycoforms on monolithic supports.",
publisher = "Wiley",
journal = "Electrophoresis",
title = "Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase",
volume = "n/a",
doi = "10.1002/elps.202000092"
}
Anđelković, U., Gudelj, I., Klarić, T., Hinneburg, H., Vinković, M., Wittine, K., Dovezenski, N., Vikić-Topić, D., Lauc, G., Vujčić, Z.,& Josić, Đ.. (2020). Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase. in Electrophoresis
Wiley., n/a.
https://doi.org/10.1002/elps.202000092
Anđelković U, Gudelj I, Klarić T, Hinneburg H, Vinković M, Wittine K, Dovezenski N, Vikić-Topić D, Lauc G, Vujčić Z, Josić Đ. Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase. in Electrophoresis. 2020;n/a.
doi:10.1002/elps.202000092 .
Anđelković, Uroš, Gudelj, Ivan, Klarić, Thomas, Hinneburg, Hannes, Vinković, Marijana, Wittine, Karlo, Dovezenski, Nebojša, Vikić-Topić, Dražen, Lauc, Gordan, Vujčić, Zoran, Josić, Đuro, "Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase" in Electrophoresis, n/a (2020),
https://doi.org/10.1002/elps.202000092 . .
3
2
1
2

Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase

Anđelković, Uroš; Gudelj, Ivan; Klarić, Thomas; Hinneburg, Hannes; Vinković, Marijana; Wittine, Karlo; Dovezenski, Nebojša; Vikić-Topić, Dražen; Lauc, Gordan; Vujčić, Zoran; Josić, Đuro

(Wiley, 2020)

TY  - JOUR
AU  - Anđelković, Uroš
AU  - Gudelj, Ivan
AU  - Klarić, Thomas
AU  - Hinneburg, Hannes
AU  - Vinković, Marijana
AU  - Wittine, Karlo
AU  - Dovezenski, Nebojša
AU  - Vikić-Topić, Dražen
AU  - Lauc, Gordan
AU  - Vujčić, Zoran
AU  - Josić, Đuro
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4976
AB  - Invertases are glycosidases applied for synthesis of alkyl glycosides that are important and effective surfactants. Stability of invertases in the environment with increased content of organic solvent is crucial for increase of productivity of glycosidases. Their stabilityis significantly influenced by N-glycosylation. However, yeast N-glycosylation pathways may synthesize plethora of N-glycan structures. A total natural crude mixture of invertase glycoforms (EINV) extracted from Saccharomyces cerevisiae was subfractionatedby anion-exchange chromatography on industrial monolithic supports to obtain different glycoforms (EINV1–EINV3). Separated glycoforms exhibited different stabilities in wateralcohol solutions that are in direct correlation with the amount of phosphate bound to N-glycans. Observed differences in stability of different invertase glycoforms were used to improve productivity of methyl β-d-fructofuranoside (MF) synthesis. The efficiency and yield of MF synthesis were improved more than 50% when the most stabile glycoform bearing the lowest amount of phosphorylated N-glycans is selected and utilized. These data underline the importance of analysis of glycan structures attached to glycoproteins, demonstrate different impact of N-glycans on the surface charge and enzyme stability inregard to particular reaction environment, and provide a platform for improvement of yield of industrial enzymatic synthesis by chromatographic selection of glycoforms on monolithic supports.
PB  - Wiley
T2  - Electrophoresis
T1  - Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase
VL  - n/a
DO  - 10.1002/elps.202000092
ER  - 
@article{
author = "Anđelković, Uroš and Gudelj, Ivan and Klarić, Thomas and Hinneburg, Hannes and Vinković, Marijana and Wittine, Karlo and Dovezenski, Nebojša and Vikić-Topić, Dražen and Lauc, Gordan and Vujčić, Zoran and Josić, Đuro",
year = "2020",
abstract = "Invertases are glycosidases applied for synthesis of alkyl glycosides that are important and effective surfactants. Stability of invertases in the environment with increased content of organic solvent is crucial for increase of productivity of glycosidases. Their stabilityis significantly influenced by N-glycosylation. However, yeast N-glycosylation pathways may synthesize plethora of N-glycan structures. A total natural crude mixture of invertase glycoforms (EINV) extracted from Saccharomyces cerevisiae was subfractionatedby anion-exchange chromatography on industrial monolithic supports to obtain different glycoforms (EINV1–EINV3). Separated glycoforms exhibited different stabilities in wateralcohol solutions that are in direct correlation with the amount of phosphate bound to N-glycans. Observed differences in stability of different invertase glycoforms were used to improve productivity of methyl β-d-fructofuranoside (MF) synthesis. The efficiency and yield of MF synthesis were improved more than 50% when the most stabile glycoform bearing the lowest amount of phosphorylated N-glycans is selected and utilized. These data underline the importance of analysis of glycan structures attached to glycoproteins, demonstrate different impact of N-glycans on the surface charge and enzyme stability inregard to particular reaction environment, and provide a platform for improvement of yield of industrial enzymatic synthesis by chromatographic selection of glycoforms on monolithic supports.",
publisher = "Wiley",
journal = "Electrophoresis",
title = "Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase",
volume = "n/a",
doi = "10.1002/elps.202000092"
}
Anđelković, U., Gudelj, I., Klarić, T., Hinneburg, H., Vinković, M., Wittine, K., Dovezenski, N., Vikić-Topić, D., Lauc, G., Vujčić, Z.,& Josić, Đ.. (2020). Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase. in Electrophoresis
Wiley., n/a.
https://doi.org/10.1002/elps.202000092
Anđelković U, Gudelj I, Klarić T, Hinneburg H, Vinković M, Wittine K, Dovezenski N, Vikić-Topić D, Lauc G, Vujčić Z, Josić Đ. Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase. in Electrophoresis. 2020;n/a.
doi:10.1002/elps.202000092 .
Anđelković, Uroš, Gudelj, Ivan, Klarić, Thomas, Hinneburg, Hannes, Vinković, Marijana, Wittine, Karlo, Dovezenski, Nebojša, Vikić-Topić, Dražen, Lauc, Gordan, Vujčić, Zoran, Josić, Đuro, "Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase" in Electrophoresis, n/a (2020),
https://doi.org/10.1002/elps.202000092 . .
3
2
1
2

Expression and characterization of a dye-decolorizing peroxidase from pseudomonas fluorescens Pf0-1

Lončar, Nikola L.; Drašković, Natalija; Božić, Nataša; Romero, Elvira; Simić, Stefan; Opsenica, Igor; Vujčić, Zoran; Fraaije, Marco W.

(MDPI, 2019)

TY  - JOUR
AU  - Lončar, Nikola L.
AU  - Drašković, Natalija
AU  - Božić, Nataša
AU  - Romero, Elvira
AU  - Simić, Stefan
AU  - Opsenica, Igor
AU  - Vujčić, Zoran
AU  - Fraaije, Marco W.
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3709
AB  - The consumption of dyes is increasing worldwide in line with the increase of population and demand for clothes and other colored products. However, the efficiency of dyeing processes is still poor and results in large amounts of colored effluents. It is desired to develop a portfolio of enzymes which can be used for the treatment of colored wastewaters. Herein, we used genome sequence information to discover a dye-decolorizing peroxidase (DyP) from Pseudomonas fluorescens Pf-01. Two genes putatively encoding for DyPs were identified in the respective genome and cloned for expression in Escherichia coli, of which one (Pf DyP B2) could be overexpressed as a soluble protein. Pf DyP B2 shows some typical features known for DyPs which includes the ability to convert dyes at the expense of hydrogen peroxide. Interestingly, t-butyl hydroperoxide could be used as an alternative substrate to hydrogen peroxide. Immobilization of Pf DyP B2 in calcium-alginate beads resulted in a significant increase in stability: Pf DyP B2 retains 80% of its initial activity after 2 h incubation at 50◦ C, while the soluble enzyme is inactivated within minutes. Pf DyP B2 was also tested with aniline and ethyl diazoacetate as substrates. Based on GC-MS analyses, 30% conversion of the starting material was achieved after 65 h at 30◦ C. Importantly, this is the first report of a DyP-catalyzed insertion of a carbene into an N-H bond.
PB  - MDPI
T2  - Catalysts
T1  - Expression and characterization of a dye-decolorizing peroxidase from pseudomonas fluorescens Pf0-1
VL  - 9
IS  - 5
DO  - 10.3390/catal9050463
ER  - 
@article{
author = "Lončar, Nikola L. and Drašković, Natalija and Božić, Nataša and Romero, Elvira and Simić, Stefan and Opsenica, Igor and Vujčić, Zoran and Fraaije, Marco W.",
year = "2019",
abstract = "The consumption of dyes is increasing worldwide in line with the increase of population and demand for clothes and other colored products. However, the efficiency of dyeing processes is still poor and results in large amounts of colored effluents. It is desired to develop a portfolio of enzymes which can be used for the treatment of colored wastewaters. Herein, we used genome sequence information to discover a dye-decolorizing peroxidase (DyP) from Pseudomonas fluorescens Pf-01. Two genes putatively encoding for DyPs were identified in the respective genome and cloned for expression in Escherichia coli, of which one (Pf DyP B2) could be overexpressed as a soluble protein. Pf DyP B2 shows some typical features known for DyPs which includes the ability to convert dyes at the expense of hydrogen peroxide. Interestingly, t-butyl hydroperoxide could be used as an alternative substrate to hydrogen peroxide. Immobilization of Pf DyP B2 in calcium-alginate beads resulted in a significant increase in stability: Pf DyP B2 retains 80% of its initial activity after 2 h incubation at 50◦ C, while the soluble enzyme is inactivated within minutes. Pf DyP B2 was also tested with aniline and ethyl diazoacetate as substrates. Based on GC-MS analyses, 30% conversion of the starting material was achieved after 65 h at 30◦ C. Importantly, this is the first report of a DyP-catalyzed insertion of a carbene into an N-H bond.",
publisher = "MDPI",
journal = "Catalysts",
title = "Expression and characterization of a dye-decolorizing peroxidase from pseudomonas fluorescens Pf0-1",
volume = "9",
number = "5",
doi = "10.3390/catal9050463"
}
Lončar, N. L., Drašković, N., Božić, N., Romero, E., Simić, S., Opsenica, I., Vujčić, Z.,& Fraaije, M. W.. (2019). Expression and characterization of a dye-decolorizing peroxidase from pseudomonas fluorescens Pf0-1. in Catalysts
MDPI., 9(5).
https://doi.org/10.3390/catal9050463
Lončar NL, Drašković N, Božić N, Romero E, Simić S, Opsenica I, Vujčić Z, Fraaije MW. Expression and characterization of a dye-decolorizing peroxidase from pseudomonas fluorescens Pf0-1. in Catalysts. 2019;9(5).
doi:10.3390/catal9050463 .
Lončar, Nikola L., Drašković, Natalija, Božić, Nataša, Romero, Elvira, Simić, Stefan, Opsenica, Igor, Vujčić, Zoran, Fraaije, Marco W., "Expression and characterization of a dye-decolorizing peroxidase from pseudomonas fluorescens Pf0-1" in Catalysts, 9, no. 5 (2019),
https://doi.org/10.3390/catal9050463 . .
1
9
5
9

Supplementary data for the article: Lončar, N.; Drašković, N.; Božić, N.; Romero, E.; Simić, S.; Opsenica, I.; Vujčić, Z.; Fraaije, M. W. Expression and Characterization of a Dye-Decolorizing Peroxidase from Pseudomonas Fluorescens Pf0-1. Catalysts 2019, 9 (5). https://doi.org/10.3390/catal9050463

Lončar, Nikola L.; Drašković, Natalija; Božić, Nataša; Romero, Elvira; Simić, Stefan; Opsenica, Igor; Vujčić, Zoran; Fraaije, Marco W.

(MDPI, 2019)

TY  - DATA
AU  - Lončar, Nikola L.
AU  - Drašković, Natalija
AU  - Božić, Nataša
AU  - Romero, Elvira
AU  - Simić, Stefan
AU  - Opsenica, Igor
AU  - Vujčić, Zoran
AU  - Fraaije, Marco W.
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3710
PB  - MDPI
T2  - Catalysts
T1  - Supplementary data for the article: Lončar, N.; Drašković, N.; Božić, N.; Romero, E.; Simić, S.; Opsenica, I.; Vujčić, Z.; Fraaije, M. W. Expression and Characterization of a Dye-Decolorizing Peroxidase from Pseudomonas Fluorescens Pf0-1. Catalysts 2019, 9 (5). https://doi.org/10.3390/catal9050463
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3710
ER  - 
@misc{
author = "Lončar, Nikola L. and Drašković, Natalija and Božić, Nataša and Romero, Elvira and Simić, Stefan and Opsenica, Igor and Vujčić, Zoran and Fraaije, Marco W.",
year = "2019",
publisher = "MDPI",
journal = "Catalysts",
title = "Supplementary data for the article: Lončar, N.; Drašković, N.; Božić, N.; Romero, E.; Simić, S.; Opsenica, I.; Vujčić, Z.; Fraaije, M. W. Expression and Characterization of a Dye-Decolorizing Peroxidase from Pseudomonas Fluorescens Pf0-1. Catalysts 2019, 9 (5). https://doi.org/10.3390/catal9050463",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3710"
}
Lončar, N. L., Drašković, N., Božić, N., Romero, E., Simić, S., Opsenica, I., Vujčić, Z.,& Fraaije, M. W.. (2019). Supplementary data for the article: Lončar, N.; Drašković, N.; Božić, N.; Romero, E.; Simić, S.; Opsenica, I.; Vujčić, Z.; Fraaije, M. W. Expression and Characterization of a Dye-Decolorizing Peroxidase from Pseudomonas Fluorescens Pf0-1. Catalysts 2019, 9 (5). https://doi.org/10.3390/catal9050463. in Catalysts
MDPI..
https://hdl.handle.net/21.15107/rcub_cherry_3710
Lončar NL, Drašković N, Božić N, Romero E, Simić S, Opsenica I, Vujčić Z, Fraaije MW. Supplementary data for the article: Lončar, N.; Drašković, N.; Božić, N.; Romero, E.; Simić, S.; Opsenica, I.; Vujčić, Z.; Fraaije, M. W. Expression and Characterization of a Dye-Decolorizing Peroxidase from Pseudomonas Fluorescens Pf0-1. Catalysts 2019, 9 (5). https://doi.org/10.3390/catal9050463. in Catalysts. 2019;.
https://hdl.handle.net/21.15107/rcub_cherry_3710 .
Lončar, Nikola L., Drašković, Natalija, Božić, Nataša, Romero, Elvira, Simić, Stefan, Opsenica, Igor, Vujčić, Zoran, Fraaije, Marco W., "Supplementary data for the article: Lončar, N.; Drašković, N.; Božić, N.; Romero, E.; Simić, S.; Opsenica, I.; Vujčić, Z.; Fraaije, M. W. Expression and Characterization of a Dye-Decolorizing Peroxidase from Pseudomonas Fluorescens Pf0-1. Catalysts 2019, 9 (5). https://doi.org/10.3390/catal9050463" in Catalysts (2019),
https://hdl.handle.net/21.15107/rcub_cherry_3710 .

Superior cellulolytic activity of Trichoderma guizhouense on raw wheat straw

Grujić, Marica; Dojnov, Biljana; Potočnik, Ivana; Atanasova, Lea; Duduk, Bojan; Srebotnik, Ewald; Druzhinina, Irirna S.; Kubicek, Christian P.; Vujčić, Zoran

(Springer Link, 2019)

TY  - JOUR
AU  - Grujić, Marica
AU  - Dojnov, Biljana
AU  - Potočnik, Ivana
AU  - Atanasova, Lea
AU  - Duduk, Bojan
AU  - Srebotnik, Ewald
AU  - Druzhinina, Irirna S.
AU  - Kubicek, Christian P.
AU  - Vujčić, Zoran
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3768
AB  - Lignocellulosic plant biomass is the world’s most abundant carbon source and has consequently attracted attention as a renewable resource for production of biofuels and commodity chemicals that could replace fossil resources. Due to its recalcitrant nature, it must be pretreated by chemical, physical or biological means prior to hydrolysis, introducing additional costs. In this paper, we tested the hypothesis that fungi which thrive on lignocellulosic material (straw, bark or soil) would be efficient in degrading untreated lignocellulose. Wheat straw was used as a model. We developed a fast and simple screening method for cellulase producers and tested one hundred Trichoderma strains isolated from wheat straw. The most potent strain—UB483FTG2/ TUCIM 4455, was isolated from substrate used for mushroom cultivation and was identified as T. guizhouense. After optimization of growth medium, high cellulase activity was already achieved after 72 h of fermentation on raw wheat straw, while the model cellulase overproducing strain T. reesei QM 9414 took 170 h and reached only 45% of the cellulase activity secreted by T. guizhouense. Maximum production levels were 1.1 U/mL (measured with CMC as cellulase substrate) and 0.7 U/mL (β-glucosidase assay). The T. guizhouense cellulase cocktail hydrolyzed raw wheat straw within 35 h. Our study shows that screening for fungi that successfully compete for special substrates in nature will lead to the isolation of strains with qualitatively and quantitatively superior enzymes needed for their digestion which could be used for industrial purposes.
PB  - Springer Link
T2  - World Journal of Microbiology and Biotechnology
T1  - Superior cellulolytic activity of Trichoderma guizhouense on raw wheat straw
VL  - 35
IS  - 12
DO  - 10.1007/s11274-019-2774-y
ER  - 
@article{
author = "Grujić, Marica and Dojnov, Biljana and Potočnik, Ivana and Atanasova, Lea and Duduk, Bojan and Srebotnik, Ewald and Druzhinina, Irirna S. and Kubicek, Christian P. and Vujčić, Zoran",
year = "2019",
abstract = "Lignocellulosic plant biomass is the world’s most abundant carbon source and has consequently attracted attention as a renewable resource for production of biofuels and commodity chemicals that could replace fossil resources. Due to its recalcitrant nature, it must be pretreated by chemical, physical or biological means prior to hydrolysis, introducing additional costs. In this paper, we tested the hypothesis that fungi which thrive on lignocellulosic material (straw, bark or soil) would be efficient in degrading untreated lignocellulose. Wheat straw was used as a model. We developed a fast and simple screening method for cellulase producers and tested one hundred Trichoderma strains isolated from wheat straw. The most potent strain—UB483FTG2/ TUCIM 4455, was isolated from substrate used for mushroom cultivation and was identified as T. guizhouense. After optimization of growth medium, high cellulase activity was already achieved after 72 h of fermentation on raw wheat straw, while the model cellulase overproducing strain T. reesei QM 9414 took 170 h and reached only 45% of the cellulase activity secreted by T. guizhouense. Maximum production levels were 1.1 U/mL (measured with CMC as cellulase substrate) and 0.7 U/mL (β-glucosidase assay). The T. guizhouense cellulase cocktail hydrolyzed raw wheat straw within 35 h. Our study shows that screening for fungi that successfully compete for special substrates in nature will lead to the isolation of strains with qualitatively and quantitatively superior enzymes needed for their digestion which could be used for industrial purposes.",
publisher = "Springer Link",
journal = "World Journal of Microbiology and Biotechnology",
title = "Superior cellulolytic activity of Trichoderma guizhouense on raw wheat straw",
volume = "35",
number = "12",
doi = "10.1007/s11274-019-2774-y"
}
Grujić, M., Dojnov, B., Potočnik, I., Atanasova, L., Duduk, B., Srebotnik, E., Druzhinina, I. S., Kubicek, C. P.,& Vujčić, Z.. (2019). Superior cellulolytic activity of Trichoderma guizhouense on raw wheat straw. in World Journal of Microbiology and Biotechnology
Springer Link., 35(12).
https://doi.org/10.1007/s11274-019-2774-y
Grujić M, Dojnov B, Potočnik I, Atanasova L, Duduk B, Srebotnik E, Druzhinina IS, Kubicek CP, Vujčić Z. Superior cellulolytic activity of Trichoderma guizhouense on raw wheat straw. in World Journal of Microbiology and Biotechnology. 2019;35(12).
doi:10.1007/s11274-019-2774-y .
Grujić, Marica, Dojnov, Biljana, Potočnik, Ivana, Atanasova, Lea, Duduk, Bojan, Srebotnik, Ewald, Druzhinina, Irirna S., Kubicek, Christian P., Vujčić, Zoran, "Superior cellulolytic activity of Trichoderma guizhouense on raw wheat straw" in World Journal of Microbiology and Biotechnology, 35, no. 12 (2019),
https://doi.org/10.1007/s11274-019-2774-y . .
10
8
9

Application of new insoluble dietary fibres from triticale as supplement in yoghurt - effects on physico-chemical, rheological and quality properties

Miočinović, Jelena; Tomić, Nikola; Dojnov, Biljana; Tomašević, Igor; Stojanović, Sanja; Đekić, Ilija; Vujčić, Zoran

(Wiley, Hoboken, 2018)

TY  - JOUR
AU  - Miočinović, Jelena
AU  - Tomić, Nikola
AU  - Dojnov, Biljana
AU  - Tomašević, Igor
AU  - Stojanović, Sanja
AU  - Đekić, Ilija
AU  - Vujčić, Zoran
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2080
AB  - BACKGROUND: The need to increase the daily intake of dietary fibres opens a new chapter in the research of functional foods enriched with fibres. The potential application of an innovative product - insoluble dietary fibres from triticale in yoghurts - was deployed by characterising their food application and evaluating physico-chemical, rheological and sensory properties and was the aim of this research. RESULTS: Detailed characterisations of these fibres are presented for the first time and showed very good hydration properties, optimal pH ( slightly acidic), optimal chemical composition, high antioxidant capacity which was proven by phenolics contents. Besides, these fibres showed negligible calorific value, with no phytates and high antioxidant capacity, mainly from ferulic acid. Therefore they could be successfully added to yoghurt. Enrichment of yoghurt having different milk fat content (1.5 and 2.8% w/w) with triticale insoluble fibre (1.5% and 3.0% w/w) significantly influenced the syneresis level, its apparent viscosity, yield stress and thixotropic behaviour. The overall sensory quality scores indicated that yoghurt enriched with 1.5% triticale insoluble fibres was recognised as 'excellent' and had enhanced antioxidant activity. CONCLUSIONS: Insoluble triticale fibre could therefore be used as a supplement to produce functional yoghurt. (c) 2017 Society of Chemical Industry
PB  - Wiley, Hoboken
T2  - Journal of the Science of Food and Agriculture
T1  - Application of new insoluble dietary fibres from triticale as supplement in yoghurt - effects on physico-chemical, rheological and quality properties
VL  - 98
IS  - 4
SP  - 1291
EP  - 1299
DO  - 10.1002/jsfa.8592
UR  - Kon_3411
ER  - 
@article{
author = "Miočinović, Jelena and Tomić, Nikola and Dojnov, Biljana and Tomašević, Igor and Stojanović, Sanja and Đekić, Ilija and Vujčić, Zoran",
year = "2018",
abstract = "BACKGROUND: The need to increase the daily intake of dietary fibres opens a new chapter in the research of functional foods enriched with fibres. The potential application of an innovative product - insoluble dietary fibres from triticale in yoghurts - was deployed by characterising their food application and evaluating physico-chemical, rheological and sensory properties and was the aim of this research. RESULTS: Detailed characterisations of these fibres are presented for the first time and showed very good hydration properties, optimal pH ( slightly acidic), optimal chemical composition, high antioxidant capacity which was proven by phenolics contents. Besides, these fibres showed negligible calorific value, with no phytates and high antioxidant capacity, mainly from ferulic acid. Therefore they could be successfully added to yoghurt. Enrichment of yoghurt having different milk fat content (1.5 and 2.8% w/w) with triticale insoluble fibre (1.5% and 3.0% w/w) significantly influenced the syneresis level, its apparent viscosity, yield stress and thixotropic behaviour. The overall sensory quality scores indicated that yoghurt enriched with 1.5% triticale insoluble fibres was recognised as 'excellent' and had enhanced antioxidant activity. CONCLUSIONS: Insoluble triticale fibre could therefore be used as a supplement to produce functional yoghurt. (c) 2017 Society of Chemical Industry",
publisher = "Wiley, Hoboken",
journal = "Journal of the Science of Food and Agriculture",
title = "Application of new insoluble dietary fibres from triticale as supplement in yoghurt - effects on physico-chemical, rheological and quality properties",
volume = "98",
number = "4",
pages = "1291-1299",
doi = "10.1002/jsfa.8592",
url = "Kon_3411"
}
Miočinović, J., Tomić, N., Dojnov, B., Tomašević, I., Stojanović, S., Đekić, I.,& Vujčić, Z.. (2018). Application of new insoluble dietary fibres from triticale as supplement in yoghurt - effects on physico-chemical, rheological and quality properties. in Journal of the Science of Food and Agriculture
Wiley, Hoboken., 98(4), 1291-1299.
https://doi.org/10.1002/jsfa.8592
Kon_3411
Miočinović J, Tomić N, Dojnov B, Tomašević I, Stojanović S, Đekić I, Vujčić Z. Application of new insoluble dietary fibres from triticale as supplement in yoghurt - effects on physico-chemical, rheological and quality properties. in Journal of the Science of Food and Agriculture. 2018;98(4):1291-1299.
doi:10.1002/jsfa.8592
Kon_3411 .
Miočinović, Jelena, Tomić, Nikola, Dojnov, Biljana, Tomašević, Igor, Stojanović, Sanja, Đekić, Ilija, Vujčić, Zoran, "Application of new insoluble dietary fibres from triticale as supplement in yoghurt - effects on physico-chemical, rheological and quality properties" in Journal of the Science of Food and Agriculture, 98, no. 4 (2018):1291-1299,
https://doi.org/10.1002/jsfa.8592 .,
Kon_3411 .
15
11
14

Application of new insoluble dietary fibres from triticale as supplement in yoghurt - effects on physico-chemical, rheological and quality properties

Miočinović, Jelena; Tomić, Nikola; Dojnov, Biljana; Tomašević, Igor; Stojanović, Sanja; Đekić, Ilija; Vujčić, Zoran

(Wiley, Hoboken, 2018)

TY  - JOUR
AU  - Miočinović, Jelena
AU  - Tomić, Nikola
AU  - Dojnov, Biljana
AU  - Tomašević, Igor
AU  - Stojanović, Sanja
AU  - Đekić, Ilija
AU  - Vujčić, Zoran
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3171
AB  - BACKGROUND: The need to increase the daily intake of dietary fibres opens a new chapter in the research of functional foods enriched with fibres. The potential application of an innovative product - insoluble dietary fibres from triticale in yoghurts - was deployed by characterising their food application and evaluating physico-chemical, rheological and sensory properties and was the aim of this research. RESULTS: Detailed characterisations of these fibres are presented for the first time and showed very good hydration properties, optimal pH ( slightly acidic), optimal chemical composition, high antioxidant capacity which was proven by phenolics contents. Besides, these fibres showed negligible calorific value, with no phytates and high antioxidant capacity, mainly from ferulic acid. Therefore they could be successfully added to yoghurt. Enrichment of yoghurt having different milk fat content (1.5 and 2.8% w/w) with triticale insoluble fibre (1.5% and 3.0% w/w) significantly influenced the syneresis level, its apparent viscosity, yield stress and thixotropic behaviour. The overall sensory quality scores indicated that yoghurt enriched with 1.5% triticale insoluble fibres was recognised as 'excellent' and had enhanced antioxidant activity. CONCLUSIONS: Insoluble triticale fibre could therefore be used as a supplement to produce functional yoghurt. (c) 2017 Society of Chemical Industry
PB  - Wiley, Hoboken
T2  - Journal of the Science of Food and Agriculture
T1  - Application of new insoluble dietary fibres from triticale as supplement in yoghurt - effects on physico-chemical, rheological and quality properties
VL  - 98
IS  - 4
SP  - 1291
EP  - 1299
DO  - 10.1002/jsfa.8592
UR  - Kon_3411
ER  - 
@article{
author = "Miočinović, Jelena and Tomić, Nikola and Dojnov, Biljana and Tomašević, Igor and Stojanović, Sanja and Đekić, Ilija and Vujčić, Zoran",
year = "2018",
abstract = "BACKGROUND: The need to increase the daily intake of dietary fibres opens a new chapter in the research of functional foods enriched with fibres. The potential application of an innovative product - insoluble dietary fibres from triticale in yoghurts - was deployed by characterising their food application and evaluating physico-chemical, rheological and sensory properties and was the aim of this research. RESULTS: Detailed characterisations of these fibres are presented for the first time and showed very good hydration properties, optimal pH ( slightly acidic), optimal chemical composition, high antioxidant capacity which was proven by phenolics contents. Besides, these fibres showed negligible calorific value, with no phytates and high antioxidant capacity, mainly from ferulic acid. Therefore they could be successfully added to yoghurt. Enrichment of yoghurt having different milk fat content (1.5 and 2.8% w/w) with triticale insoluble fibre (1.5% and 3.0% w/w) significantly influenced the syneresis level, its apparent viscosity, yield stress and thixotropic behaviour. The overall sensory quality scores indicated that yoghurt enriched with 1.5% triticale insoluble fibres was recognised as 'excellent' and had enhanced antioxidant activity. CONCLUSIONS: Insoluble triticale fibre could therefore be used as a supplement to produce functional yoghurt. (c) 2017 Society of Chemical Industry",
publisher = "Wiley, Hoboken",
journal = "Journal of the Science of Food and Agriculture",
title = "Application of new insoluble dietary fibres from triticale as supplement in yoghurt - effects on physico-chemical, rheological and quality properties",
volume = "98",
number = "4",
pages = "1291-1299",
doi = "10.1002/jsfa.8592",
url = "Kon_3411"
}
Miočinović, J., Tomić, N., Dojnov, B., Tomašević, I., Stojanović, S., Đekić, I.,& Vujčić, Z.. (2018). Application of new insoluble dietary fibres from triticale as supplement in yoghurt - effects on physico-chemical, rheological and quality properties. in Journal of the Science of Food and Agriculture
Wiley, Hoboken., 98(4), 1291-1299.
https://doi.org/10.1002/jsfa.8592
Kon_3411
Miočinović J, Tomić N, Dojnov B, Tomašević I, Stojanović S, Đekić I, Vujčić Z. Application of new insoluble dietary fibres from triticale as supplement in yoghurt - effects on physico-chemical, rheological and quality properties. in Journal of the Science of Food and Agriculture. 2018;98(4):1291-1299.
doi:10.1002/jsfa.8592
Kon_3411 .
Miočinović, Jelena, Tomić, Nikola, Dojnov, Biljana, Tomašević, Igor, Stojanović, Sanja, Đekić, Ilija, Vujčić, Zoran, "Application of new insoluble dietary fibres from triticale as supplement in yoghurt - effects on physico-chemical, rheological and quality properties" in Journal of the Science of Food and Agriculture, 98, no. 4 (2018):1291-1299,
https://doi.org/10.1002/jsfa.8592 .,
Kon_3411 .
15
11
14

Positive and negative nano-electrospray mass spectrometry of ruthenated serum albumin supported by docking studies: an integrated approach towards defining metallodrug binding sites on proteins

Nišavić, Marija; Janjić, Goran V.; Hozić, Amela; Petković, Marijana; Milčić, Miloš K.; Vujčić, Zoran; Cindrić, Mario

(Royal Soc Chemistry, Cambridge, 2018)

TY  - JOUR
AU  - Nišavić, Marija
AU  - Janjić, Goran V.
AU  - Hozić, Amela
AU  - Petković, Marijana
AU  - Milčić, Miloš K.
AU  - Vujčić, Zoran
AU  - Cindrić, Mario
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3243
AB  - Binding of three ruthenium(ii) compounds of general formula mer-[Ru(L3)(N-N)X][Y] (where L3 = 4-chloro-2,2:6,2-terpyridine (Cl-tpy); N-N = 1,2-diaminoethane (en), 1,2-diaminocyclohexane (dach) or 2,2-bipyridine (bipy); X = Cl; Y = Cl) to human serum albumin (HSA) has been investigated by nano-LC/nano-ESI MS and docking studies. A bottom-up proteomics approach has been applied for the structural characterization of metallated proteins and the data were analyzed in both the positive and negative ion mode. The negative ion mode was achieved after the post-column addition of an isopropanol solution of formaldehyde that enabled sample ionization at micro-flow rates. The negative ion mode MS has been proved to be beneficial for the analysis of binding sites on ruthenated protein in terms of ion charge reduction and consequent simplification of target sequence identification based on isotopic differences between ruthenated and non-ruthenated peptides. Moreover, the negative ion mode ESI MS shows the advantage of singly charged ion formation and, unlike MALDI MS, it does not cause complete ligand fragmentation, merging the benefits of each method into a single experiment. Six target sequences were identified for the binding of en and dach compounds, and four sequences for the binding of bipy. All compounds have been found to bind histidine and one aspartate residue. Docking studies showed that the identified sequences are the constituents of five distinct binding sites for en and dach, or two sites for the bipy complex. The selection of binding sites seems to be dependent on the chelate ligand and the form of the complex prior or after hydrolysis of the leaving chloride ligand.
PB  - Royal Soc Chemistry, Cambridge
T2  - Metallomics
T1  - Positive and negative nano-electrospray mass spectrometry of ruthenated serum albumin supported by docking studies: an integrated approach towards defining metallodrug binding sites on proteins
VL  - 10
IS  - 4
SP  - 587
EP  - 594
DO  - 10.1039/c7mt00330g
UR  - Kon_3465
ER  - 
@article{
author = "Nišavić, Marija and Janjić, Goran V. and Hozić, Amela and Petković, Marijana and Milčić, Miloš K. and Vujčić, Zoran and Cindrić, Mario",
year = "2018",
abstract = "Binding of three ruthenium(ii) compounds of general formula mer-[Ru(L3)(N-N)X][Y] (where L3 = 4-chloro-2,2:6,2-terpyridine (Cl-tpy); N-N = 1,2-diaminoethane (en), 1,2-diaminocyclohexane (dach) or 2,2-bipyridine (bipy); X = Cl; Y = Cl) to human serum albumin (HSA) has been investigated by nano-LC/nano-ESI MS and docking studies. A bottom-up proteomics approach has been applied for the structural characterization of metallated proteins and the data were analyzed in both the positive and negative ion mode. The negative ion mode was achieved after the post-column addition of an isopropanol solution of formaldehyde that enabled sample ionization at micro-flow rates. The negative ion mode MS has been proved to be beneficial for the analysis of binding sites on ruthenated protein in terms of ion charge reduction and consequent simplification of target sequence identification based on isotopic differences between ruthenated and non-ruthenated peptides. Moreover, the negative ion mode ESI MS shows the advantage of singly charged ion formation and, unlike MALDI MS, it does not cause complete ligand fragmentation, merging the benefits of each method into a single experiment. Six target sequences were identified for the binding of en and dach compounds, and four sequences for the binding of bipy. All compounds have been found to bind histidine and one aspartate residue. Docking studies showed that the identified sequences are the constituents of five distinct binding sites for en and dach, or two sites for the bipy complex. The selection of binding sites seems to be dependent on the chelate ligand and the form of the complex prior or after hydrolysis of the leaving chloride ligand.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Metallomics",
title = "Positive and negative nano-electrospray mass spectrometry of ruthenated serum albumin supported by docking studies: an integrated approach towards defining metallodrug binding sites on proteins",
volume = "10",
number = "4",
pages = "587-594",
doi = "10.1039/c7mt00330g",
url = "Kon_3465"
}
Nišavić, M., Janjić, G. V., Hozić, A., Petković, M., Milčić, M. K., Vujčić, Z.,& Cindrić, M.. (2018). Positive and negative nano-electrospray mass spectrometry of ruthenated serum albumin supported by docking studies: an integrated approach towards defining metallodrug binding sites on proteins. in Metallomics
Royal Soc Chemistry, Cambridge., 10(4), 587-594.
https://doi.org/10.1039/c7mt00330g
Kon_3465
Nišavić M, Janjić GV, Hozić A, Petković M, Milčić MK, Vujčić Z, Cindrić M. Positive and negative nano-electrospray mass spectrometry of ruthenated serum albumin supported by docking studies: an integrated approach towards defining metallodrug binding sites on proteins. in Metallomics. 2018;10(4):587-594.
doi:10.1039/c7mt00330g
Kon_3465 .
Nišavić, Marija, Janjić, Goran V., Hozić, Amela, Petković, Marijana, Milčić, Miloš K., Vujčić, Zoran, Cindrić, Mario, "Positive and negative nano-electrospray mass spectrometry of ruthenated serum albumin supported by docking studies: an integrated approach towards defining metallodrug binding sites on proteins" in Metallomics, 10, no. 4 (2018):587-594,
https://doi.org/10.1039/c7mt00330g .,
Kon_3465 .
1
11
6
8

Supplementary material for the article: Nišavić, M.; Janjić, G. V.; Hozić, A.; Petković, M.; Milčić, M. K.; Vujčić, Z.; Cindrić, M. Positive and Negative Nano-Electrospray Mass Spectrometry of Ruthenated Serum Albumin Supported by Docking Studies: An Integrated Approach towards Defining Metallodrug Binding Sites on Proteins. Metallomics 2018, 10 (4), 587–594. https://doi.org/10.1039/c7mt00330g

Nišavić, Marija; Janjić, Goran V.; Hozić, Amela; Petković, Marijana; Milčić, Miloš K.; Vujčić, Zoran; Cindrić, Mario

(Royal Soc Chemistry, Cambridge, 2018)

TY  - DATA
AU  - Nišavić, Marija
AU  - Janjić, Goran V.
AU  - Hozić, Amela
AU  - Petković, Marijana
AU  - Milčić, Miloš K.
AU  - Vujčić, Zoran
AU  - Cindrić, Mario
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3244
PB  - Royal Soc Chemistry, Cambridge
T2  - Metallomics
T1  - Supplementary material for the article: Nišavić, M.; Janjić, G. V.; Hozić, A.; Petković, M.; Milčić, M. K.; Vujčić, Z.; Cindrić, M. Positive and Negative Nano-Electrospray Mass Spectrometry of Ruthenated Serum Albumin Supported by Docking Studies: An Integrated Approach towards Defining Metallodrug Binding Sites on Proteins. Metallomics 2018, 10 (4), 587–594. https://doi.org/10.1039/c7mt00330g
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3244
ER  - 
@misc{
author = "Nišavić, Marija and Janjić, Goran V. and Hozić, Amela and Petković, Marijana and Milčić, Miloš K. and Vujčić, Zoran and Cindrić, Mario",
year = "2018",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Metallomics",
title = "Supplementary material for the article: Nišavić, M.; Janjić, G. V.; Hozić, A.; Petković, M.; Milčić, M. K.; Vujčić, Z.; Cindrić, M. Positive and Negative Nano-Electrospray Mass Spectrometry of Ruthenated Serum Albumin Supported by Docking Studies: An Integrated Approach towards Defining Metallodrug Binding Sites on Proteins. Metallomics 2018, 10 (4), 587–594. https://doi.org/10.1039/c7mt00330g",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3244"
}
Nišavić, M., Janjić, G. V., Hozić, A., Petković, M., Milčić, M. K., Vujčić, Z.,& Cindrić, M.. (2018). Supplementary material for the article: Nišavić, M.; Janjić, G. V.; Hozić, A.; Petković, M.; Milčić, M. K.; Vujčić, Z.; Cindrić, M. Positive and Negative Nano-Electrospray Mass Spectrometry of Ruthenated Serum Albumin Supported by Docking Studies: An Integrated Approach towards Defining Metallodrug Binding Sites on Proteins. Metallomics 2018, 10 (4), 587–594. https://doi.org/10.1039/c7mt00330g. in Metallomics
Royal Soc Chemistry, Cambridge..
https://hdl.handle.net/21.15107/rcub_cherry_3244
Nišavić M, Janjić GV, Hozić A, Petković M, Milčić MK, Vujčić Z, Cindrić M. Supplementary material for the article: Nišavić, M.; Janjić, G. V.; Hozić, A.; Petković, M.; Milčić, M. K.; Vujčić, Z.; Cindrić, M. Positive and Negative Nano-Electrospray Mass Spectrometry of Ruthenated Serum Albumin Supported by Docking Studies: An Integrated Approach towards Defining Metallodrug Binding Sites on Proteins. Metallomics 2018, 10 (4), 587–594. https://doi.org/10.1039/c7mt00330g. in Metallomics. 2018;.
https://hdl.handle.net/21.15107/rcub_cherry_3244 .
Nišavić, Marija, Janjić, Goran V., Hozić, Amela, Petković, Marijana, Milčić, Miloš K., Vujčić, Zoran, Cindrić, Mario, "Supplementary material for the article: Nišavić, M.; Janjić, G. V.; Hozić, A.; Petković, M.; Milčić, M. K.; Vujčić, Z.; Cindrić, M. Positive and Negative Nano-Electrospray Mass Spectrometry of Ruthenated Serum Albumin Supported by Docking Studies: An Integrated Approach towards Defining Metallodrug Binding Sites on Proteins. Metallomics 2018, 10 (4), 587–594. https://doi.org/10.1039/c7mt00330g" in Metallomics (2018),
https://hdl.handle.net/21.15107/rcub_cherry_3244 .

Phenol induced physiological stress in hydroponically grown lettuce (Lactuca sativa L.)- Part 2

Tadić, Vojin; Tadić, Jovan; Milošević, Snežana; Cingel, Aleksandar; Prodanović, Olivera; Ćosić, Tatjana; Vujčić, Zoran

(Elsevier Science Bv, Amsterdam, 2018)

TY  - JOUR
AU  - Tadić, Vojin
AU  - Tadić, Jovan
AU  - Milošević, Snežana
AU  - Cingel, Aleksandar
AU  - Prodanović, Olivera
AU  - Ćosić, Tatjana
AU  - Vujčić, Zoran
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2090
AB  - In this study we investigated physiological parameters of stress (enzymatic and non-enzymatic) in lettuce (Lactuca sativa L.) and its hairy roots induced by water solution of phenol. Two varieties of lettuce were examined, Ljubljanska ledenka and Nansen. Plants were grown in water with phenol concentration of 200 mgL(-1), during 10 days. We monitored activity of peroxidases, catalases, polyphenol oxidase and superoxide dismutase, as well as proline and chlorophyll content. We observed a decrease in peroxidases, and increase in activity of catalase, polyphenol oxidase and superoxide dismutase compared to control plants. The concentration of praline was constantly increasing in both lettuce varieties over the course of the experiment. We detected an increase in activity of all monitored enzymes, except polyphenol oxidases, in hairy roots. The hydroponic system provides a useful framework for studying the effect of different harmful substances and its elimination. In such a system, as used in this work for the study of physiological processes in antioxidant protection activated when plant was exposed to phenol, lettuce and its hairy roots can be viewed as tools for water remediation.
PB  - Elsevier Science Bv, Amsterdam
T2  - Scientia Horticulturae
T1  - Phenol induced physiological stress in hydroponically grown lettuce (Lactuca sativa L.)- Part 2
VL  - 232
SP  - 71
EP  - 83
DO  - 10.1016/j.scienta.2017.12.024
UR  - Kon_3421
ER  - 
@article{
author = "Tadić, Vojin and Tadić, Jovan and Milošević, Snežana and Cingel, Aleksandar and Prodanović, Olivera and Ćosić, Tatjana and Vujčić, Zoran",
year = "2018",
abstract = "In this study we investigated physiological parameters of stress (enzymatic and non-enzymatic) in lettuce (Lactuca sativa L.) and its hairy roots induced by water solution of phenol. Two varieties of lettuce were examined, Ljubljanska ledenka and Nansen. Plants were grown in water with phenol concentration of 200 mgL(-1), during 10 days. We monitored activity of peroxidases, catalases, polyphenol oxidase and superoxide dismutase, as well as proline and chlorophyll content. We observed a decrease in peroxidases, and increase in activity of catalase, polyphenol oxidase and superoxide dismutase compared to control plants. The concentration of praline was constantly increasing in both lettuce varieties over the course of the experiment. We detected an increase in activity of all monitored enzymes, except polyphenol oxidases, in hairy roots. The hydroponic system provides a useful framework for studying the effect of different harmful substances and its elimination. In such a system, as used in this work for the study of physiological processes in antioxidant protection activated when plant was exposed to phenol, lettuce and its hairy roots can be viewed as tools for water remediation.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Scientia Horticulturae",
title = "Phenol induced physiological stress in hydroponically grown lettuce (Lactuca sativa L.)- Part 2",
volume = "232",
pages = "71-83",
doi = "10.1016/j.scienta.2017.12.024",
url = "Kon_3421"
}
Tadić, V., Tadić, J., Milošević, S., Cingel, A., Prodanović, O., Ćosić, T.,& Vujčić, Z.. (2018). Phenol induced physiological stress in hydroponically grown lettuce (Lactuca sativa L.)- Part 2. in Scientia Horticulturae
Elsevier Science Bv, Amsterdam., 232, 71-83.
https://doi.org/10.1016/j.scienta.2017.12.024
Kon_3421
Tadić V, Tadić J, Milošević S, Cingel A, Prodanović O, Ćosić T, Vujčić Z. Phenol induced physiological stress in hydroponically grown lettuce (Lactuca sativa L.)- Part 2. in Scientia Horticulturae. 2018;232:71-83.
doi:10.1016/j.scienta.2017.12.024
Kon_3421 .
Tadić, Vojin, Tadić, Jovan, Milošević, Snežana, Cingel, Aleksandar, Prodanović, Olivera, Ćosić, Tatjana, Vujčić, Zoran, "Phenol induced physiological stress in hydroponically grown lettuce (Lactuca sativa L.)- Part 2" in Scientia Horticulturae, 232 (2018):71-83,
https://doi.org/10.1016/j.scienta.2017.12.024 .,
Kon_3421 .

Positive and negative nano-electrospray mass spectrometry of ruthenated serum albumin supported by docking studies: an integrated approach towards defining metallodrug binding sites on proteins

Nišavić, Marija; Janjić, Goran V.; Hozić, Amela; Petković, Marijana; Milčić, Miloš K.; Vujčić, Zoran; Cindrić, Mario

(Royal Soc Chemistry, Cambridge, 2018)

TY  - JOUR
AU  - Nišavić, Marija
AU  - Janjić, Goran V.
AU  - Hozić, Amela
AU  - Petković, Marijana
AU  - Milčić, Miloš K.
AU  - Vujčić, Zoran
AU  - Cindrić, Mario
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2134
AB  - Binding of three ruthenium(ii) compounds of general formula mer-[Ru(L3)(N-N)X][Y] (where L3 = 4-chloro-2,2:6,2-terpyridine (Cl-tpy); N-N = 1,2-diaminoethane (en), 1,2-diaminocyclohexane (dach) or 2,2-bipyridine (bipy); X = Cl; Y = Cl) to human serum albumin (HSA) has been investigated by nano-LC/nano-ESI MS and docking studies. A bottom-up proteomics approach has been applied for the structural characterization of metallated proteins and the data were analyzed in both the positive and negative ion mode. The negative ion mode was achieved after the post-column addition of an isopropanol solution of formaldehyde that enabled sample ionization at micro-flow rates. The negative ion mode MS has been proved to be beneficial for the analysis of binding sites on ruthenated protein in terms of ion charge reduction and consequent simplification of target sequence identification based on isotopic differences between ruthenated and non-ruthenated peptides. Moreover, the negative ion mode ESI MS shows the advantage of singly charged ion formation and, unlike MALDI MS, it does not cause complete ligand fragmentation, merging the benefits of each method into a single experiment. Six target sequences were identified for the binding of en and dach compounds, and four sequences for the binding of bipy. All compounds have been found to bind histidine and one aspartate residue. Docking studies showed that the identified sequences are the constituents of five distinct binding sites for en and dach, or two sites for the bipy complex. The selection of binding sites seems to be dependent on the chelate ligand and the form of the complex prior or after hydrolysis of the leaving chloride ligand.
PB  - Royal Soc Chemistry, Cambridge
T2  - Metallomics
T1  - Positive and negative nano-electrospray mass spectrometry of ruthenated serum albumin supported by docking studies: an integrated approach towards defining metallodrug binding sites on proteins
VL  - 10
IS  - 4
SP  - 587
EP  - 594
DO  - 10.1039/c7mt00330g
UR  - Kon_3465
ER  - 
@article{
author = "Nišavić, Marija and Janjić, Goran V. and Hozić, Amela and Petković, Marijana and Milčić, Miloš K. and Vujčić, Zoran and Cindrić, Mario",
year = "2018",
abstract = "Binding of three ruthenium(ii) compounds of general formula mer-[Ru(L3)(N-N)X][Y] (where L3 = 4-chloro-2,2:6,2-terpyridine (Cl-tpy); N-N = 1,2-diaminoethane (en), 1,2-diaminocyclohexane (dach) or 2,2-bipyridine (bipy); X = Cl; Y = Cl) to human serum albumin (HSA) has been investigated by nano-LC/nano-ESI MS and docking studies. A bottom-up proteomics approach has been applied for the structural characterization of metallated proteins and the data were analyzed in both the positive and negative ion mode. The negative ion mode was achieved after the post-column addition of an isopropanol solution of formaldehyde that enabled sample ionization at micro-flow rates. The negative ion mode MS has been proved to be beneficial for the analysis of binding sites on ruthenated protein in terms of ion charge reduction and consequent simplification of target sequence identification based on isotopic differences between ruthenated and non-ruthenated peptides. Moreover, the negative ion mode ESI MS shows the advantage of singly charged ion formation and, unlike MALDI MS, it does not cause complete ligand fragmentation, merging the benefits of each method into a single experiment. Six target sequences were identified for the binding of en and dach compounds, and four sequences for the binding of bipy. All compounds have been found to bind histidine and one aspartate residue. Docking studies showed that the identified sequences are the constituents of five distinct binding sites for en and dach, or two sites for the bipy complex. The selection of binding sites seems to be dependent on the chelate ligand and the form of the complex prior or after hydrolysis of the leaving chloride ligand.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Metallomics",
title = "Positive and negative nano-electrospray mass spectrometry of ruthenated serum albumin supported by docking studies: an integrated approach towards defining metallodrug binding sites on proteins",
volume = "10",
number = "4",
pages = "587-594",
doi = "10.1039/c7mt00330g",
url = "Kon_3465"
}
Nišavić, M., Janjić, G. V., Hozić, A., Petković, M., Milčić, M. K., Vujčić, Z.,& Cindrić, M.. (2018). Positive and negative nano-electrospray mass spectrometry of ruthenated serum albumin supported by docking studies: an integrated approach towards defining metallodrug binding sites on proteins. in Metallomics
Royal Soc Chemistry, Cambridge., 10(4), 587-594.
https://doi.org/10.1039/c7mt00330g
Kon_3465
Nišavić M, Janjić GV, Hozić A, Petković M, Milčić MK, Vujčić Z, Cindrić M. Positive and negative nano-electrospray mass spectrometry of ruthenated serum albumin supported by docking studies: an integrated approach towards defining metallodrug binding sites on proteins. in Metallomics. 2018;10(4):587-594.
doi:10.1039/c7mt00330g
Kon_3465 .
Nišavić, Marija, Janjić, Goran V., Hozić, Amela, Petković, Marijana, Milčić, Miloš K., Vujčić, Zoran, Cindrić, Mario, "Positive and negative nano-electrospray mass spectrometry of ruthenated serum albumin supported by docking studies: an integrated approach towards defining metallodrug binding sites on proteins" in Metallomics, 10, no. 4 (2018):587-594,
https://doi.org/10.1039/c7mt00330g .,
Kon_3465 .
1
11
6
8

Phenol removal from solution using different varieties of lettuce (Lactuca sativa L.) - Part 1

Tadić, Vojin; Petric, Marija; Uzelac, Branka; Milošević, Snežana; Vujčić, Zoran; Stevanovic, Jasmina; Tadić, Jovan

(Elsevier Science Bv, Amsterdam, 2018)

TY  - JOUR
AU  - Tadić, Vojin
AU  - Petric, Marija
AU  - Uzelac, Branka
AU  - Milošević, Snežana
AU  - Vujčić, Zoran
AU  - Stevanovic, Jasmina
AU  - Tadić, Jovan
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2106
AB  - We investigated the removal of phenol from water solutions (200 mg L-1) using two varieties of lettuce (Lactuca sativa L) and their hairy roots. Experiments were done in a hydroponic system where adult plants were grown in phenol solutions for 10 days. The solution was refreshed every two days in order to maintain the constant concentration of phenol. Hairy roots were also cultivated in a solution containing phenol at concentrations varying from 25 to 125 mg L-1 in order to determine the maximum concentration of phenol that can be removed by hairy roots. Both varieties of lettuce reduced the concentration of phenol below the detection limit after six days at the initial phenol concentration of 200 mg L-1. Transformed roots completely removed phenol at the initial concentrations of 100 mg L-1, but were not able to remove phenol at constant concentration above 25 mg L-1. Lettuce plants and hairy roots are excellent candidates for the process of phenol removal from wastewaters. This plant is good choice for bioremediation of water and represents a potentially efficient and inexpensive system for water purification. The performance of lettuce plants and hairy roots to remove phenol from water solutions under real conditions, depleted nutrients or presence of other compounds should be examined further.
PB  - Elsevier Science Bv, Amsterdam
T2  - Scientia Horticulturae
T1  - Phenol removal from solution using different varieties of lettuce (Lactuca sativa L.) - Part 1
VL  - 231
SP  - 210
EP  - 218
DO  - 10.1016/j.scienta.2017.12.025
UR  - Kon_3437
ER  - 
@article{
author = "Tadić, Vojin and Petric, Marija and Uzelac, Branka and Milošević, Snežana and Vujčić, Zoran and Stevanovic, Jasmina and Tadić, Jovan",
year = "2018",
abstract = "We investigated the removal of phenol from water solutions (200 mg L-1) using two varieties of lettuce (Lactuca sativa L) and their hairy roots. Experiments were done in a hydroponic system where adult plants were grown in phenol solutions for 10 days. The solution was refreshed every two days in order to maintain the constant concentration of phenol. Hairy roots were also cultivated in a solution containing phenol at concentrations varying from 25 to 125 mg L-1 in order to determine the maximum concentration of phenol that can be removed by hairy roots. Both varieties of lettuce reduced the concentration of phenol below the detection limit after six days at the initial phenol concentration of 200 mg L-1. Transformed roots completely removed phenol at the initial concentrations of 100 mg L-1, but were not able to remove phenol at constant concentration above 25 mg L-1. Lettuce plants and hairy roots are excellent candidates for the process of phenol removal from wastewaters. This plant is good choice for bioremediation of water and represents a potentially efficient and inexpensive system for water purification. The performance of lettuce plants and hairy roots to remove phenol from water solutions under real conditions, depleted nutrients or presence of other compounds should be examined further.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Scientia Horticulturae",
title = "Phenol removal from solution using different varieties of lettuce (Lactuca sativa L.) - Part 1",
volume = "231",
pages = "210-218",
doi = "10.1016/j.scienta.2017.12.025",
url = "Kon_3437"
}
Tadić, V., Petric, M., Uzelac, B., Milošević, S., Vujčić, Z., Stevanovic, J.,& Tadić, J.. (2018). Phenol removal from solution using different varieties of lettuce (Lactuca sativa L.) - Part 1. in Scientia Horticulturae
Elsevier Science Bv, Amsterdam., 231, 210-218.
https://doi.org/10.1016/j.scienta.2017.12.025
Kon_3437
Tadić V, Petric M, Uzelac B, Milošević S, Vujčić Z, Stevanovic J, Tadić J. Phenol removal from solution using different varieties of lettuce (Lactuca sativa L.) - Part 1. in Scientia Horticulturae. 2018;231:210-218.
doi:10.1016/j.scienta.2017.12.025
Kon_3437 .
Tadić, Vojin, Petric, Marija, Uzelac, Branka, Milošević, Snežana, Vujčić, Zoran, Stevanovic, Jasmina, Tadić, Jovan, "Phenol removal from solution using different varieties of lettuce (Lactuca sativa L.) - Part 1" in Scientia Horticulturae, 231 (2018):210-218,
https://doi.org/10.1016/j.scienta.2017.12.025 .,
Kon_3437 .
3
2
2

Acidic horseradish peroxidase activity abolishes genotoxicity of common dyes

Janović, Barbara; Collins, Andrew R.; Vujčić, Zoran; Vujčić, Miroslava

(Elsevier Science Bv, Amsterdam, 2017)

TY  - JOUR
AU  - Janović, Barbara
AU  - Collins, Andrew R.
AU  - Vujčić, Zoran
AU  - Vujčić, Miroslava
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2356
AB  - The aim of this study was to investigate the impact of dyes on DNA before and after enzymatic decolorization by acidic horseradish peroxidase (HRP-A). The comet assay is easy and feasible method widely used to measure DNA damage and repair. The medium-throughput comet assay was employed for assessment of genotoxic effects of 8 dyes in BEAS-2B cells. We have incorporated a digestion with bacterial endonuclease (formamidopyrimidine DNA glycosylase, FPG) to detect oxidized bases in the case of single and double azo dyes, Orange II (OR2) and Amido Black 10B (AB), respectively. This allowed detection 8-oxo7,8-dihydroguanine, one of most abundant oxidized bases in nuclear DNA. In the case of AB there was no indication of DNA damage, either strand brakes or FPG-sensitive sites before and after decolorization. The OR2 induced DNA damage (in terms of percentage of DNA in comet tails). Also, the frequency of FPG-sensitive sites increased with OR2 concentration. After decolorization no DNA damaging effects was seen at all. The interaction studies of OR2 and AB, before and after decolorization, with calf thymus DNA has been investigated by absorption and fluorescence spectroscopy. The results provide support for the idea that in some cases enzymatic decolorization contributes to lower genotoxicity potential. (C) 2016 Elsevier B.V. All rights reserved.
PB  - Elsevier Science Bv, Amsterdam
T2  - Journal of Hazardous Materials
T1  - Acidic horseradish peroxidase activity abolishes genotoxicity of common dyes
VL  - 321
SP  - 576
EP  - 585
DO  - 10.1016/j.jhazmat.2016.09.037
UR  - Kon_3172
ER  - 
@article{
author = "Janović, Barbara and Collins, Andrew R. and Vujčić, Zoran and Vujčić, Miroslava",
year = "2017",
abstract = "The aim of this study was to investigate the impact of dyes on DNA before and after enzymatic decolorization by acidic horseradish peroxidase (HRP-A). The comet assay is easy and feasible method widely used to measure DNA damage and repair. The medium-throughput comet assay was employed for assessment of genotoxic effects of 8 dyes in BEAS-2B cells. We have incorporated a digestion with bacterial endonuclease (formamidopyrimidine DNA glycosylase, FPG) to detect oxidized bases in the case of single and double azo dyes, Orange II (OR2) and Amido Black 10B (AB), respectively. This allowed detection 8-oxo7,8-dihydroguanine, one of most abundant oxidized bases in nuclear DNA. In the case of AB there was no indication of DNA damage, either strand brakes or FPG-sensitive sites before and after decolorization. The OR2 induced DNA damage (in terms of percentage of DNA in comet tails). Also, the frequency of FPG-sensitive sites increased with OR2 concentration. After decolorization no DNA damaging effects was seen at all. The interaction studies of OR2 and AB, before and after decolorization, with calf thymus DNA has been investigated by absorption and fluorescence spectroscopy. The results provide support for the idea that in some cases enzymatic decolorization contributes to lower genotoxicity potential. (C) 2016 Elsevier B.V. All rights reserved.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Journal of Hazardous Materials",
title = "Acidic horseradish peroxidase activity abolishes genotoxicity of common dyes",
volume = "321",
pages = "576-585",
doi = "10.1016/j.jhazmat.2016.09.037",
url = "Kon_3172"
}
Janović, B., Collins, A. R., Vujčić, Z.,& Vujčić, M.. (2017). Acidic horseradish peroxidase activity abolishes genotoxicity of common dyes. in Journal of Hazardous Materials
Elsevier Science Bv, Amsterdam., 321, 576-585.
https://doi.org/10.1016/j.jhazmat.2016.09.037
Kon_3172
Janović B, Collins AR, Vujčić Z, Vujčić M. Acidic horseradish peroxidase activity abolishes genotoxicity of common dyes. in Journal of Hazardous Materials. 2017;321:576-585.
doi:10.1016/j.jhazmat.2016.09.037
Kon_3172 .
Janović, Barbara, Collins, Andrew R., Vujčić, Zoran, Vujčić, Miroslava, "Acidic horseradish peroxidase activity abolishes genotoxicity of common dyes" in Journal of Hazardous Materials, 321 (2017):576-585,
https://doi.org/10.1016/j.jhazmat.2016.09.037 .,
Kon_3172 .
6
5
6

Tailor-made biocatalysts based on scarcely studied acidic horseradish peroxidase for biodegradation of reactive dyes

Janović, Barbara; Vicovac, Milica Lj. Micic; Vujčić, Zoran; Vujčić, Miroslava

(Springer Heidelberg, Heidelberg, 2017)

TY  - JOUR
AU  - Janović, Barbara
AU  - Vicovac, Milica Lj. Micic
AU  - Vujčić, Zoran
AU  - Vujčić, Miroslava
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2435
AB  - Peroxidases (EC 1.11.1.7) have enormous biotechnological applications. Usage of more abundant, basic isoforms of peroxidases in diagnostic kits and/or in immunochemistry has led to under exploitation and disregard of horseradish peroxidase (HRP) acidic isoforms. Therefore, acidic horseradish peroxidase (HRP-A) isoenzymewas used for the preparation of a biocatalyst with improved ability in dye decolorization. Ten biocatalysts were prepared by covalent binding of enzyme to chitosan and alginate, adsorption followed by cross-linking on inorganic support (aluminum oxide), and encapsulation in spherical calcium alginate beads via polyethylene glycol. Model dyes of 50 to 175 mg l(-1) were removed by the biocatalysts. Among the tested biocatalysts, the three with the highest specific activity and biodegradation rate were further studied (Chitosan-HRP, Al-GelHRP and Al-HRP-Gel). The impact of hydrogen peroxide concentration on dye decolorization was examined on the Chitosan-HRP biocatalyst, since the HRP is susceptible to inhibition/inactivation by high H2O2. On the other hand, H2O2 is needed as a co-substrate for the HRP, and the H2O2/dye ratio can greatly influence decolorization efficiency. Concentrations of H2O2 ranging from 0.22 to 4.4 mM showed no difference in terms of impact on the biocatalyst decolorization efficiency. The high decolorization efficiency of the biocatalysts was validated by the removal of 25 and 100 mg l(-1) anthraquinone (Remazol Brilliant Blue R (RBBR)), triphenylmethane (Coomassie Brilliant Blue CBB)), acridine (Acridine Orange (AO)), and formazan metal complex dye (Reactive Blue 52 (RB52)). After the seven consecutive decolorization cycles, the decolorization was still 53, 78, and 67% of the initial dye for the Al-HRP-Gel, Al-Gel-HRP, and Chitosan-HRP immobilizate, respectively. The results obtained showed potential of otherwise neglected acidic HRP isoforms as a cost-effective biocatalyst with significant potential in wastewater dyestuff treatment.
PB  - Springer Heidelberg, Heidelberg
T2  - Environmental Science and Pollution Research
T1  - Tailor-made biocatalysts based on scarcely studied acidic horseradish peroxidase for biodegradation of reactive dyes
VL  - 24
IS  - 4
SP  - 3923
EP  - 3933
DO  - 10.1007/s11356-016-8100-4
UR  - Kon_3251
ER  - 
@article{
author = "Janović, Barbara and Vicovac, Milica Lj. Micic and Vujčić, Zoran and Vujčić, Miroslava",
year = "2017",
abstract = "Peroxidases (EC 1.11.1.7) have enormous biotechnological applications. Usage of more abundant, basic isoforms of peroxidases in diagnostic kits and/or in immunochemistry has led to under exploitation and disregard of horseradish peroxidase (HRP) acidic isoforms. Therefore, acidic horseradish peroxidase (HRP-A) isoenzymewas used for the preparation of a biocatalyst with improved ability in dye decolorization. Ten biocatalysts were prepared by covalent binding of enzyme to chitosan and alginate, adsorption followed by cross-linking on inorganic support (aluminum oxide), and encapsulation in spherical calcium alginate beads via polyethylene glycol. Model dyes of 50 to 175 mg l(-1) were removed by the biocatalysts. Among the tested biocatalysts, the three with the highest specific activity and biodegradation rate were further studied (Chitosan-HRP, Al-GelHRP and Al-HRP-Gel). The impact of hydrogen peroxide concentration on dye decolorization was examined on the Chitosan-HRP biocatalyst, since the HRP is susceptible to inhibition/inactivation by high H2O2. On the other hand, H2O2 is needed as a co-substrate for the HRP, and the H2O2/dye ratio can greatly influence decolorization efficiency. Concentrations of H2O2 ranging from 0.22 to 4.4 mM showed no difference in terms of impact on the biocatalyst decolorization efficiency. The high decolorization efficiency of the biocatalysts was validated by the removal of 25 and 100 mg l(-1) anthraquinone (Remazol Brilliant Blue R (RBBR)), triphenylmethane (Coomassie Brilliant Blue CBB)), acridine (Acridine Orange (AO)), and formazan metal complex dye (Reactive Blue 52 (RB52)). After the seven consecutive decolorization cycles, the decolorization was still 53, 78, and 67% of the initial dye for the Al-HRP-Gel, Al-Gel-HRP, and Chitosan-HRP immobilizate, respectively. The results obtained showed potential of otherwise neglected acidic HRP isoforms as a cost-effective biocatalyst with significant potential in wastewater dyestuff treatment.",
publisher = "Springer Heidelberg, Heidelberg",
journal = "Environmental Science and Pollution Research",
title = "Tailor-made biocatalysts based on scarcely studied acidic horseradish peroxidase for biodegradation of reactive dyes",
volume = "24",
number = "4",
pages = "3923-3933",
doi = "10.1007/s11356-016-8100-4",
url = "Kon_3251"
}
Janović, B., Vicovac, M. Lj. M., Vujčić, Z.,& Vujčić, M.. (2017). Tailor-made biocatalysts based on scarcely studied acidic horseradish peroxidase for biodegradation of reactive dyes. in Environmental Science and Pollution Research
Springer Heidelberg, Heidelberg., 24(4), 3923-3933.
https://doi.org/10.1007/s11356-016-8100-4
Kon_3251
Janović B, Vicovac MLM, Vujčić Z, Vujčić M. Tailor-made biocatalysts based on scarcely studied acidic horseradish peroxidase for biodegradation of reactive dyes. in Environmental Science and Pollution Research. 2017;24(4):3923-3933.
doi:10.1007/s11356-016-8100-4
Kon_3251 .
Janović, Barbara, Vicovac, Milica Lj. Micic, Vujčić, Zoran, Vujčić, Miroslava, "Tailor-made biocatalysts based on scarcely studied acidic horseradish peroxidase for biodegradation of reactive dyes" in Environmental Science and Pollution Research, 24, no. 4 (2017):3923-3933,
https://doi.org/10.1007/s11356-016-8100-4 .,
Kon_3251 .
9
7
9

Acidic horseradish peroxidase activity abolishes genotoxicity of common dyes

Janović, Barbara; Collins, Andrew R.; Vujčić, Zoran; Vujčić, Miroslava

(Elsevier Science Bv, Amsterdam, 2017)

TY  - JOUR
AU  - Janović, Barbara
AU  - Collins, Andrew R.
AU  - Vujčić, Zoran
AU  - Vujčić, Miroslava
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3189
AB  - The aim of this study was to investigate the impact of dyes on DNA before and after enzymatic decolorization by acidic horseradish peroxidase (HRP-A). The comet assay is easy and feasible method widely used to measure DNA damage and repair. The medium-throughput comet assay was employed for assessment of genotoxic effects of 8 dyes in BEAS-2B cells. We have incorporated a digestion with bacterial endonuclease (formamidopyrimidine DNA glycosylase, FPG) to detect oxidized bases in the case of single and double azo dyes, Orange II (OR2) and Amido Black 10B (AB), respectively. This allowed detection 8-oxo7,8-dihydroguanine, one of most abundant oxidized bases in nuclear DNA. In the case of AB there was no indication of DNA damage, either strand brakes or FPG-sensitive sites before and after decolorization. The OR2 induced DNA damage (in terms of percentage of DNA in comet tails). Also, the frequency of FPG-sensitive sites increased with OR2 concentration. After decolorization no DNA damaging effects was seen at all. The interaction studies of OR2 and AB, before and after decolorization, with calf thymus DNA has been investigated by absorption and fluorescence spectroscopy. The results provide support for the idea that in some cases enzymatic decolorization contributes to lower genotoxicity potential. (C) 2016 Elsevier B.V. All rights reserved.
PB  - Elsevier Science Bv, Amsterdam
T2  - Journal of Hazardous Materials
T1  - Acidic horseradish peroxidase activity abolishes genotoxicity of common dyes
VL  - 321
SP  - 576
EP  - 585
DO  - 10.1016/j.jhazmat.2016.09.037
ER  - 
@article{
author = "Janović, Barbara and Collins, Andrew R. and Vujčić, Zoran and Vujčić, Miroslava",
year = "2017",
abstract = "The aim of this study was to investigate the impact of dyes on DNA before and after enzymatic decolorization by acidic horseradish peroxidase (HRP-A). The comet assay is easy and feasible method widely used to measure DNA damage and repair. The medium-throughput comet assay was employed for assessment of genotoxic effects of 8 dyes in BEAS-2B cells. We have incorporated a digestion with bacterial endonuclease (formamidopyrimidine DNA glycosylase, FPG) to detect oxidized bases in the case of single and double azo dyes, Orange II (OR2) and Amido Black 10B (AB), respectively. This allowed detection 8-oxo7,8-dihydroguanine, one of most abundant oxidized bases in nuclear DNA. In the case of AB there was no indication of DNA damage, either strand brakes or FPG-sensitive sites before and after decolorization. The OR2 induced DNA damage (in terms of percentage of DNA in comet tails). Also, the frequency of FPG-sensitive sites increased with OR2 concentration. After decolorization no DNA damaging effects was seen at all. The interaction studies of OR2 and AB, before and after decolorization, with calf thymus DNA has been investigated by absorption and fluorescence spectroscopy. The results provide support for the idea that in some cases enzymatic decolorization contributes to lower genotoxicity potential. (C) 2016 Elsevier B.V. All rights reserved.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Journal of Hazardous Materials",
title = "Acidic horseradish peroxidase activity abolishes genotoxicity of common dyes",
volume = "321",
pages = "576-585",
doi = "10.1016/j.jhazmat.2016.09.037"
}
Janović, B., Collins, A. R., Vujčić, Z.,& Vujčić, M.. (2017). Acidic horseradish peroxidase activity abolishes genotoxicity of common dyes. in Journal of Hazardous Materials
Elsevier Science Bv, Amsterdam., 321, 576-585.
https://doi.org/10.1016/j.jhazmat.2016.09.037
Janović B, Collins AR, Vujčić Z, Vujčić M. Acidic horseradish peroxidase activity abolishes genotoxicity of common dyes. in Journal of Hazardous Materials. 2017;321:576-585.
doi:10.1016/j.jhazmat.2016.09.037 .
Janović, Barbara, Collins, Andrew R., Vujčić, Zoran, Vujčić, Miroslava, "Acidic horseradish peroxidase activity abolishes genotoxicity of common dyes" in Journal of Hazardous Materials, 321 (2017):576-585,
https://doi.org/10.1016/j.jhazmat.2016.09.037 . .
6
5
5

Supplementary material for the article: Janović, B. S.; Collins, A. R.; Vujčić, Z. M.; Vujčić, M. T. Acidic Horseradish Peroxidase Activity Abolishes Genotoxicity of Common Dyes. Journal of Hazardous Materials 2017, 321, 576–585. https://doi.org/10.1016/j.jhazmat.2016.09.037

Janović, Barbara; Collins, Andrew R.; Vujčić, Zoran; Vujčić, Miroslava

(Elsevier Science Bv, Amsterdam, 2017)

TY  - DATA
AU  - Janović, Barbara
AU  - Collins, Andrew R.
AU  - Vujčić, Zoran
AU  - Vujčić, Miroslava
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3190
PB  - Elsevier Science Bv, Amsterdam
T2  - Journal of Hazardous Materials
T1  - Supplementary material for the article:           Janović, B. S.; Collins, A. R.; Vujčić, Z. M.; Vujčić, M. T. Acidic Horseradish Peroxidase Activity Abolishes Genotoxicity of Common Dyes. Journal of Hazardous Materials 2017, 321, 576–585. https://doi.org/10.1016/j.jhazmat.2016.09.037
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3190
ER  - 
@misc{
author = "Janović, Barbara and Collins, Andrew R. and Vujčić, Zoran and Vujčić, Miroslava",
year = "2017",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Journal of Hazardous Materials",
title = "Supplementary material for the article:           Janović, B. S.; Collins, A. R.; Vujčić, Z. M.; Vujčić, M. T. Acidic Horseradish Peroxidase Activity Abolishes Genotoxicity of Common Dyes. Journal of Hazardous Materials 2017, 321, 576–585. https://doi.org/10.1016/j.jhazmat.2016.09.037",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3190"
}
Janović, B., Collins, A. R., Vujčić, Z.,& Vujčić, M.. (2017). Supplementary material for the article:           Janović, B. S.; Collins, A. R.; Vujčić, Z. M.; Vujčić, M. T. Acidic Horseradish Peroxidase Activity Abolishes Genotoxicity of Common Dyes. Journal of Hazardous Materials 2017, 321, 576–585. https://doi.org/10.1016/j.jhazmat.2016.09.037. in Journal of Hazardous Materials
Elsevier Science Bv, Amsterdam..
https://hdl.handle.net/21.15107/rcub_cherry_3190
Janović B, Collins AR, Vujčić Z, Vujčić M. Supplementary material for the article:           Janović, B. S.; Collins, A. R.; Vujčić, Z. M.; Vujčić, M. T. Acidic Horseradish Peroxidase Activity Abolishes Genotoxicity of Common Dyes. Journal of Hazardous Materials 2017, 321, 576–585. https://doi.org/10.1016/j.jhazmat.2016.09.037. in Journal of Hazardous Materials. 2017;.
https://hdl.handle.net/21.15107/rcub_cherry_3190 .
Janović, Barbara, Collins, Andrew R., Vujčić, Zoran, Vujčić, Miroslava, "Supplementary material for the article:           Janović, B. S.; Collins, A. R.; Vujčić, Z. M.; Vujčić, M. T. Acidic Horseradish Peroxidase Activity Abolishes Genotoxicity of Common Dyes. Journal of Hazardous Materials 2017, 321, 576–585. https://doi.org/10.1016/j.jhazmat.2016.09.037" in Journal of Hazardous Materials (2017),
https://hdl.handle.net/21.15107/rcub_cherry_3190 .

Enrichment of yoghurt with insoluble dietary fiber from triticale - A sensory perspective

Tomić, Nikola; Dojnov, Biljana; Miočinović, Jelena; Tomašević, Igor; Smigić, Nada; Đekić, Ilija; Vujčić, Zoran

(Elsevier Science Bv, Amsterdam, 2017)

TY  - JOUR
AU  - Tomić, Nikola
AU  - Dojnov, Biljana
AU  - Miočinović, Jelena
AU  - Tomašević, Igor
AU  - Smigić, Nada
AU  - Đekić, Ilija
AU  - Vujčić, Zoran
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2451
AB  - Fortification of fermented dairy products with insoluble dietary fiber is an interesting way to increase consumers' fiber intake. The objective of this study was to evaluate the sensory characteristics and consumer acceptance of low-fat unsweetened yoghurt, fortified at levels of 15 and 30 g/kg, with insoluble triticale, wheat or oat fibers. The addition of insoluble triticale fiber resulted in yellowish-brown color, grainy flavor, and pronounced sandiness/grittiness of the fortified yoghurts. The products were classified into the 'very good' quality category, despite the lower quality scores given to the 30 g/kg fiber fortified yoghurts, caused primarily by a gritty/sandy texture and some bitterness. Three distinct consumer subgroups were revealed by the clustering analysis, one of which showed a preference for the triticale-yoghurts. Insoluble dietary fiber from triticale showed promising potential to be used as a fortifying ingredient in the production of fiber-enriched fermented dairy products such as yoghurt.
PB  - Elsevier Science Bv, Amsterdam
T2  - LWT -food Science and Technology ( Lebensmittel - Wissenschaft und Technologie)
T1  - Enrichment of yoghurt with insoluble dietary fiber from triticale - A sensory perspective
VL  - 80
SP  - 59
EP  - 66
DO  - 10.1016/j.lwt.2017.02.008
UR  - Kon_3267
ER  - 
@article{
author = "Tomić, Nikola and Dojnov, Biljana and Miočinović, Jelena and Tomašević, Igor and Smigić, Nada and Đekić, Ilija and Vujčić, Zoran",
year = "2017",
abstract = "Fortification of fermented dairy products with insoluble dietary fiber is an interesting way to increase consumers' fiber intake. The objective of this study was to evaluate the sensory characteristics and consumer acceptance of low-fat unsweetened yoghurt, fortified at levels of 15 and 30 g/kg, with insoluble triticale, wheat or oat fibers. The addition of insoluble triticale fiber resulted in yellowish-brown color, grainy flavor, and pronounced sandiness/grittiness of the fortified yoghurts. The products were classified into the 'very good' quality category, despite the lower quality scores given to the 30 g/kg fiber fortified yoghurts, caused primarily by a gritty/sandy texture and some bitterness. Three distinct consumer subgroups were revealed by the clustering analysis, one of which showed a preference for the triticale-yoghurts. Insoluble dietary fiber from triticale showed promising potential to be used as a fortifying ingredient in the production of fiber-enriched fermented dairy products such as yoghurt.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "LWT -food Science and Technology ( Lebensmittel - Wissenschaft und Technologie)",
title = "Enrichment of yoghurt with insoluble dietary fiber from triticale - A sensory perspective",
volume = "80",
pages = "59-66",
doi = "10.1016/j.lwt.2017.02.008",
url = "Kon_3267"
}
Tomić, N., Dojnov, B., Miočinović, J., Tomašević, I., Smigić, N., Đekić, I.,& Vujčić, Z.. (2017). Enrichment of yoghurt with insoluble dietary fiber from triticale - A sensory perspective. in LWT -food Science and Technology ( Lebensmittel - Wissenschaft und Technologie)
Elsevier Science Bv, Amsterdam., 80, 59-66.
https://doi.org/10.1016/j.lwt.2017.02.008
Kon_3267
Tomić N, Dojnov B, Miočinović J, Tomašević I, Smigić N, Đekić I, Vujčić Z. Enrichment of yoghurt with insoluble dietary fiber from triticale - A sensory perspective. in LWT -food Science and Technology ( Lebensmittel - Wissenschaft und Technologie). 2017;80:59-66.
doi:10.1016/j.lwt.2017.02.008
Kon_3267 .
Tomić, Nikola, Dojnov, Biljana, Miočinović, Jelena, Tomašević, Igor, Smigić, Nada, Đekić, Ilija, Vujčić, Zoran, "Enrichment of yoghurt with insoluble dietary fiber from triticale - A sensory perspective" in LWT -food Science and Technology ( Lebensmittel - Wissenschaft und Technologie), 80 (2017):59-66,
https://doi.org/10.1016/j.lwt.2017.02.008 .,
Kon_3267 .
34
24
31