Veličković, Zlate S.

Link to this page

Authority KeyName Variants
ffd2a645-1109-4334-8b40-44b72c7a2ea4
  • Veličković, Zlate S. (2)
Projects

Author's Bibliography

Bio-membrane based on modified cellulose, lignin, and tannic acid for cation and oxyanion removal: Experimental and theoretical study

Perendija, Jovana; Veličković, Zlate S.; Cvijetić, Ilija; Lević, Steva M.; Marinković, Aleksandar; Milošević, Milena D.; Onjia, Antonije

(Elsevier, 2021)

TY  - JOUR
AU  - Perendija, Jovana
AU  - Veličković, Zlate S.
AU  - Cvijetić, Ilija
AU  - Lević, Steva M.
AU  - Marinković, Aleksandar
AU  - Milošević, Milena D.
AU  - Onjia, Antonije
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4770
AB  - Two optimized methods, based on epoxy-amino reactivity of the Cellulose fibres (Cell) modified with diethylenetriamine (Cell‒DETA), (3-Glycidyloxypropyl)trimethoxysilane (Cell-Glymo), Lignin modified with epichlorohydrine (EL) and Tannic acid (TA), as an additional crosslinker, were developed for the production of the bio-renewable Cell-EL and Cell-EL-TA membranes. The influences of pH, contact time, adsorbent dose, and temperature on adsorption performances were studied by batch adsorption tests. The calculated capacities: 53.9, 99.9, 97.8 and 63.5, 115.8, 127.5 mg g−1 for Ni2+, Pb2+, Cr(VI) using Cell-EL and Cell-EL-TA, respectively, were obtained from Langmuir model fitting at 25 °C. The thermodynamic parameters indicated spontaneous and low endothermic processes. The results of the kinetic study, i.e. pseudo-second-order (PSO) and Weber-Morris (W-M), suggest an intra-particle diffusion as a rate-limiting step. The semi-empirical quantum chemical calculations aided the analysis of the non-specific and specific adsorbent/adsorbate interactions and their contribution to the overall bonding mechanism. Membrane utility was confirmed by performing a bed column study. In general, three main environmental issues of the present study, biodegradability of the used membrane, desorption efficiency, and development of the technology for the effective effluent water treatment and safe disposal of by-products highly conform to the demand of integrated environmental management system applicability in practice.
PB  - Elsevier
T2  - Process Safety and Environmental Protection
T1  - Bio-membrane based on modified cellulose, lignin, and tannic acid for cation and oxyanion removal: Experimental and theoretical study
VL  - 147
SP  - 609
EP  - 625
DO  - 10.1016/j.psep.2020.12.027
ER  - 
@article{
author = "Perendija, Jovana and Veličković, Zlate S. and Cvijetić, Ilija and Lević, Steva M. and Marinković, Aleksandar and Milošević, Milena D. and Onjia, Antonije",
year = "2021",
abstract = "Two optimized methods, based on epoxy-amino reactivity of the Cellulose fibres (Cell) modified with diethylenetriamine (Cell‒DETA), (3-Glycidyloxypropyl)trimethoxysilane (Cell-Glymo), Lignin modified with epichlorohydrine (EL) and Tannic acid (TA), as an additional crosslinker, were developed for the production of the bio-renewable Cell-EL and Cell-EL-TA membranes. The influences of pH, contact time, adsorbent dose, and temperature on adsorption performances were studied by batch adsorption tests. The calculated capacities: 53.9, 99.9, 97.8 and 63.5, 115.8, 127.5 mg g−1 for Ni2+, Pb2+, Cr(VI) using Cell-EL and Cell-EL-TA, respectively, were obtained from Langmuir model fitting at 25 °C. The thermodynamic parameters indicated spontaneous and low endothermic processes. The results of the kinetic study, i.e. pseudo-second-order (PSO) and Weber-Morris (W-M), suggest an intra-particle diffusion as a rate-limiting step. The semi-empirical quantum chemical calculations aided the analysis of the non-specific and specific adsorbent/adsorbate interactions and their contribution to the overall bonding mechanism. Membrane utility was confirmed by performing a bed column study. In general, three main environmental issues of the present study, biodegradability of the used membrane, desorption efficiency, and development of the technology for the effective effluent water treatment and safe disposal of by-products highly conform to the demand of integrated environmental management system applicability in practice.",
publisher = "Elsevier",
journal = "Process Safety and Environmental Protection",
title = "Bio-membrane based on modified cellulose, lignin, and tannic acid for cation and oxyanion removal: Experimental and theoretical study",
volume = "147",
pages = "609-625",
doi = "10.1016/j.psep.2020.12.027"
}
Perendija, J., Veličković, Z. S., Cvijetić, I., Lević, S. M., Marinković, A., Milošević, M. D.,& Onjia, A.. (2021). Bio-membrane based on modified cellulose, lignin, and tannic acid for cation and oxyanion removal: Experimental and theoretical study. in Process Safety and Environmental Protection
Elsevier., 147, 609-625.
https://doi.org/10.1016/j.psep.2020.12.027
Perendija J, Veličković ZS, Cvijetić I, Lević SM, Marinković A, Milošević MD, Onjia A. Bio-membrane based on modified cellulose, lignin, and tannic acid for cation and oxyanion removal: Experimental and theoretical study. in Process Safety and Environmental Protection. 2021;147:609-625.
doi:10.1016/j.psep.2020.12.027 .
Perendija, Jovana, Veličković, Zlate S., Cvijetić, Ilija, Lević, Steva M., Marinković, Aleksandar, Milošević, Milena D., Onjia, Antonije, "Bio-membrane based on modified cellulose, lignin, and tannic acid for cation and oxyanion removal: Experimental and theoretical study" in Process Safety and Environmental Protection, 147 (2021):609-625,
https://doi.org/10.1016/j.psep.2020.12.027 . .
16
3
15
13

Supplementary data for the article: Perendija, J.; Veličković, Z. S.; Cvijetić, I.; Lević, S.; Marinković, A. D.; Milošević, M.; Onjia, A. Bio-Membrane Based on Modified Cellulose, Lignin, and Tannic Acid for Cation and Oxyanion Removal: Experimental and Theoretical Study. Process Safety and Environmental Protection 2021, 147, 609–625. https://doi.org/10.1016/j.psep.2020.12.027.

Perendija, Jovana; Veličković, Zlate S.; Cvijetić, Ilija; Lević, Steva M.; Marinković, Aleksandar; Milošević, Milena D.; Onjia, Antonije

(Institution of Chemical Engineers, 2021)

TY  - DATA
AU  - Perendija, Jovana
AU  - Veličković, Zlate S.
AU  - Cvijetić, Ilija
AU  - Lević, Steva M.
AU  - Marinković, Aleksandar
AU  - Milošević, Milena D.
AU  - Onjia, Antonije
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4771
PB  - Institution of Chemical Engineers
PB  - Elsevier
T2  - Process Safety and Environmental Protection
T1  - Supplementary data for the article: Perendija, J.; Veličković, Z. S.; Cvijetić, I.; Lević, S.; Marinković, A. D.; Milošević, M.; Onjia, A. Bio-Membrane Based on Modified Cellulose, Lignin, and Tannic Acid for Cation and Oxyanion Removal: Experimental and Theoretical Study. Process Safety and Environmental Protection 2021, 147, 609–625. https://doi.org/10.1016/j.psep.2020.12.027.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4771
ER  - 
@misc{
author = "Perendija, Jovana and Veličković, Zlate S. and Cvijetić, Ilija and Lević, Steva M. and Marinković, Aleksandar and Milošević, Milena D. and Onjia, Antonije",
year = "2021",
publisher = "Institution of Chemical Engineers, Elsevier",
journal = "Process Safety and Environmental Protection",
title = "Supplementary data for the article: Perendija, J.; Veličković, Z. S.; Cvijetić, I.; Lević, S.; Marinković, A. D.; Milošević, M.; Onjia, A. Bio-Membrane Based on Modified Cellulose, Lignin, and Tannic Acid for Cation and Oxyanion Removal: Experimental and Theoretical Study. Process Safety and Environmental Protection 2021, 147, 609–625. https://doi.org/10.1016/j.psep.2020.12.027.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4771"
}
Perendija, J., Veličković, Z. S., Cvijetić, I., Lević, S. M., Marinković, A., Milošević, M. D.,& Onjia, A.. (2021). Supplementary data for the article: Perendija, J.; Veličković, Z. S.; Cvijetić, I.; Lević, S.; Marinković, A. D.; Milošević, M.; Onjia, A. Bio-Membrane Based on Modified Cellulose, Lignin, and Tannic Acid for Cation and Oxyanion Removal: Experimental and Theoretical Study. Process Safety and Environmental Protection 2021, 147, 609–625. https://doi.org/10.1016/j.psep.2020.12.027.. in Process Safety and Environmental Protection
Institution of Chemical Engineers..
https://hdl.handle.net/21.15107/rcub_cherry_4771
Perendija J, Veličković ZS, Cvijetić I, Lević SM, Marinković A, Milošević MD, Onjia A. Supplementary data for the article: Perendija, J.; Veličković, Z. S.; Cvijetić, I.; Lević, S.; Marinković, A. D.; Milošević, M.; Onjia, A. Bio-Membrane Based on Modified Cellulose, Lignin, and Tannic Acid for Cation and Oxyanion Removal: Experimental and Theoretical Study. Process Safety and Environmental Protection 2021, 147, 609–625. https://doi.org/10.1016/j.psep.2020.12.027.. in Process Safety and Environmental Protection. 2021;.
https://hdl.handle.net/21.15107/rcub_cherry_4771 .
Perendija, Jovana, Veličković, Zlate S., Cvijetić, Ilija, Lević, Steva M., Marinković, Aleksandar, Milošević, Milena D., Onjia, Antonije, "Supplementary data for the article: Perendija, J.; Veličković, Z. S.; Cvijetić, I.; Lević, S.; Marinković, A. D.; Milošević, M.; Onjia, A. Bio-Membrane Based on Modified Cellulose, Lignin, and Tannic Acid for Cation and Oxyanion Removal: Experimental and Theoretical Study. Process Safety and Environmental Protection 2021, 147, 609–625. https://doi.org/10.1016/j.psep.2020.12.027." in Process Safety and Environmental Protection (2021),
https://hdl.handle.net/21.15107/rcub_cherry_4771 .