Stanković, V.

Link to this page

Authority KeyName Variants
a39256f7-8e76-4c70-adec-6a497a02d289
  • Stanković, V. (3)

Author's Bibliography

Laccase Polyphenolic Biosensor Supported on MnO2@GNP Decorated SPCE: Preparation, Characterization, and Analytical Application

Đurđić, Slađana Z.; Stanković, V.; Vlahović, Filip; Ognjanović, Miloš; Kalcher, K.; Ćirković-Veličković, Tanja; Mutić, Jelena; Stanković, Dalibor

(The Electrochemical Society (ECS), 2021)

TY  - JOUR
AU  - Đurđić, Slađana Z.
AU  - Stanković, V.
AU  - Vlahović, Filip
AU  - Ognjanović, Miloš
AU  - Kalcher, K.
AU  - Ćirković-Veličković, Tanja
AU  - Mutić, Jelena
AU  - Stanković, Dalibor
PY  - 2021
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4475
AB  - Based on graphene nanoplatelets capability to build block composites, as well as well-known electrochemical characteristic of the manganese oxide materials, in the present research, a nanocomposite, formed from graphene nanoplatelets (GNP) and manganese(IV)-oxide (MnO2) nanoparticles, has been proposed as a novel and convenient support for enzyme immobilization. Performance of screen printed carbon electrodes (SPCEs) was significantly improved after their modification with GNP@MnO2 (SPCE/GNP@MnO2). The polyphenolic index biosensor was prepared by applying the drop coating technique using laccase and Nafion®. Developed biosensor shows a fast and reliable amperometric response toward caffeic acid, as a model compound, at operating potential of +0.40 V (vs Ag/AgCl), with a wide linear range and detection limit of 1.9 μmol l−1. Developed procedure was successfully applied for the determination of polyphenolic indexes in wine samples. Recovery tests indicate excellent accuracy and precision of the method, concluding that the biosensor can offer a fast, accurate, reliable and precise determination of the polyphenolic index. More importantly, our results suggest a great potential for the application in real samples.
PB  - The Electrochemical Society (ECS)
T2  - Journal of The Electrochemical Society
T1  - Laccase Polyphenolic Biosensor Supported on MnO2@GNP Decorated SPCE: Preparation, Characterization, and Analytical Application
VL  - 168
IS  - 3
SP  - 037510
DO  - 10.1149/1945-7111/abeaf2
ER  - 
@article{
author = "Đurđić, Slađana Z. and Stanković, V. and Vlahović, Filip and Ognjanović, Miloš and Kalcher, K. and Ćirković-Veličković, Tanja and Mutić, Jelena and Stanković, Dalibor",
year = "2021",
abstract = "Based on graphene nanoplatelets capability to build block composites, as well as well-known electrochemical characteristic of the manganese oxide materials, in the present research, a nanocomposite, formed from graphene nanoplatelets (GNP) and manganese(IV)-oxide (MnO2) nanoparticles, has been proposed as a novel and convenient support for enzyme immobilization. Performance of screen printed carbon electrodes (SPCEs) was significantly improved after their modification with GNP@MnO2 (SPCE/GNP@MnO2). The polyphenolic index biosensor was prepared by applying the drop coating technique using laccase and Nafion®. Developed biosensor shows a fast and reliable amperometric response toward caffeic acid, as a model compound, at operating potential of +0.40 V (vs Ag/AgCl), with a wide linear range and detection limit of 1.9 μmol l−1. Developed procedure was successfully applied for the determination of polyphenolic indexes in wine samples. Recovery tests indicate excellent accuracy and precision of the method, concluding that the biosensor can offer a fast, accurate, reliable and precise determination of the polyphenolic index. More importantly, our results suggest a great potential for the application in real samples.",
publisher = "The Electrochemical Society (ECS)",
journal = "Journal of The Electrochemical Society",
title = "Laccase Polyphenolic Biosensor Supported on MnO2@GNP Decorated SPCE: Preparation, Characterization, and Analytical Application",
volume = "168",
number = "3",
pages = "037510",
doi = "10.1149/1945-7111/abeaf2"
}
Đurđić, S. Z., Stanković, V., Vlahović, F., Ognjanović, M., Kalcher, K., Ćirković-Veličković, T., Mutić, J.,& Stanković, D.. (2021). Laccase Polyphenolic Biosensor Supported on MnO2@GNP Decorated SPCE: Preparation, Characterization, and Analytical Application. in Journal of The Electrochemical Society
The Electrochemical Society (ECS)., 168(3), 037510.
https://doi.org/10.1149/1945-7111/abeaf2
Đurđić SZ, Stanković V, Vlahović F, Ognjanović M, Kalcher K, Ćirković-Veličković T, Mutić J, Stanković D. Laccase Polyphenolic Biosensor Supported on MnO2@GNP Decorated SPCE: Preparation, Characterization, and Analytical Application. in Journal of The Electrochemical Society. 2021;168(3):037510.
doi:10.1149/1945-7111/abeaf2 .
Đurđić, Slađana Z., Stanković, V., Vlahović, Filip, Ognjanović, Miloš, Kalcher, K., Ćirković-Veličković, Tanja, Mutić, Jelena, Stanković, Dalibor, "Laccase Polyphenolic Biosensor Supported on MnO2@GNP Decorated SPCE: Preparation, Characterization, and Analytical Application" in Journal of The Electrochemical Society, 168, no. 3 (2021):037510,
https://doi.org/10.1149/1945-7111/abeaf2 . .
11
2
9
8

Laccase Polyphenolic Biosensor Supported on MnO2@GNP Decorated SPCE: Preparation, Characterization, and Analytical Application

Đurđić, Slađana Z.; Stanković, V.; Vlahović, Filip; Ognjanović, Miloš; Kalcher, K.; Ćirković-Veličković, Tanja; Mutić, Jelena; Stanković, Dalibor

(The Electrochemical Society (ECS), 2021)

TY  - JOUR
AU  - Đurđić, Slađana Z.
AU  - Stanković, V.
AU  - Vlahović, Filip
AU  - Ognjanović, Miloš
AU  - Kalcher, K.
AU  - Ćirković-Veličković, Tanja
AU  - Mutić, Jelena
AU  - Stanković, Dalibor
PY  - 2021
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4474
AB  - Based on graphene nanoplatelets capability to build block composites, as well as well-known electrochemical characteristic of the manganese oxide materials, in the present research, a nanocomposite, formed from graphene nanoplatelets (GNP) and manganese(IV)-oxide (MnO2) nanoparticles, has been proposed as a novel and convenient support for enzyme immobilization. Performance of screen printed carbon electrodes (SPCEs) was significantly improved after their modification with GNP@MnO2 (SPCE/GNP@MnO2). The polyphenolic index biosensor was prepared by applying the drop coating technique using laccase and Nafion®. Developed biosensor shows a fast and reliable amperometric response toward caffeic acid, as a model compound, at operating potential of +0.40 V (vs Ag/AgCl), with a wide linear range and detection limit of 1.9 μmol l−1. Developed procedure was successfully applied for the determination of polyphenolic indexes in wine samples. Recovery tests indicate excellent accuracy and precision of the method, concluding that the biosensor can offer a fast, accurate, reliable and precise determination of the polyphenolic index. More importantly, our results suggest a great potential for the application in real samples.
PB  - The Electrochemical Society (ECS)
T2  - Journal of The Electrochemical Society
T1  - Laccase Polyphenolic Biosensor Supported on MnO2@GNP Decorated SPCE: Preparation, Characterization, and Analytical Application
VL  - 168
IS  - 3
SP  - 037510
DO  - 10.1149/1945-7111/abeaf2
ER  - 
@article{
author = "Đurđić, Slađana Z. and Stanković, V. and Vlahović, Filip and Ognjanović, Miloš and Kalcher, K. and Ćirković-Veličković, Tanja and Mutić, Jelena and Stanković, Dalibor",
year = "2021",
abstract = "Based on graphene nanoplatelets capability to build block composites, as well as well-known electrochemical characteristic of the manganese oxide materials, in the present research, a nanocomposite, formed from graphene nanoplatelets (GNP) and manganese(IV)-oxide (MnO2) nanoparticles, has been proposed as a novel and convenient support for enzyme immobilization. Performance of screen printed carbon electrodes (SPCEs) was significantly improved after their modification with GNP@MnO2 (SPCE/GNP@MnO2). The polyphenolic index biosensor was prepared by applying the drop coating technique using laccase and Nafion®. Developed biosensor shows a fast and reliable amperometric response toward caffeic acid, as a model compound, at operating potential of +0.40 V (vs Ag/AgCl), with a wide linear range and detection limit of 1.9 μmol l−1. Developed procedure was successfully applied for the determination of polyphenolic indexes in wine samples. Recovery tests indicate excellent accuracy and precision of the method, concluding that the biosensor can offer a fast, accurate, reliable and precise determination of the polyphenolic index. More importantly, our results suggest a great potential for the application in real samples.",
publisher = "The Electrochemical Society (ECS)",
journal = "Journal of The Electrochemical Society",
title = "Laccase Polyphenolic Biosensor Supported on MnO2@GNP Decorated SPCE: Preparation, Characterization, and Analytical Application",
volume = "168",
number = "3",
pages = "037510",
doi = "10.1149/1945-7111/abeaf2"
}
Đurđić, S. Z., Stanković, V., Vlahović, F., Ognjanović, M., Kalcher, K., Ćirković-Veličković, T., Mutić, J.,& Stanković, D.. (2021). Laccase Polyphenolic Biosensor Supported on MnO2@GNP Decorated SPCE: Preparation, Characterization, and Analytical Application. in Journal of The Electrochemical Society
The Electrochemical Society (ECS)., 168(3), 037510.
https://doi.org/10.1149/1945-7111/abeaf2
Đurđić SZ, Stanković V, Vlahović F, Ognjanović M, Kalcher K, Ćirković-Veličković T, Mutić J, Stanković D. Laccase Polyphenolic Biosensor Supported on MnO2@GNP Decorated SPCE: Preparation, Characterization, and Analytical Application. in Journal of The Electrochemical Society. 2021;168(3):037510.
doi:10.1149/1945-7111/abeaf2 .
Đurđić, Slađana Z., Stanković, V., Vlahović, Filip, Ognjanović, Miloš, Kalcher, K., Ćirković-Veličković, Tanja, Mutić, Jelena, Stanković, Dalibor, "Laccase Polyphenolic Biosensor Supported on MnO2@GNP Decorated SPCE: Preparation, Characterization, and Analytical Application" in Journal of The Electrochemical Society, 168, no. 3 (2021):037510,
https://doi.org/10.1149/1945-7111/abeaf2 . .
11
2
9
8

Electrochemistry of the arrow poison, tubocurarine, using boron doped diamond electrode: Experimental and theoretical approaches

Ðurđić, Slađana; Stanković, V.; Perić, M.; Ognjanović, Miloš; Šovrc, Ľubomír; Mutić, Jelena; Stanković, Dalibor

(Electrochemical Society Inc., 2019)

TY  - JOUR
AU  - Ðurđić, Slađana
AU  - Stanković, V.
AU  - Perić, M.
AU  - Ognjanović, Miloš
AU  - Šovrc, Ľubomír
AU  - Mutić, Jelena
AU  - Stanković, Dalibor
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3716
AB  - In present work boron doped diamond (BDD) electrode was applied for studying electrochemical behavior, as well as for quantitative determination of natural alkaloid, tubocurarine (arrow poison/ TUB). Electrochemical behavior was investigated using several organic solvents and aqueous buffers, at different pHs, as supporting electrolytes. After selection of the most appropriate supporting electrolyte and investigation of its electrochemical behavior, analytical procedures for quantitative analysis of TUB were developed in an acetonitrile/methanol (80:20) mixture and in 1 mol L−1 nitric acid, which had linear quantification ranges from 4 × 10−6 to 1 × 10−4 mol L−1 (LOD = 3.07 × 10−6 mol L−1) and 4 × 10−6 to 9 × 10−5 mol L−1 (LOD = 2.45 × 10−6 mol L−1 and 5.28 × 10−7 mol L−1, depending on the selected peak), respectively. The oxidation mechanism of TUB was proposed from the theoretical aspect. Remarkable selectivity and good sensitivity were obtained after the TUB quantification method was optimized, allowing application of the developed method for TUB quantification in biological fluids, with excellent reproducibility, accuracy and precision.
PB  - Electrochemical Society Inc.
T2  - Journal of the Electrochemical Society
T1  - Electrochemistry of the arrow poison, tubocurarine, using boron doped diamond electrode: Experimental and theoretical approaches
VL  - 166
IS  - 14
SP  - G157
EP  - G161
DO  - 10.1149/2.1241914jes
ER  - 
@article{
author = "Ðurđić, Slađana and Stanković, V. and Perić, M. and Ognjanović, Miloš and Šovrc, Ľubomír and Mutić, Jelena and Stanković, Dalibor",
year = "2019",
abstract = "In present work boron doped diamond (BDD) electrode was applied for studying electrochemical behavior, as well as for quantitative determination of natural alkaloid, tubocurarine (arrow poison/ TUB). Electrochemical behavior was investigated using several organic solvents and aqueous buffers, at different pHs, as supporting electrolytes. After selection of the most appropriate supporting electrolyte and investigation of its electrochemical behavior, analytical procedures for quantitative analysis of TUB were developed in an acetonitrile/methanol (80:20) mixture and in 1 mol L−1 nitric acid, which had linear quantification ranges from 4 × 10−6 to 1 × 10−4 mol L−1 (LOD = 3.07 × 10−6 mol L−1) and 4 × 10−6 to 9 × 10−5 mol L−1 (LOD = 2.45 × 10−6 mol L−1 and 5.28 × 10−7 mol L−1, depending on the selected peak), respectively. The oxidation mechanism of TUB was proposed from the theoretical aspect. Remarkable selectivity and good sensitivity were obtained after the TUB quantification method was optimized, allowing application of the developed method for TUB quantification in biological fluids, with excellent reproducibility, accuracy and precision.",
publisher = "Electrochemical Society Inc.",
journal = "Journal of the Electrochemical Society",
title = "Electrochemistry of the arrow poison, tubocurarine, using boron doped diamond electrode: Experimental and theoretical approaches",
volume = "166",
number = "14",
pages = "G157-G161",
doi = "10.1149/2.1241914jes"
}
Ðurđić, S., Stanković, V., Perić, M., Ognjanović, M., Šovrc, Ľ., Mutić, J.,& Stanković, D.. (2019). Electrochemistry of the arrow poison, tubocurarine, using boron doped diamond electrode: Experimental and theoretical approaches. in Journal of the Electrochemical Society
Electrochemical Society Inc.., 166(14), G157-G161.
https://doi.org/10.1149/2.1241914jes
Ðurđić S, Stanković V, Perić M, Ognjanović M, Šovrc Ľ, Mutić J, Stanković D. Electrochemistry of the arrow poison, tubocurarine, using boron doped diamond electrode: Experimental and theoretical approaches. in Journal of the Electrochemical Society. 2019;166(14):G157-G161.
doi:10.1149/2.1241914jes .
Ðurđić, Slađana, Stanković, V., Perić, M., Ognjanović, Miloš, Šovrc, Ľubomír, Mutić, Jelena, Stanković, Dalibor, "Electrochemistry of the arrow poison, tubocurarine, using boron doped diamond electrode: Experimental and theoretical approaches" in Journal of the Electrochemical Society, 166, no. 14 (2019):G157-G161,
https://doi.org/10.1149/2.1241914jes . .
4
3
4
4