Prodanović, Radivoje

Link to this page

Authority KeyName Variants
orcid::0000-0003-4662-1825
  • Prodanović, Radivoje (129)
Projects
Allergens, antibodies, enzymes and small physiologically important molecules: design, structure, function and relevance Study of structure-function relationships in the plant cell wall and modifications of the wall structure by enzyme engineering
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry) Novel encapsulation and enzyme technologies for designing of new biocatalysts and biologically active compounds targeting enhancement of food quality, safety and competitiveness
SYMBIOSIS - Controllable Design of Efficient Enzyme"Mof Composites for Biocatalysis Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200053 (University of Belgrade, Institute for Multidisciplinary Research)
National Science Foundation [DMR-1310266] Harvard MRSEC [DMR-0820484]
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200288 (Innovation Center of the Faculty of Chemistry) Excellence Initiative by the German federal government
Ispitivanje strukture i funkcije biološki važnih makromolekula u fiziološkim i patološkim stanjima Ispitivanja novih biosenzora za monitoring i dijagnostiku biljaka
Alexander von Humboldt foundation China Equipment and Education Resources System [CERS-1-75]
Deutsche Forschungsgemeinschaft Deutsche Forschungsgemeinschaft (DFG)
Fulbright Foundation [N0009552407] Harvard Materials Research Science and Engineering Center [DMR-1420570]
National Institute of Health [R01 EB014703, P01GM096971] National Institutes of Health [R01EB014703]
National Natural Science Foundation of China [214350002, 91213305, 81373373] BMBF BiochancePlus program
DAAD bilateral project 451-03-01038/2015-09/21 Engineering and Physical Sciences Research Council [EP/C535456/1]
EPSRC [EP/C535456/1] Fulbright Foundation
G. Menghiu acknowledges support from the strategic grant POSDRU/159/1.5/S/137750: Project “Doctoral and postdoctoral programs support for increased competitiveness in exact sciences research” co-financed by the European Social Fund within the Sectorial Operational Program Human Resources Development 2007–2013. This research was funded by the GRANT PNIII-P3- 284, ChitoWound—Biotechnological tools implementation for new wound healing applications of byproducts from the crustacean seafood processing industry. Characterization and application of fungal metabolites and assessment of new biofungicides potential
Microbial diversity study and characterization of beneficial environmental microorganisms Synthesis, processing and characterization of nanostructured materials for application in the field of energy, mechanical engineering, environmental protection and biomedicine

Author's Bibliography

Development of iminosugar-based glycosidase inhibitors as drug candidates for SARS-CoV-2 virus via molecular modelling and in vitro studies

Ferjancic, Zorana; Bihelovic, Filip; Vulovic, Bojan; Matovic, Radomir; Trmcic, Milena; Jankovic, Aleksandar; Pavlovic, Milos; Djurkovic, Filip; Prodanovic, Radivoje; Djurdjevic Djelmas, Aleksandra; Kalicanin, Nevena; Zlatovic, Mario; Sladic, Dusan; Vallet, Thomas; Vignuzzi, Marco; Saicic, Radomir N.

(Taylor and Francis Group, 2024)

TY  - JOUR
AU  - Ferjancic, Zorana
AU  - Bihelovic, Filip
AU  - Vulovic, Bojan
AU  - Matovic, Radomir
AU  - Trmcic, Milena
AU  - Jankovic, Aleksandar
AU  - Pavlovic, Milos
AU  - Djurkovic, Filip
AU  - Prodanovic, Radivoje
AU  - Djurdjevic Djelmas, Aleksandra
AU  - Kalicanin, Nevena
AU  - Zlatovic, Mario
AU  - Sladic, Dusan
AU  - Vallet, Thomas
AU  - Vignuzzi, Marco
AU  - Saicic, Radomir N.
PY  - 2024
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6475
AB  - We developed new iminosugar-based glycosidase inhibitors against SARS-CoV-2. Known drugs (miglustat, migalastat, miglitol, and swainsonine) were chosen as lead compounds to develop three classes of glycosidase inhibitors (α-glucosidase, α-galactosidase, and mannosidase). Molecular modelling of the lead compounds, synthesis of the compounds with the highest docking scores, enzyme inhibition tests, and in vitro antiviral assays afforded rationally designed inhibitors. Two highly active α-glucosidase inhibitors were discovered, where one of them is the most potent iminosugar-based anti-SARS-CoV-2 agent to date (EC90 = 1.94 µM in A549-ACE2 cells against Omicron BA.1 strain). However, galactosidase inhibitors did not exhibit antiviral activity, whereas mannosidase inhibitors were both active and cytotoxic. As our iminosugar-based drug candidates act by a host-directed mechanism, they should be more resilient to drug resistance. Moreover, this strategy could be extended to identify potential drug candidates for other viral infections.
PB  - Taylor and Francis Group
T2  - Journal of Enzyme Inhibition and Medicinal Chemistry
T1  - Development of iminosugar-based glycosidase inhibitors as drug candidates for SARS-CoV-2 virus via molecular modelling and in vitro studies
VL  - 39
IS  - 1
SP  - 2289007
DO  - 10.1080/14756366.2023.2289007
ER  - 
@article{
author = "Ferjancic, Zorana and Bihelovic, Filip and Vulovic, Bojan and Matovic, Radomir and Trmcic, Milena and Jankovic, Aleksandar and Pavlovic, Milos and Djurkovic, Filip and Prodanovic, Radivoje and Djurdjevic Djelmas, Aleksandra and Kalicanin, Nevena and Zlatovic, Mario and Sladic, Dusan and Vallet, Thomas and Vignuzzi, Marco and Saicic, Radomir N.",
year = "2024",
abstract = "We developed new iminosugar-based glycosidase inhibitors against SARS-CoV-2. Known drugs (miglustat, migalastat, miglitol, and swainsonine) were chosen as lead compounds to develop three classes of glycosidase inhibitors (α-glucosidase, α-galactosidase, and mannosidase). Molecular modelling of the lead compounds, synthesis of the compounds with the highest docking scores, enzyme inhibition tests, and in vitro antiviral assays afforded rationally designed inhibitors. Two highly active α-glucosidase inhibitors were discovered, where one of them is the most potent iminosugar-based anti-SARS-CoV-2 agent to date (EC90 = 1.94 µM in A549-ACE2 cells against Omicron BA.1 strain). However, galactosidase inhibitors did not exhibit antiviral activity, whereas mannosidase inhibitors were both active and cytotoxic. As our iminosugar-based drug candidates act by a host-directed mechanism, they should be more resilient to drug resistance. Moreover, this strategy could be extended to identify potential drug candidates for other viral infections.",
publisher = "Taylor and Francis Group",
journal = "Journal of Enzyme Inhibition and Medicinal Chemistry",
title = "Development of iminosugar-based glycosidase inhibitors as drug candidates for SARS-CoV-2 virus via molecular modelling and in vitro studies",
volume = "39",
number = "1",
pages = "2289007",
doi = "10.1080/14756366.2023.2289007"
}
Ferjancic, Z., Bihelovic, F., Vulovic, B., Matovic, R., Trmcic, M., Jankovic, A., Pavlovic, M., Djurkovic, F., Prodanovic, R., Djurdjevic Djelmas, A., Kalicanin, N., Zlatovic, M., Sladic, D., Vallet, T., Vignuzzi, M.,& Saicic, R. N.. (2024). Development of iminosugar-based glycosidase inhibitors as drug candidates for SARS-CoV-2 virus via molecular modelling and in vitro studies. in Journal of Enzyme Inhibition and Medicinal Chemistry
Taylor and Francis Group., 39(1), 2289007.
https://doi.org/10.1080/14756366.2023.2289007
Ferjancic Z, Bihelovic F, Vulovic B, Matovic R, Trmcic M, Jankovic A, Pavlovic M, Djurkovic F, Prodanovic R, Djurdjevic Djelmas A, Kalicanin N, Zlatovic M, Sladic D, Vallet T, Vignuzzi M, Saicic RN. Development of iminosugar-based glycosidase inhibitors as drug candidates for SARS-CoV-2 virus via molecular modelling and in vitro studies. in Journal of Enzyme Inhibition and Medicinal Chemistry. 2024;39(1):2289007.
doi:10.1080/14756366.2023.2289007 .
Ferjancic, Zorana, Bihelovic, Filip, Vulovic, Bojan, Matovic, Radomir, Trmcic, Milena, Jankovic, Aleksandar, Pavlovic, Milos, Djurkovic, Filip, Prodanovic, Radivoje, Djurdjevic Djelmas, Aleksandra, Kalicanin, Nevena, Zlatovic, Mario, Sladic, Dusan, Vallet, Thomas, Vignuzzi, Marco, Saicic, Radomir N., "Development of iminosugar-based glycosidase inhibitors as drug candidates for SARS-CoV-2 virus via molecular modelling and in vitro studies" in Journal of Enzyme Inhibition and Medicinal Chemistry, 39, no. 1 (2024):2289007,
https://doi.org/10.1080/14756366.2023.2289007 . .
4
1

Selective Adsorption of Ionic Species Using Macroporous Monodispersed Polyethylene Glycol Diacrylate/Acrylic Acid Microgels with Tunable Negative Charge

Chen, Minjun; Kumrić, Ksenija R.; Thacker, Conner; Prodanović, Radivoje; Bolognesi, Guido; Vladisavljević, Goran T.

(MDPI, 2023)

TY  - JOUR
AU  - Chen, Minjun
AU  - Kumrić, Ksenija R.
AU  - Thacker, Conner
AU  - Prodanović, Radivoje
AU  - Bolognesi, Guido
AU  - Vladisavljević, Goran T.
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6394
AB  - Monodispersed polyethylene glycol diacrylate (PEGDA)/acrylic acid (AA) microgels with a tuneable negative charge and macroporous internal structure have been produced using a Lego-inspired droplet microfluidic device. The surface charge of microgels was controlled by changing the content of AA in the monomer mixture from zero (for noncharged PEGDA beads) to 4 wt%. The macroporosity of the polymer matrix was introduced by adding 20 wt% of 600-MW polyethylene glycol (PEG) as a porogen material into the monomer mixture. The porogen was successfully leached out with acetone after UV-crosslinking, which resulted in micron-sized cylindrical pores with crater-like morphology, uniformly arranged on the microgel surface. Negatively charged PEGDA/AA beads showed improved adsorption capacity towards positively charged organic dyes (methylene blue and rhodamine B) compared to neutral PEGDA beads and high repulsion of negatively charged dye molecules (methyl orange and congo red). Macroporous microgels showed better adsorption properties than nonporous beads, with a maximum adsorption capacity towards methylene blue of 45 mg/g for macroporous PEGDA/AA microgels at pH 8.6, as compared to 23 mg/g for nonporous PEGDA/AA microgels at the same pH. More than 98% of Cu(II) ions were removed from 50 ppm solution at pH 6.7 using 2.7 mg/mL of macroporous PEGDA/AA microgel. The adsorption of cationic species was significantly improved when pH was increased from 3 to 9 due to a higher degree of ionization of AA monomeric units in the polymer network. The synthesized copolymer beads can be used in drug delivery to achieve improved loading capacity of positively charged therapeutic agents and in tissue engineering, where a negative charge of scaffolds coupled with porous structure can help to achieve improved permeability of high-molecular-weight metabolites and nutrients, and anti-fouling activity against negatively charged species.
PB  - MDPI
T2  - Gels
T1  - Selective Adsorption of Ionic Species Using Macroporous Monodispersed Polyethylene Glycol Diacrylate/Acrylic Acid Microgels with Tunable Negative Charge
VL  - 9
IS  - 11
SP  - 849
DO  - 10.3390/gels9110849
ER  - 
@article{
author = "Chen, Minjun and Kumrić, Ksenija R. and Thacker, Conner and Prodanović, Radivoje and Bolognesi, Guido and Vladisavljević, Goran T.",
year = "2023",
abstract = "Monodispersed polyethylene glycol diacrylate (PEGDA)/acrylic acid (AA) microgels with a tuneable negative charge and macroporous internal structure have been produced using a Lego-inspired droplet microfluidic device. The surface charge of microgels was controlled by changing the content of AA in the monomer mixture from zero (for noncharged PEGDA beads) to 4 wt%. The macroporosity of the polymer matrix was introduced by adding 20 wt% of 600-MW polyethylene glycol (PEG) as a porogen material into the monomer mixture. The porogen was successfully leached out with acetone after UV-crosslinking, which resulted in micron-sized cylindrical pores with crater-like morphology, uniformly arranged on the microgel surface. Negatively charged PEGDA/AA beads showed improved adsorption capacity towards positively charged organic dyes (methylene blue and rhodamine B) compared to neutral PEGDA beads and high repulsion of negatively charged dye molecules (methyl orange and congo red). Macroporous microgels showed better adsorption properties than nonporous beads, with a maximum adsorption capacity towards methylene blue of 45 mg/g for macroporous PEGDA/AA microgels at pH 8.6, as compared to 23 mg/g for nonporous PEGDA/AA microgels at the same pH. More than 98% of Cu(II) ions were removed from 50 ppm solution at pH 6.7 using 2.7 mg/mL of macroporous PEGDA/AA microgel. The adsorption of cationic species was significantly improved when pH was increased from 3 to 9 due to a higher degree of ionization of AA monomeric units in the polymer network. The synthesized copolymer beads can be used in drug delivery to achieve improved loading capacity of positively charged therapeutic agents and in tissue engineering, where a negative charge of scaffolds coupled with porous structure can help to achieve improved permeability of high-molecular-weight metabolites and nutrients, and anti-fouling activity against negatively charged species.",
publisher = "MDPI",
journal = "Gels",
title = "Selective Adsorption of Ionic Species Using Macroporous Monodispersed Polyethylene Glycol Diacrylate/Acrylic Acid Microgels with Tunable Negative Charge",
volume = "9",
number = "11",
pages = "849",
doi = "10.3390/gels9110849"
}
Chen, M., Kumrić, K. R., Thacker, C., Prodanović, R., Bolognesi, G.,& Vladisavljević, G. T.. (2023). Selective Adsorption of Ionic Species Using Macroporous Monodispersed Polyethylene Glycol Diacrylate/Acrylic Acid Microgels with Tunable Negative Charge. in Gels
MDPI., 9(11), 849.
https://doi.org/10.3390/gels9110849
Chen M, Kumrić KR, Thacker C, Prodanović R, Bolognesi G, Vladisavljević GT. Selective Adsorption of Ionic Species Using Macroporous Monodispersed Polyethylene Glycol Diacrylate/Acrylic Acid Microgels with Tunable Negative Charge. in Gels. 2023;9(11):849.
doi:10.3390/gels9110849 .
Chen, Minjun, Kumrić, Ksenija R., Thacker, Conner, Prodanović, Radivoje, Bolognesi, Guido, Vladisavljević, Goran T., "Selective Adsorption of Ionic Species Using Macroporous Monodispersed Polyethylene Glycol Diacrylate/Acrylic Acid Microgels with Tunable Negative Charge" in Gels, 9, no. 11 (2023):849,
https://doi.org/10.3390/gels9110849 . .
1
1

In Silico and In Vitro Inhibition of SARS-CoV-2 PLpro with Gramicidin D

Glišić, Sanja; Prodanović, Radivoje; Paessler, Slobodan; Perović, Vladimir; Milićević, Jelena; Prodanović, Olivera; Senčanski, Milan ; Kaličanin, Nevena; Protić, Sara

(MDPI, 2023)

TY  - JOUR
AU  - Glišić, Sanja
AU  - Prodanović, Radivoje
AU  - Paessler, Slobodan
AU  - Perović, Vladimir
AU  - Milićević, Jelena
AU  - Prodanović, Olivera
AU  - Senčanski, Milan 
AU  - Kaličanin, Nevena
AU  - Protić, Sara
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5884
AB  - Finding an effective drug to prevent or treat COVID-19 is of utmost importance in tcurrent pandemic. Since developing a new treatment takes a significant amount of time, drug repurposing can be an effective option for achieving a rapid response. This study used a combined in silico virtual screening protocol for candidate SARS-CoV-2 PLpro inhibitors. The Drugbank database was searched first, using the Informational Spectrum Method for Small Molecules, followed by molecular docking. Gramicidin D was selected as a peptide drug, showing the best in silico interaction profile with PLpro. After the expression and purification of PLpro, gramicidin D was screened for protease inhibition in vitro and was found to be active against PLpro. The current study’s findings are significant because it is critical to identify COVID-19 therapies that are efficient, affordable, and have a favorable safety profile.
PB  - MDPI
T2  - Int. J. Mol. Sci.
T1  - In Silico and In Vitro Inhibition of SARS-CoV-2 PLpro with Gramicidin D
VL  - 24
IS  - 3
SP  - 1955
DO  - 10.3390/ijms24031955
ER  - 
@article{
author = "Glišić, Sanja and Prodanović, Radivoje and Paessler, Slobodan and Perović, Vladimir and Milićević, Jelena and Prodanović, Olivera and Senčanski, Milan  and Kaličanin, Nevena and Protić, Sara",
year = "2023",
abstract = "Finding an effective drug to prevent or treat COVID-19 is of utmost importance in tcurrent pandemic. Since developing a new treatment takes a significant amount of time, drug repurposing can be an effective option for achieving a rapid response. This study used a combined in silico virtual screening protocol for candidate SARS-CoV-2 PLpro inhibitors. The Drugbank database was searched first, using the Informational Spectrum Method for Small Molecules, followed by molecular docking. Gramicidin D was selected as a peptide drug, showing the best in silico interaction profile with PLpro. After the expression and purification of PLpro, gramicidin D was screened for protease inhibition in vitro and was found to be active against PLpro. The current study’s findings are significant because it is critical to identify COVID-19 therapies that are efficient, affordable, and have a favorable safety profile.",
publisher = "MDPI",
journal = "Int. J. Mol. Sci.",
title = "In Silico and In Vitro Inhibition of SARS-CoV-2 PLpro with Gramicidin D",
volume = "24",
number = "3",
pages = "1955",
doi = "10.3390/ijms24031955"
}
Glišić, S., Prodanović, R., Paessler, S., Perović, V., Milićević, J., Prodanović, O., Senčanski, M., Kaličanin, N.,& Protić, S.. (2023). In Silico and In Vitro Inhibition of SARS-CoV-2 PLpro with Gramicidin D. in Int. J. Mol. Sci.
MDPI., 24(3), 1955.
https://doi.org/10.3390/ijms24031955
Glišić S, Prodanović R, Paessler S, Perović V, Milićević J, Prodanović O, Senčanski M, Kaličanin N, Protić S. In Silico and In Vitro Inhibition of SARS-CoV-2 PLpro with Gramicidin D. in Int. J. Mol. Sci.. 2023;24(3):1955.
doi:10.3390/ijms24031955 .
Glišić, Sanja, Prodanović, Radivoje, Paessler, Slobodan, Perović, Vladimir, Milićević, Jelena, Prodanović, Olivera, Senčanski, Milan , Kaličanin, Nevena, Protić, Sara, "In Silico and In Vitro Inhibition of SARS-CoV-2 PLpro with Gramicidin D" in Int. J. Mol. Sci., 24, no. 3 (2023):1955,
https://doi.org/10.3390/ijms24031955 . .
2
1
1

Horseradish peroxidase immobilization within micro-beads of oxidized tyramine-alginate for phenol removal from wastewater

Surudžić, Nevena; Spasojević, Dragica; Stanković, Mira; Spasojević, Milica; Elgahwash, Reyadh Gomah Amar; Prodanović, Radivoje; Prodanović, Olivera

(University of Belgrade, Technical Faculty in Bor, 2023)

TY  - CONF
AU  - Surudžić, Nevena
AU  - Spasojević, Dragica
AU  - Stanković, Mira
AU  - Spasojević, Milica
AU  - Elgahwash, Reyadh Gomah Amar
AU  - Prodanović, Radivoje
AU  - Prodanović, Olivera
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6198
AB  - Natural polymers such as alginate, pectin, chitosan etc. were used as carriers for the immobilization of different types of enzymes. Among investigated enzymes, peroxidases hold a special place. Immobilized enzymes are frequently used in phenol removal reactions. In this research horseradish peroxidase was immobilized within alginate micro-beads. This natural polymer was previously oxidized with sodium periodate and modified with tyramine hydrochloride. Percent of oxidation was varied from 2.5 mol% to 10 mol%, and an increase in specific activity was noticed with increasing the oxidation percent. Immobilized peroxidases showed satisfactory stabilities after 10 days of storage. Phenol concentration in a batch reactor decreased during its oxidation with horseradish peroxidase immobilized on tyramine-alginate hydrogels.
PB  - University of Belgrade, Technical Faculty in Bor
C3  - 30th International Conference Ecological Truth and Environmental Research – EcoTER’23
T1  - Horseradish peroxidase immobilization within micro-beads of oxidized tyramine-alginate for phenol removal from wastewater
SP  - 267
EP  - 271
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2012
ER  - 
@conference{
author = "Surudžić, Nevena and Spasojević, Dragica and Stanković, Mira and Spasojević, Milica and Elgahwash, Reyadh Gomah Amar and Prodanović, Radivoje and Prodanović, Olivera",
year = "2023",
abstract = "Natural polymers such as alginate, pectin, chitosan etc. were used as carriers for the immobilization of different types of enzymes. Among investigated enzymes, peroxidases hold a special place. Immobilized enzymes are frequently used in phenol removal reactions. In this research horseradish peroxidase was immobilized within alginate micro-beads. This natural polymer was previously oxidized with sodium periodate and modified with tyramine hydrochloride. Percent of oxidation was varied from 2.5 mol% to 10 mol%, and an increase in specific activity was noticed with increasing the oxidation percent. Immobilized peroxidases showed satisfactory stabilities after 10 days of storage. Phenol concentration in a batch reactor decreased during its oxidation with horseradish peroxidase immobilized on tyramine-alginate hydrogels.",
publisher = "University of Belgrade, Technical Faculty in Bor",
journal = "30th International Conference Ecological Truth and Environmental Research – EcoTER’23",
title = "Horseradish peroxidase immobilization within micro-beads of oxidized tyramine-alginate for phenol removal from wastewater",
pages = "267-271",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2012"
}
Surudžić, N., Spasojević, D., Stanković, M., Spasojević, M., Elgahwash, R. G. A., Prodanović, R.,& Prodanović, O.. (2023). Horseradish peroxidase immobilization within micro-beads of oxidized tyramine-alginate for phenol removal from wastewater. in 30th International Conference Ecological Truth and Environmental Research – EcoTER’23
University of Belgrade, Technical Faculty in Bor., 267-271.
https://hdl.handle.net/21.15107/rcub_rimsi_2012
Surudžić N, Spasojević D, Stanković M, Spasojević M, Elgahwash RGA, Prodanović R, Prodanović O. Horseradish peroxidase immobilization within micro-beads of oxidized tyramine-alginate for phenol removal from wastewater. in 30th International Conference Ecological Truth and Environmental Research – EcoTER’23. 2023;:267-271.
https://hdl.handle.net/21.15107/rcub_rimsi_2012 .
Surudžić, Nevena, Spasojević, Dragica, Stanković, Mira, Spasojević, Milica, Elgahwash, Reyadh Gomah Amar, Prodanović, Radivoje, Prodanović, Olivera, "Horseradish peroxidase immobilization within micro-beads of oxidized tyramine-alginate for phenol removal from wastewater" in 30th International Conference Ecological Truth and Environmental Research – EcoTER’23 (2023):267-271,
https://hdl.handle.net/21.15107/rcub_rimsi_2012 .

Efficient enzyme@MOF composites for biocatalysis

Stanišić, Marija D.; Ristić, Predrag; Balaž, Ana Marija; Senćanski, Milan; Mitić, Dragana; Prodanović, Radivoje; Todorović, Tamara

(2022)

TY  - CONF
AU  - Stanišić, Marija D.
AU  - Ristić, Predrag
AU  - Balaž, Ana Marija
AU  - Senćanski, Milan
AU  - Mitić, Dragana
AU  - Prodanović, Radivoje
AU  - Todorović, Tamara
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5751
AB  - Novel industrial biocatalysts are needed which can offer advantages over traditional chemical processes with respect to sustainability, process efficiency, and reduced negative impact on the environment. Implementation of either native or mutated enzymes for various industrial applications is currently limited due to a lack of protein stability in harsh conditions. Metal-organic frameworks (MOFs), known for their ultra-high porosity and crystallinity, are perfect host materials that can protect guest enzymes from inhospitable external environments. Herein we show that the surface charge and chemistry of a protein determine its ability to seed MOF growth. We demonstrate that chemical modification of carbohydrate parts on the protein surface is an effective method for controlling biomimetic mineralization by zeolitic imidazolate framework-8 (ZIF-8). Protein charge, mixing of reactants, and stirring speed have been demonstrated to play important roles in controlling biomineralization reaction rate, particle shape, and morphology. This study highlights the important role played by protein surface chemistry in encapsulation and outlines a general method for facilitating the biomimetic mineralization of glycoproteins.
C3  - EUROBIOTECH 8th Central European Congress of Life Sciences, 20-22 June 2022, Krakow, Poland
T1  - Efficient enzyme@MOF composites for biocatalysis
SP  - 138
EP  - 138
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5751
ER  - 
@conference{
author = "Stanišić, Marija D. and Ristić, Predrag and Balaž, Ana Marija and Senćanski, Milan and Mitić, Dragana and Prodanović, Radivoje and Todorović, Tamara",
year = "2022",
abstract = "Novel industrial biocatalysts are needed which can offer advantages over traditional chemical processes with respect to sustainability, process efficiency, and reduced negative impact on the environment. Implementation of either native or mutated enzymes for various industrial applications is currently limited due to a lack of protein stability in harsh conditions. Metal-organic frameworks (MOFs), known for their ultra-high porosity and crystallinity, are perfect host materials that can protect guest enzymes from inhospitable external environments. Herein we show that the surface charge and chemistry of a protein determine its ability to seed MOF growth. We demonstrate that chemical modification of carbohydrate parts on the protein surface is an effective method for controlling biomimetic mineralization by zeolitic imidazolate framework-8 (ZIF-8). Protein charge, mixing of reactants, and stirring speed have been demonstrated to play important roles in controlling biomineralization reaction rate, particle shape, and morphology. This study highlights the important role played by protein surface chemistry in encapsulation and outlines a general method for facilitating the biomimetic mineralization of glycoproteins.",
journal = "EUROBIOTECH 8th Central European Congress of Life Sciences, 20-22 June 2022, Krakow, Poland",
title = "Efficient enzyme@MOF composites for biocatalysis",
pages = "138-138",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5751"
}
Stanišić, M. D., Ristić, P., Balaž, A. M., Senćanski, M., Mitić, D., Prodanović, R.,& Todorović, T.. (2022). Efficient enzyme@MOF composites for biocatalysis. in EUROBIOTECH 8th Central European Congress of Life Sciences, 20-22 June 2022, Krakow, Poland, 138-138.
https://hdl.handle.net/21.15107/rcub_cherry_5751
Stanišić MD, Ristić P, Balaž AM, Senćanski M, Mitić D, Prodanović R, Todorović T. Efficient enzyme@MOF composites for biocatalysis. in EUROBIOTECH 8th Central European Congress of Life Sciences, 20-22 June 2022, Krakow, Poland. 2022;:138-138.
https://hdl.handle.net/21.15107/rcub_cherry_5751 .
Stanišić, Marija D., Ristić, Predrag, Balaž, Ana Marija, Senćanski, Milan, Mitić, Dragana, Prodanović, Radivoje, Todorović, Tamara, "Efficient enzyme@MOF composites for biocatalysis" in EUROBIOTECH 8th Central European Congress of Life Sciences, 20-22 June 2022, Krakow, Poland (2022):138-138,
https://hdl.handle.net/21.15107/rcub_cherry_5751 .

Periodate oxidized glucose oxidase@ZIF-8 nanocomposite

Ristić, Predrag; Stanišić, Marija D.; Đokić, Veljko; Balaž, Ana Marija; Mitić, Dragana; Prodanović, Radivoje; Todorović, Tamara

(2022)

TY  - CONF
AU  - Ristić, Predrag
AU  - Stanišić, Marija D.
AU  - Đokić, Veljko
AU  - Balaž, Ana Marija
AU  - Mitić, Dragana
AU  - Prodanović, Radivoje
AU  - Todorović, Tamara
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5753
AB  - The durability of enzymes in harsh conditions can be enhanced by immobilization within metal-organic frameworks
(MOFs) via a process called biomimetic mineralisation. Zeolitic imidazolate framework-8 (ZIF-8) is widely used as a
protective coating to encapsulate proteins. The formation of nucleation centres and further biocomposite particle
growth is entirely governed by the pure electrostatic interactions between the protein’s surface and positively charged
Zn(II) metal ions. It was previously shown that enhancing these electrostatic interactions by a chemical modification
of surface amino acid residues can lead to a rapid biocomposite formation. However, a chemical modification of
carbohydrate components by periodate oxidation for glycoproteins can serve as an alternative strategy. In the present
study, an industrially important enzyme glucose oxidase (GOx) was selected as a model system. Periodate oxidation
of GOx by 2.5 mM sodium periodate increased negative charge on the enzyme molecule. Biomineralization
experiments with oxidized GOx resulted in higher specific activity, effectiveness factor, and higher thermostability of
the ZIF-8 biocomposites.
C3  - 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece
T1  - Periodate oxidized glucose oxidase@ZIF-8 nanocomposite
SP  - 138
EP  - 138
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5753
ER  - 
@conference{
author = "Ristić, Predrag and Stanišić, Marija D. and Đokić, Veljko and Balaž, Ana Marija and Mitić, Dragana and Prodanović, Radivoje and Todorović, Tamara",
year = "2022",
abstract = "The durability of enzymes in harsh conditions can be enhanced by immobilization within metal-organic frameworks
(MOFs) via a process called biomimetic mineralisation. Zeolitic imidazolate framework-8 (ZIF-8) is widely used as a
protective coating to encapsulate proteins. The formation of nucleation centres and further biocomposite particle
growth is entirely governed by the pure electrostatic interactions between the protein’s surface and positively charged
Zn(II) metal ions. It was previously shown that enhancing these electrostatic interactions by a chemical modification
of surface amino acid residues can lead to a rapid biocomposite formation. However, a chemical modification of
carbohydrate components by periodate oxidation for glycoproteins can serve as an alternative strategy. In the present
study, an industrially important enzyme glucose oxidase (GOx) was selected as a model system. Periodate oxidation
of GOx by 2.5 mM sodium periodate increased negative charge on the enzyme molecule. Biomineralization
experiments with oxidized GOx resulted in higher specific activity, effectiveness factor, and higher thermostability of
the ZIF-8 biocomposites.",
journal = "19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece",
title = "Periodate oxidized glucose oxidase@ZIF-8 nanocomposite",
pages = "138-138",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5753"
}
Ristić, P., Stanišić, M. D., Đokić, V., Balaž, A. M., Mitić, D., Prodanović, R.,& Todorović, T.. (2022). Periodate oxidized glucose oxidase@ZIF-8 nanocomposite. in 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece, 138-138.
https://hdl.handle.net/21.15107/rcub_cherry_5753
Ristić P, Stanišić MD, Đokić V, Balaž AM, Mitić D, Prodanović R, Todorović T. Periodate oxidized glucose oxidase@ZIF-8 nanocomposite. in 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece. 2022;:138-138.
https://hdl.handle.net/21.15107/rcub_cherry_5753 .
Ristić, Predrag, Stanišić, Marija D., Đokić, Veljko, Balaž, Ana Marija, Mitić, Dragana, Prodanović, Radivoje, Todorović, Tamara, "Periodate oxidized glucose oxidase@ZIF-8 nanocomposite" in 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece (2022):138-138,
https://hdl.handle.net/21.15107/rcub_cherry_5753 .

Identification of SARS-CoV-2 Papain-like Protease (PLpro) Inhibitors Using Combined Computational Approach

Senćanski, Milan; Perović, Vladimir; Milićević, Jelena; Todorović, Tamara; Prodanović, Radivoje; Veljković, Veljko; Paessler, Slobodan; Glišić, Sanja

(Wiley-VCH, 2022)

TY  - JOUR
AU  - Senćanski, Milan
AU  - Perović, Vladimir
AU  - Milićević, Jelena
AU  - Todorović, Tamara
AU  - Prodanović, Radivoje
AU  - Veljković, Veljko
AU  - Paessler, Slobodan
AU  - Glišić, Sanja
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5041
AB  - In the currentpandemic,findingan effectivedrugto preventortreatthe infectionis the highestpriority.A rapidand safeapproachto counteractCOVID-19is in silicodrugrepurposing.The SARS-CoV-2PLpropromotesviral replicationand modu-latesthe hostimmunesystem,resultingin inhibitionof thehostantiviralinnateimmuneresponse,and thereforeis anattractivedrugtarget.In this study,we useda combinedinsilicovirtualscreeningfor candidatesfor SARS-CoV-2PLproproteaseinhibitors.We usedthe Informationalspectrummethodappliedfor SmallMoleculesfor searchingthe Drugbankdatabasefollowedby moleculardocking.Afterin silicoscreen-ing of drugspace,we identified44 drugsas potentialSARS-CoV-2PLproinhibitorsthat we proposefor furtherexperimentaltesting.
PB  - Wiley-VCH
T2  - ChemistryOpen
T1  - Identification of SARS-CoV-2 Papain-like Protease (PLpro) Inhibitors Using Combined Computational Approach
VL  - 11
IS  - 2
SP  - e202100248
DO  - 10.1002/open.202100248
ER  - 
@article{
author = "Senćanski, Milan and Perović, Vladimir and Milićević, Jelena and Todorović, Tamara and Prodanović, Radivoje and Veljković, Veljko and Paessler, Slobodan and Glišić, Sanja",
year = "2022",
abstract = "In the currentpandemic,findingan effectivedrugto preventortreatthe infectionis the highestpriority.A rapidand safeapproachto counteractCOVID-19is in silicodrugrepurposing.The SARS-CoV-2PLpropromotesviral replicationand modu-latesthe hostimmunesystem,resultingin inhibitionof thehostantiviralinnateimmuneresponse,and thereforeis anattractivedrugtarget.In this study,we useda combinedinsilicovirtualscreeningfor candidatesfor SARS-CoV-2PLproproteaseinhibitors.We usedthe Informationalspectrummethodappliedfor SmallMoleculesfor searchingthe Drugbankdatabasefollowedby moleculardocking.Afterin silicoscreen-ing of drugspace,we identified44 drugsas potentialSARS-CoV-2PLproinhibitorsthat we proposefor furtherexperimentaltesting.",
publisher = "Wiley-VCH",
journal = "ChemistryOpen",
title = "Identification of SARS-CoV-2 Papain-like Protease (PLpro) Inhibitors Using Combined Computational Approach",
volume = "11",
number = "2",
pages = "e202100248",
doi = "10.1002/open.202100248"
}
Senćanski, M., Perović, V., Milićević, J., Todorović, T., Prodanović, R., Veljković, V., Paessler, S.,& Glišić, S.. (2022). Identification of SARS-CoV-2 Papain-like Protease (PLpro) Inhibitors Using Combined Computational Approach. in ChemistryOpen
Wiley-VCH., 11(2), e202100248.
https://doi.org/10.1002/open.202100248
Senćanski M, Perović V, Milićević J, Todorović T, Prodanović R, Veljković V, Paessler S, Glišić S. Identification of SARS-CoV-2 Papain-like Protease (PLpro) Inhibitors Using Combined Computational Approach. in ChemistryOpen. 2022;11(2):e202100248.
doi:10.1002/open.202100248 .
Senćanski, Milan, Perović, Vladimir, Milićević, Jelena, Todorović, Tamara, Prodanović, Radivoje, Veljković, Veljko, Paessler, Slobodan, Glišić, Sanja, "Identification of SARS-CoV-2 Papain-like Protease (PLpro) Inhibitors Using Combined Computational Approach" in ChemistryOpen, 11, no. 2 (2022):e202100248,
https://doi.org/10.1002/open.202100248 . .
1
9
8
6

Affinity-based isolation of extracellular vesicles by means of single-domain antibodies bound to macroporous methacrylate-based copolymer

Filipović, Lidija; Spasojević, Milica; Prodanović, Radivoje; Korać, Aleksandra; Matijaševic, Suzana; Brajušković, Goran; de Marco, Ario; Popović, Milica M.

(Elsevier, 2022)

TY  - JOUR
AU  - Filipović, Lidija
AU  - Spasojević, Milica
AU  - Prodanović, Radivoje
AU  - Korać, Aleksandra
AU  - Matijaševic, Suzana
AU  - Brajušković, Goran
AU  - de Marco, Ario
AU  - Popović, Milica M.
PY  - 2022
UR  - https://pubmed.ncbi.nlm.nih.gov/35301156/
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5152
AB  - Correct elucidation of physiological and pathological processes mediated by extracellular vesicles (EV) is highly dependent on the reliability of the method used for their purification. Currently available chemical/physical protocols for sample fractionation are time-consuming, often scarcely reproducible and their yields are low. Immuno-capture based approaches could represent an effective purification alternative to obtain homogeneous EV samples. An easy-to-operate chromatography system was set-up for the purification of intact EVs based on a single domain (VHH) antibodies-copolymer matrix suitable for biological samples as different as conditioned cell culture medium and human plasma. Methacrylate-based copolymer is a porous solid support, the chemical versatility of which enables its efficient functionalization with VHHs. The combined analyses of morphological features and biomarker (CD9, CD63 and CD81) presence indicated that the recovered EVs were exosomes. The lipoprotein markers APO-A1 and APO-B were both negative in tested samples. This is the first report demonstrating the successful application of spherical porous methacrylate-based copolymer coupled with VHHs for the exosome isolation from biological fluids. This inexpensive immunoaffinity method has the potential to be applied for the isolation of EVs belonging to different morphological and physiological classes.
PB  - Elsevier
T2  - New Biotechnology
T1  - Affinity-based isolation of extracellular vesicles by means of single-domain antibodies bound to macroporous methacrylate-based copolymer
VL  - 69
SP  - 36
EP  - 48
DO  - 10.1016/j.nbt.2022.03.001
ER  - 
@article{
author = "Filipović, Lidija and Spasojević, Milica and Prodanović, Radivoje and Korać, Aleksandra and Matijaševic, Suzana and Brajušković, Goran and de Marco, Ario and Popović, Milica M.",
year = "2022",
abstract = "Correct elucidation of physiological and pathological processes mediated by extracellular vesicles (EV) is highly dependent on the reliability of the method used for their purification. Currently available chemical/physical protocols for sample fractionation are time-consuming, often scarcely reproducible and their yields are low. Immuno-capture based approaches could represent an effective purification alternative to obtain homogeneous EV samples. An easy-to-operate chromatography system was set-up for the purification of intact EVs based on a single domain (VHH) antibodies-copolymer matrix suitable for biological samples as different as conditioned cell culture medium and human plasma. Methacrylate-based copolymer is a porous solid support, the chemical versatility of which enables its efficient functionalization with VHHs. The combined analyses of morphological features and biomarker (CD9, CD63 and CD81) presence indicated that the recovered EVs were exosomes. The lipoprotein markers APO-A1 and APO-B were both negative in tested samples. This is the first report demonstrating the successful application of spherical porous methacrylate-based copolymer coupled with VHHs for the exosome isolation from biological fluids. This inexpensive immunoaffinity method has the potential to be applied for the isolation of EVs belonging to different morphological and physiological classes.",
publisher = "Elsevier",
journal = "New Biotechnology",
title = "Affinity-based isolation of extracellular vesicles by means of single-domain antibodies bound to macroporous methacrylate-based copolymer",
volume = "69",
pages = "36-48",
doi = "10.1016/j.nbt.2022.03.001"
}
Filipović, L., Spasojević, M., Prodanović, R., Korać, A., Matijaševic, S., Brajušković, G., de Marco, A.,& Popović, M. M.. (2022). Affinity-based isolation of extracellular vesicles by means of single-domain antibodies bound to macroporous methacrylate-based copolymer. in New Biotechnology
Elsevier., 69, 36-48.
https://doi.org/10.1016/j.nbt.2022.03.001
Filipović L, Spasojević M, Prodanović R, Korać A, Matijaševic S, Brajušković G, de Marco A, Popović MM. Affinity-based isolation of extracellular vesicles by means of single-domain antibodies bound to macroporous methacrylate-based copolymer. in New Biotechnology. 2022;69:36-48.
doi:10.1016/j.nbt.2022.03.001 .
Filipović, Lidija, Spasojević, Milica, Prodanović, Radivoje, Korać, Aleksandra, Matijaševic, Suzana, Brajušković, Goran, de Marco, Ario, Popović, Milica M., "Affinity-based isolation of extracellular vesicles by means of single-domain antibodies bound to macroporous methacrylate-based copolymer" in New Biotechnology, 69 (2022):36-48,
https://doi.org/10.1016/j.nbt.2022.03.001 . .
16
17
11

Supplementary information for the article: Filipović, L.; Spasojević, M.; Prodanović, R.; Korać, A.; Matijaševic, S.; Brajušković, G.; de Marco, A.; Popović, M. Affinity-Based Isolation of Extracellular Vesicles by Means of Single-Domain Antibodies Bound to Macroporous Methacrylate-Based Copolymer. New Biotechnology 2022, 69, 36–48. https://doi.org/10.1016/j.nbt.2022.03.001.

Filipović, Lidija; Spasojević, Milica; Prodanović, Radivoje; Korać, Aleksandra; Matijaševic, Suzana; Brajušković, Goran; de Marco, Ario; Popović, Milica M.

(Elsevier, 2022)

TY  - DATA
AU  - Filipović, Lidija
AU  - Spasojević, Milica
AU  - Prodanović, Radivoje
AU  - Korać, Aleksandra
AU  - Matijaševic, Suzana
AU  - Brajušković, Goran
AU  - de Marco, Ario
AU  - Popović, Milica M.
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5152
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5153
AB  - Correct elucidation of physiological and pathological processes mediated by extracellular vesicles (EV) is highly dependent on the reliability of the method used for their purification. Currently available chemical/physical protocols for sample fractionation are time-consuming, often scarcely reproducible and their yields are low. Immuno-capture based approaches could represent an effective purification alternative to obtain homogeneous EV samples. An easy-to-operate chromatography system was set-up for the purification of intact EVs based on a single domain (VHH) antibodies-copolymer matrix suitable for biological samples as different as conditioned cell culture medium and human plasma. Methacrylate-based copolymer is a porous solid support, the chemical versatility of which enables its efficient functionalization with VHHs. The combined analyses of morphological features and biomarker (CD9, CD63 and CD81) presence indicated that the recovered EVs were exosomes. The lipoprotein markers APO-A1 and APO-B were both negative in tested samples. This is the first report demonstrating the successful application of spherical porous methacrylate-based copolymer coupled with VHHs for the exosome isolation from biological fluids. This inexpensive immunoaffinity method has the potential to be applied for the isolation of EVs belonging to different morphological and physiological classes.
PB  - Elsevier
T2  - New Biotechnology
T1  - Supplementary information for the article: Filipović, L.; Spasojević, M.; Prodanović, R.; Korać, A.; Matijaševic, S.; Brajušković, G.; de Marco, A.; Popović, M. Affinity-Based Isolation of Extracellular Vesicles by Means of Single-Domain Antibodies Bound to Macroporous Methacrylate-Based Copolymer. New Biotechnology 2022, 69, 36–48. https://doi.org/10.1016/j.nbt.2022.03.001.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5153
ER  - 
@misc{
author = "Filipović, Lidija and Spasojević, Milica and Prodanović, Radivoje and Korać, Aleksandra and Matijaševic, Suzana and Brajušković, Goran and de Marco, Ario and Popović, Milica M.",
year = "2022",
abstract = "Correct elucidation of physiological and pathological processes mediated by extracellular vesicles (EV) is highly dependent on the reliability of the method used for their purification. Currently available chemical/physical protocols for sample fractionation are time-consuming, often scarcely reproducible and their yields are low. Immuno-capture based approaches could represent an effective purification alternative to obtain homogeneous EV samples. An easy-to-operate chromatography system was set-up for the purification of intact EVs based on a single domain (VHH) antibodies-copolymer matrix suitable for biological samples as different as conditioned cell culture medium and human plasma. Methacrylate-based copolymer is a porous solid support, the chemical versatility of which enables its efficient functionalization with VHHs. The combined analyses of morphological features and biomarker (CD9, CD63 and CD81) presence indicated that the recovered EVs were exosomes. The lipoprotein markers APO-A1 and APO-B were both negative in tested samples. This is the first report demonstrating the successful application of spherical porous methacrylate-based copolymer coupled with VHHs for the exosome isolation from biological fluids. This inexpensive immunoaffinity method has the potential to be applied for the isolation of EVs belonging to different morphological and physiological classes.",
publisher = "Elsevier",
journal = "New Biotechnology",
title = "Supplementary information for the article: Filipović, L.; Spasojević, M.; Prodanović, R.; Korać, A.; Matijaševic, S.; Brajušković, G.; de Marco, A.; Popović, M. Affinity-Based Isolation of Extracellular Vesicles by Means of Single-Domain Antibodies Bound to Macroporous Methacrylate-Based Copolymer. New Biotechnology 2022, 69, 36–48. https://doi.org/10.1016/j.nbt.2022.03.001.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5153"
}
Filipović, L., Spasojević, M., Prodanović, R., Korać, A., Matijaševic, S., Brajušković, G., de Marco, A.,& Popović, M. M.. (2022). Supplementary information for the article: Filipović, L.; Spasojević, M.; Prodanović, R.; Korać, A.; Matijaševic, S.; Brajušković, G.; de Marco, A.; Popović, M. Affinity-Based Isolation of Extracellular Vesicles by Means of Single-Domain Antibodies Bound to Macroporous Methacrylate-Based Copolymer. New Biotechnology 2022, 69, 36–48. https://doi.org/10.1016/j.nbt.2022.03.001.. in New Biotechnology
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_5153
Filipović L, Spasojević M, Prodanović R, Korać A, Matijaševic S, Brajušković G, de Marco A, Popović MM. Supplementary information for the article: Filipović, L.; Spasojević, M.; Prodanović, R.; Korać, A.; Matijaševic, S.; Brajušković, G.; de Marco, A.; Popović, M. Affinity-Based Isolation of Extracellular Vesicles by Means of Single-Domain Antibodies Bound to Macroporous Methacrylate-Based Copolymer. New Biotechnology 2022, 69, 36–48. https://doi.org/10.1016/j.nbt.2022.03.001.. in New Biotechnology. 2022;.
https://hdl.handle.net/21.15107/rcub_cherry_5153 .
Filipović, Lidija, Spasojević, Milica, Prodanović, Radivoje, Korać, Aleksandra, Matijaševic, Suzana, Brajušković, Goran, de Marco, Ario, Popović, Milica M., "Supplementary information for the article: Filipović, L.; Spasojević, M.; Prodanović, R.; Korać, A.; Matijaševic, S.; Brajušković, G.; de Marco, A.; Popović, M. Affinity-Based Isolation of Extracellular Vesicles by Means of Single-Domain Antibodies Bound to Macroporous Methacrylate-Based Copolymer. New Biotechnology 2022, 69, 36–48. https://doi.org/10.1016/j.nbt.2022.03.001." in New Biotechnology (2022),
https://hdl.handle.net/21.15107/rcub_cherry_5153 .

Immobilization of Horseradish Peroxidase on Macroporous Glycidyl-Based Copolymers with Different Surface Characteristics for the Removal of Phenol

Pantić, Nevena; Spasojević, Milica; Stojanović, Željko; Veljović, Đorđe; Krstić, Jugoslav; Balaž, Ana Marija; Prodanović, Radivoje; Prodanović, Olivera

(Springer, 2022)

TY  - JOUR
AU  - Pantić, Nevena
AU  - Spasojević, Milica
AU  - Stojanović, Željko
AU  - Veljović, Đorđe
AU  - Krstić, Jugoslav
AU  - Balaž, Ana Marija
AU  - Prodanović, Radivoje
AU  - Prodanović, Olivera
PY  - 2022
UR  - https://link.springer.com/article/10.1007/s10924-021-02364-3
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5205
AB  - Novel macroporous copolymers of glycidyl methacrylate and ethylene glycol dimethacrylate with mean pore size diameters ranging from 150 to 310 nm were synthesized by dispersion polymerization and modified with ethylenediamine. The glutaraldehyde and periodate method were employed to immobilize horseradish peroxidase (HRP) onto these carriers. The activity of the immobilized enzyme was greatly affected by the pore size of the carrier. The highest specific activities of 9.65 and 8.94 U/g of dry weight were obtained for HRP immobilized by the periodate-route onto poly(GMA‐co‐EGDMA) carriers with pore size diameters of 234 and 297 nm, respectively. Stability studies showed an improved operational stability of immobilized peroxidase at 65 °C and in an organic solvent. HRP immobilized on a copolymer with a pore size of 234 nm, showing the highest specific activity and good stability, had higher activities at almost all pH values than the native enzyme and the increased Km value for pyrogallol oxidation. Immobilized HRP retained 80% of its original activity after five consecutive cycles of the pyrogallol oxidation and 98% of its initial activity in a storage stability study. Enzyme immobilized onto the macroporous copolymer with the pore size diameter of 234 nm showed a substantial degree of phenol removal achieved by immobilized peroxidase.
PB  - Springer
T2  - Journal of Polymers and the Environment
T1  - Immobilization of Horseradish Peroxidase on Macroporous Glycidyl-Based Copolymers with Different Surface Characteristics for the Removal of Phenol
VL  - 30
SP  - 3005
EP  - 3020
DO  - 10.1007/s10924-021-02364-3
ER  - 
@article{
author = "Pantić, Nevena and Spasojević, Milica and Stojanović, Željko and Veljović, Đorđe and Krstić, Jugoslav and Balaž, Ana Marija and Prodanović, Radivoje and Prodanović, Olivera",
year = "2022",
abstract = "Novel macroporous copolymers of glycidyl methacrylate and ethylene glycol dimethacrylate with mean pore size diameters ranging from 150 to 310 nm were synthesized by dispersion polymerization and modified with ethylenediamine. The glutaraldehyde and periodate method were employed to immobilize horseradish peroxidase (HRP) onto these carriers. The activity of the immobilized enzyme was greatly affected by the pore size of the carrier. The highest specific activities of 9.65 and 8.94 U/g of dry weight were obtained for HRP immobilized by the periodate-route onto poly(GMA‐co‐EGDMA) carriers with pore size diameters of 234 and 297 nm, respectively. Stability studies showed an improved operational stability of immobilized peroxidase at 65 °C and in an organic solvent. HRP immobilized on a copolymer with a pore size of 234 nm, showing the highest specific activity and good stability, had higher activities at almost all pH values than the native enzyme and the increased Km value for pyrogallol oxidation. Immobilized HRP retained 80% of its original activity after five consecutive cycles of the pyrogallol oxidation and 98% of its initial activity in a storage stability study. Enzyme immobilized onto the macroporous copolymer with the pore size diameter of 234 nm showed a substantial degree of phenol removal achieved by immobilized peroxidase.",
publisher = "Springer",
journal = "Journal of Polymers and the Environment",
title = "Immobilization of Horseradish Peroxidase on Macroporous Glycidyl-Based Copolymers with Different Surface Characteristics for the Removal of Phenol",
volume = "30",
pages = "3005-3020",
doi = "10.1007/s10924-021-02364-3"
}
Pantić, N., Spasojević, M., Stojanović, Ž., Veljović, Đ., Krstić, J., Balaž, A. M., Prodanović, R.,& Prodanović, O.. (2022). Immobilization of Horseradish Peroxidase on Macroporous Glycidyl-Based Copolymers with Different Surface Characteristics for the Removal of Phenol. in Journal of Polymers and the Environment
Springer., 30, 3005-3020.
https://doi.org/10.1007/s10924-021-02364-3
Pantić N, Spasojević M, Stojanović Ž, Veljović Đ, Krstić J, Balaž AM, Prodanović R, Prodanović O. Immobilization of Horseradish Peroxidase on Macroporous Glycidyl-Based Copolymers with Different Surface Characteristics for the Removal of Phenol. in Journal of Polymers and the Environment. 2022;30:3005-3020.
doi:10.1007/s10924-021-02364-3 .
Pantić, Nevena, Spasojević, Milica, Stojanović, Željko, Veljović, Đorđe, Krstić, Jugoslav, Balaž, Ana Marija, Prodanović, Radivoje, Prodanović, Olivera, "Immobilization of Horseradish Peroxidase on Macroporous Glycidyl-Based Copolymers with Different Surface Characteristics for the Removal of Phenol" in Journal of Polymers and the Environment, 30 (2022):3005-3020,
https://doi.org/10.1007/s10924-021-02364-3 . .
5
5
4

The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance

Stanišić, Marija D.; Popović Kokar, Nikolina; Ristić, Predrag; Balaž, Ana Marija; Ognjanović, Miloš; Đokić, Veljko R.; Prodanović, Radivoje; Todorović, Tamara

(MDPI, 2022)

TY  - JOUR
AU  - Stanišić, Marija D.
AU  - Popović Kokar, Nikolina
AU  - Ristić, Predrag
AU  - Balaž, Ana Marija
AU  - Ognjanović, Miloš
AU  - Đokić, Veljko R.
AU  - Prodanović, Radivoje
AU  - Todorović, Tamara
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5678
AB  - Many articles in the literature deal with horseradish peroxidase (HRP) biomineralization, but none pay attention to the isoenzyme composition of commercial HRP or the influence of the carbohydrate component of the protein molecule on the biomineralization process. To study the impact of these factors, we performed periodate oxidation of commercial HRP and a purified HRP-C isoform for biomineralization within ZIF-8. With purified HRP, enzyme@ZIF-8 biocomposites with higher activity were obtained, while periodate oxidation of the carbohydrate component of both commercial HRP and purified HRP-C yields biocomposites with very high activity in acetate buffer that does not degrade the ZIF-8 structure. Using acetate instead of phosphate buffer can prevent the false high activity of HRP@ZIF-8 biocomposites caused by the degradation of ZIF-8 coating. At the same time, purification and especially oxidation of the carbohydrate component of enzymes prior to biomineralization lead to significantly improved activity of the biocomposites.
PB  - MDPI
T2  - Polymers
T1  - The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance
VL  - 14
IS  - 22
SP  - 4834
DO  - 10.3390/polym14224834
ER  - 
@article{
author = "Stanišić, Marija D. and Popović Kokar, Nikolina and Ristić, Predrag and Balaž, Ana Marija and Ognjanović, Miloš and Đokić, Veljko R. and Prodanović, Radivoje and Todorović, Tamara",
year = "2022",
abstract = "Many articles in the literature deal with horseradish peroxidase (HRP) biomineralization, but none pay attention to the isoenzyme composition of commercial HRP or the influence of the carbohydrate component of the protein molecule on the biomineralization process. To study the impact of these factors, we performed periodate oxidation of commercial HRP and a purified HRP-C isoform for biomineralization within ZIF-8. With purified HRP, enzyme@ZIF-8 biocomposites with higher activity were obtained, while periodate oxidation of the carbohydrate component of both commercial HRP and purified HRP-C yields biocomposites with very high activity in acetate buffer that does not degrade the ZIF-8 structure. Using acetate instead of phosphate buffer can prevent the false high activity of HRP@ZIF-8 biocomposites caused by the degradation of ZIF-8 coating. At the same time, purification and especially oxidation of the carbohydrate component of enzymes prior to biomineralization lead to significantly improved activity of the biocomposites.",
publisher = "MDPI",
journal = "Polymers",
title = "The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance",
volume = "14",
number = "22",
pages = "4834",
doi = "10.3390/polym14224834"
}
Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2022). The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance. in Polymers
MDPI., 14(22), 4834.
https://doi.org/10.3390/polym14224834
Stanišić MD, Popović Kokar N, Ristić P, Balaž AM, Ognjanović M, Đokić VR, Prodanović R, Todorović T. The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance. in Polymers. 2022;14(22):4834.
doi:10.3390/polym14224834 .
Stanišić, Marija D., Popović Kokar, Nikolina, Ristić, Predrag, Balaž, Ana Marija, Ognjanović, Miloš, Đokić, Veljko R., Prodanović, Radivoje, Todorović, Tamara, "The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance" in Polymers, 14, no. 22 (2022):4834,
https://doi.org/10.3390/polym14224834 . .
4
2
1

Primary research data for the article: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T. R.. (2022). The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance. in Polymers MDPI., 14(22), 4834. https://doi.org/10.3390/polym14224834

Stanišić, Marija D.; Popović Kokar, Nikolina; Ristić, Predrag; Balaž, Ana Marija; Ognjanović, Miloš; Đokić, Veljko R.; Prodanović, Radivoje; Todorović, Tamara

(2022)

TY  - DATA
AU  - Stanišić, Marija D.
AU  - Popović Kokar, Nikolina
AU  - Ristić, Predrag
AU  - Balaž, Ana Marija
AU  - Ognjanović, Miloš
AU  - Đokić, Veljko R.
AU  - Prodanović, Radivoje
AU  - Todorović, Tamara
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5740
T1  - Primary research data for the article: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T. R.. (2022). The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance. in Polymers
MDPI., 14(22), 4834.
https://doi.org/10.3390/polym14224834
VL  - 14
IS  - 22
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5740
ER  - 
@misc{
author = "Stanišić, Marija D. and Popović Kokar, Nikolina and Ristić, Predrag and Balaž, Ana Marija and Ognjanović, Miloš and Đokić, Veljko R. and Prodanović, Radivoje and Todorović, Tamara",
year = "2022",
title = "Primary research data for the article: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T. R.. (2022). The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance. in Polymers
MDPI., 14(22), 4834.
https://doi.org/10.3390/polym14224834",
volume = "14",
number = "22",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5740"
}
Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2022). Primary research data for the article: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T. R.. (2022). The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance. in Polymers
MDPI., 14(22), 4834.
https://doi.org/10.3390/polym14224834. , 14(22).
https://hdl.handle.net/21.15107/rcub_cherry_5740
Stanišić MD, Popović Kokar N, Ristić P, Balaž AM, Ognjanović M, Đokić VR, Prodanović R, Todorović T. Primary research data for the article: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T. R.. (2022). The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance. in Polymers
MDPI., 14(22), 4834.
https://doi.org/10.3390/polym14224834. 2022;14(22).
https://hdl.handle.net/21.15107/rcub_cherry_5740 .
Stanišić, Marija D., Popović Kokar, Nikolina, Ristić, Predrag, Balaž, Ana Marija, Ognjanović, Miloš, Đokić, Veljko R., Prodanović, Radivoje, Todorović, Tamara, "Primary research data for the article: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T. R.. (2022). The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance. in Polymers
MDPI., 14(22), 4834.
https://doi.org/10.3390/polym14224834", 14, no. 22 (2022),
https://hdl.handle.net/21.15107/rcub_cherry_5740 .

Periodate oxidized horseradish peroxidase@ZIF-8 nanocomposite

Stanišić, Marija D.; Ristić, Predrag; Đokić, Veljko; Balaž, Ana Marija; Prodanović, Radivoje; Todorović, Tamara

(2022)

TY  - CONF
AU  - Stanišić, Marija D.
AU  - Ristić, Predrag
AU  - Đokić, Veljko
AU  - Balaž, Ana Marija
AU  - Prodanović, Radivoje
AU  - Todorović, Tamara
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5752
AB  - Metal-organic frameworks (MOFs) are a class of materials well-known for their high degree of crystallinity and
ultrahigh porosity. Modular synthesis from organic linkers and metal nodes allows for precise control of structure,
pore size and chemical functionality of MOFs. Recently, MOFs have been explored for their potential to form novel
biocomposites with proteins by a process termed biomimetic mineralization. These novel MOF biocomposites show
great promise for application to industrial biocatalysis where strategies for enhancing enzyme stability are of
significant interest. The protective capacity and applications of biomimetically mineralized biomacromolecule zeolitic
imidazolate framework (ZIF-8) composites are likely dependent on the charge of the biomolecule and the topology
of the mineralized ZIF-8 coating. Herein, we identify conditions to reliably yield the porous periodate oxidized
horseradish peroxidase@ZIF-8 sodalite topology biocomposite in preference to other more dense phases.
C3  - 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece
T1  - Periodate oxidized horseradish peroxidase@ZIF-8 nanocomposite
SP  - 138
EP  - 138
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5752
ER  - 
@conference{
author = "Stanišić, Marija D. and Ristić, Predrag and Đokić, Veljko and Balaž, Ana Marija and Prodanović, Radivoje and Todorović, Tamara",
year = "2022",
abstract = "Metal-organic frameworks (MOFs) are a class of materials well-known for their high degree of crystallinity and
ultrahigh porosity. Modular synthesis from organic linkers and metal nodes allows for precise control of structure,
pore size and chemical functionality of MOFs. Recently, MOFs have been explored for their potential to form novel
biocomposites with proteins by a process termed biomimetic mineralization. These novel MOF biocomposites show
great promise for application to industrial biocatalysis where strategies for enhancing enzyme stability are of
significant interest. The protective capacity and applications of biomimetically mineralized biomacromolecule zeolitic
imidazolate framework (ZIF-8) composites are likely dependent on the charge of the biomolecule and the topology
of the mineralized ZIF-8 coating. Herein, we identify conditions to reliably yield the porous periodate oxidized
horseradish peroxidase@ZIF-8 sodalite topology biocomposite in preference to other more dense phases.",
journal = "19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece",
title = "Periodate oxidized horseradish peroxidase@ZIF-8 nanocomposite",
pages = "138-138",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5752"
}
Stanišić, M. D., Ristić, P., Đokić, V., Balaž, A. M., Prodanović, R.,& Todorović, T.. (2022). Periodate oxidized horseradish peroxidase@ZIF-8 nanocomposite. in 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece, 138-138.
https://hdl.handle.net/21.15107/rcub_cherry_5752
Stanišić MD, Ristić P, Đokić V, Balaž AM, Prodanović R, Todorović T. Periodate oxidized horseradish peroxidase@ZIF-8 nanocomposite. in 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece. 2022;:138-138.
https://hdl.handle.net/21.15107/rcub_cherry_5752 .
Stanišić, Marija D., Ristić, Predrag, Đokić, Veljko, Balaž, Ana Marija, Prodanović, Radivoje, Todorović, Tamara, "Periodate oxidized horseradish peroxidase@ZIF-8 nanocomposite" in 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece (2022):138-138,
https://hdl.handle.net/21.15107/rcub_cherry_5752 .

Materijal za studente sa seminara projekta SYMBIOSIS

Todorović, Tamara; Prodanović, Radivoje; Senćanski, Milan; Balaž, Ana Marija; Ristić, Predrag; Stanišić, Marija D.

(2022)

TY  - GEN
AU  - Todorović, Tamara
AU  - Prodanović, Radivoje
AU  - Senćanski, Milan
AU  - Balaž, Ana Marija
AU  - Ristić, Predrag
AU  - Stanišić, Marija D.
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5755
T2  - Seminar za studente, Beograd, 28. maj 2022.
T1  - Materijal za studente sa seminara projekta SYMBIOSIS
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5755
ER  - 
@misc{
author = "Todorović, Tamara and Prodanović, Radivoje and Senćanski, Milan and Balaž, Ana Marija and Ristić, Predrag and Stanišić, Marija D.",
year = "2022",
journal = "Seminar za studente, Beograd, 28. maj 2022.",
title = "Materijal za studente sa seminara projekta SYMBIOSIS",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5755"
}
Todorović, T., Prodanović, R., Senćanski, M., Balaž, A. M., Ristić, P.,& Stanišić, M. D.. (2022). Materijal za studente sa seminara projekta SYMBIOSIS. in Seminar za studente, Beograd, 28. maj 2022..
https://hdl.handle.net/21.15107/rcub_cherry_5755
Todorović T, Prodanović R, Senćanski M, Balaž AM, Ristić P, Stanišić MD. Materijal za studente sa seminara projekta SYMBIOSIS. in Seminar za studente, Beograd, 28. maj 2022.. 2022;.
https://hdl.handle.net/21.15107/rcub_cherry_5755 .
Todorović, Tamara, Prodanović, Radivoje, Senćanski, Milan, Balaž, Ana Marija, Ristić, Predrag, Stanišić, Marija D., "Materijal za studente sa seminara projekta SYMBIOSIS" in Seminar za studente, Beograd, 28. maj 2022. (2022),
https://hdl.handle.net/21.15107/rcub_cherry_5755 .

Production of fructose and gluconic acid from sucrose with cross-linked yeast cell walls expressing glucose oxidase on the surface

Kovačević, Gordana; Elgahwash, Reyadh Gomah Amar; Blažić, Marija; Pantić, Nevena; Prodanović, Olivera; Balaž, Ana Marija; Prodanović, Radivoje

(Elsevier, 2022)

TY  - JOUR
AU  - Kovačević, Gordana
AU  - Elgahwash, Reyadh Gomah Amar
AU  - Blažić, Marija
AU  - Pantić, Nevena
AU  - Prodanović, Olivera
AU  - Balaž, Ana Marija
AU  - Prodanović, Radivoje
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5979
AB  - Saccharomyces cerevisiae, known as bakers’ yeast, is one of the most utilized yeasts in industry. Several enzymes that are naturally produced by yeast, such as invertase and catalase, combined with heterologously expressed glucose oxidase (GOx), represent the enzyme machinery for fructose and gluconic acid production. Therefore, we have used yeast cell walls with expressed glucose oxidase as a platform for crosslinking with invertase and catalase to create biocatalyst cells for the high yield sucrose conversion. Using 5% (w/v) suspension of cross-linked yeast cell walls in 0.15 M sucrose solution, 1.86 g L−1 h−1 of gluconic acid has been obtained using wt-GOx, while mutant A2-GOx produced 2.91 g L−1 h−1 of gluconic acid. Increasing the concentration of modified yeast cells walls to 10% (w/v) we were able to obtain almost 100% conversion of glucose to gluconic acid using A2-GOx in the first cycle. Reusing the modified cells walls in three consecutive cycles, conversion dropped to approximately 70% using A2-GOx and 40% using wt-GOx.
PB  - Elsevier
T2  - Molecular Catalysis
T1  - Production of fructose and gluconic acid from sucrose with cross-linked yeast cell walls expressing glucose oxidase on the surface
VL  - 522
IS  - 112215
DO  - 10.1016/j.mcat.2022.112215
ER  - 
@article{
author = "Kovačević, Gordana and Elgahwash, Reyadh Gomah Amar and Blažić, Marija and Pantić, Nevena and Prodanović, Olivera and Balaž, Ana Marija and Prodanović, Radivoje",
year = "2022",
abstract = "Saccharomyces cerevisiae, known as bakers’ yeast, is one of the most utilized yeasts in industry. Several enzymes that are naturally produced by yeast, such as invertase and catalase, combined with heterologously expressed glucose oxidase (GOx), represent the enzyme machinery for fructose and gluconic acid production. Therefore, we have used yeast cell walls with expressed glucose oxidase as a platform for crosslinking with invertase and catalase to create biocatalyst cells for the high yield sucrose conversion. Using 5% (w/v) suspension of cross-linked yeast cell walls in 0.15 M sucrose solution, 1.86 g L−1 h−1 of gluconic acid has been obtained using wt-GOx, while mutant A2-GOx produced 2.91 g L−1 h−1 of gluconic acid. Increasing the concentration of modified yeast cells walls to 10% (w/v) we were able to obtain almost 100% conversion of glucose to gluconic acid using A2-GOx in the first cycle. Reusing the modified cells walls in three consecutive cycles, conversion dropped to approximately 70% using A2-GOx and 40% using wt-GOx.",
publisher = "Elsevier",
journal = "Molecular Catalysis",
title = "Production of fructose and gluconic acid from sucrose with cross-linked yeast cell walls expressing glucose oxidase on the surface",
volume = "522",
number = "112215",
doi = "10.1016/j.mcat.2022.112215"
}
Kovačević, G., Elgahwash, R. G. A., Blažić, M., Pantić, N., Prodanović, O., Balaž, A. M.,& Prodanović, R.. (2022). Production of fructose and gluconic acid from sucrose with cross-linked yeast cell walls expressing glucose oxidase on the surface. in Molecular Catalysis
Elsevier., 522(112215).
https://doi.org/10.1016/j.mcat.2022.112215
Kovačević G, Elgahwash RGA, Blažić M, Pantić N, Prodanović O, Balaž AM, Prodanović R. Production of fructose and gluconic acid from sucrose with cross-linked yeast cell walls expressing glucose oxidase on the surface. in Molecular Catalysis. 2022;522(112215).
doi:10.1016/j.mcat.2022.112215 .
Kovačević, Gordana, Elgahwash, Reyadh Gomah Amar, Blažić, Marija, Pantić, Nevena, Prodanović, Olivera, Balaž, Ana Marija, Prodanović, Radivoje, "Production of fructose and gluconic acid from sucrose with cross-linked yeast cell walls expressing glucose oxidase on the surface" in Molecular Catalysis, 522, no. 112215 (2022),
https://doi.org/10.1016/j.mcat.2022.112215 . .
1
3

Non-conventional expression of recombinant chitinase A originating from Bacillus licheniformis DSM8785, in Saccharomyces cerevisiae INVSc1: Scientific paper

Menghiu, Gheorghita; Prodanović, Radivoje; Blažić, Marija; Mincea, Manuela; Moraru, Cristina; Ostafe, Vasile

(2022)

TY  - JOUR
AU  - Menghiu, Gheorghita
AU  - Prodanović, Radivoje
AU  - Blažić, Marija
AU  - Mincea, Manuela
AU  - Moraru, Cristina
AU  - Ostafe, Vasile
PY  - 2022
UR  - https://www.shd-pub.org.rs/index.php/JSCS/article/view/11169
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5981
AB  - Chitinases are glycosyl hydrolases, that cleave the β-1,4 linkage between N-acetyl glucosamines present in chitin chains. Chitin is the second most abundant polysaccharide on Earth after cellulose, and it is produced in the exoskeleton of crustaceans and insects, and in some parts of the cell walls of fungi. Enzymatic development and the extraction of superior derivatives from chitin wastes – such as chitooligosaccharides with vast importance in the medi­cal and biofuels industry – lead to the necessity of creating chitinases using dif­ferent strains of organisms. In this paper, the chiA gene from the Bacillus lich­eniformis DSM8785 encoding chitinase A (ChiA) with C-terminal hexahis­tid­ine tag was cloned and expressed in the extracellular expression system pYES2 from Saccharomyces cerevisiae INVSc1 as a hyperglycosylated enzyme. The production of recombinant ChiA was successfully confirmed by dot blotting, using anti-His antibodies. The optimal time of expression was identified to be 24 h when galactose was added only at the beginning of fermentation, the chit­in­ase activity starting to decrease after this threshold. Nevertheless, in another experiment, when galactose was added every 24 h for 72 h, the expression con­tinued for the entire period. The purified enzyme was detected, using sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE), as a het­ero­geneous diffuse band between 80 and 180 kDa. The molecular mass of the same ChiA enzyme expressed in Pichia pastoris KM71H and Escherichia coli BL21 (DE3) was compared using SDS-PAGE with ChiA expressed in S. cere­visiae INVSc1. The activity of ChiA was determined using the fluorogenic substrate, 4-methylumbelliferyl β-d-N,N,N-triacetylchitotrioside (4MUTC). Using a bioinformatics simulation, the number of the glycolsylation sites of the ChiA gene sequence and the proximity of these sites to the alpha factor sequ­ence were hypothesized to be a possible reason for which ChiA enzyme was internally expressed.
T2  - Journal of the Serbian Chemical Society
T1  - Non-conventional expression of recombinant chitinase A originating from Bacillus licheniformis DSM8785, in Saccharomyces cerevisiae INVSc1: Scientific paper
VL  - 87
IS  - 6
SP  - 677
EP  - 692
DO  - 10.2298/JSC210913017M
ER  - 
@article{
author = "Menghiu, Gheorghita and Prodanović, Radivoje and Blažić, Marija and Mincea, Manuela and Moraru, Cristina and Ostafe, Vasile",
year = "2022",
abstract = "Chitinases are glycosyl hydrolases, that cleave the β-1,4 linkage between N-acetyl glucosamines present in chitin chains. Chitin is the second most abundant polysaccharide on Earth after cellulose, and it is produced in the exoskeleton of crustaceans and insects, and in some parts of the cell walls of fungi. Enzymatic development and the extraction of superior derivatives from chitin wastes – such as chitooligosaccharides with vast importance in the medi­cal and biofuels industry – lead to the necessity of creating chitinases using dif­ferent strains of organisms. In this paper, the chiA gene from the Bacillus lich­eniformis DSM8785 encoding chitinase A (ChiA) with C-terminal hexahis­tid­ine tag was cloned and expressed in the extracellular expression system pYES2 from Saccharomyces cerevisiae INVSc1 as a hyperglycosylated enzyme. The production of recombinant ChiA was successfully confirmed by dot blotting, using anti-His antibodies. The optimal time of expression was identified to be 24 h when galactose was added only at the beginning of fermentation, the chit­in­ase activity starting to decrease after this threshold. Nevertheless, in another experiment, when galactose was added every 24 h for 72 h, the expression con­tinued for the entire period. The purified enzyme was detected, using sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE), as a het­ero­geneous diffuse band between 80 and 180 kDa. The molecular mass of the same ChiA enzyme expressed in Pichia pastoris KM71H and Escherichia coli BL21 (DE3) was compared using SDS-PAGE with ChiA expressed in S. cere­visiae INVSc1. The activity of ChiA was determined using the fluorogenic substrate, 4-methylumbelliferyl β-d-N,N,N-triacetylchitotrioside (4MUTC). Using a bioinformatics simulation, the number of the glycolsylation sites of the ChiA gene sequence and the proximity of these sites to the alpha factor sequ­ence were hypothesized to be a possible reason for which ChiA enzyme was internally expressed.",
journal = "Journal of the Serbian Chemical Society",
title = "Non-conventional expression of recombinant chitinase A originating from Bacillus licheniformis DSM8785, in Saccharomyces cerevisiae INVSc1: Scientific paper",
volume = "87",
number = "6",
pages = "677-692",
doi = "10.2298/JSC210913017M"
}
Menghiu, G., Prodanović, R., Blažić, M., Mincea, M., Moraru, C.,& Ostafe, V.. (2022). Non-conventional expression of recombinant chitinase A originating from Bacillus licheniformis DSM8785, in Saccharomyces cerevisiae INVSc1: Scientific paper. in Journal of the Serbian Chemical Society, 87(6), 677-692.
https://doi.org/10.2298/JSC210913017M
Menghiu G, Prodanović R, Blažić M, Mincea M, Moraru C, Ostafe V. Non-conventional expression of recombinant chitinase A originating from Bacillus licheniformis DSM8785, in Saccharomyces cerevisiae INVSc1: Scientific paper. in Journal of the Serbian Chemical Society. 2022;87(6):677-692.
doi:10.2298/JSC210913017M .
Menghiu, Gheorghita, Prodanović, Radivoje, Blažić, Marija, Mincea, Manuela, Moraru, Cristina, Ostafe, Vasile, "Non-conventional expression of recombinant chitinase A originating from Bacillus licheniformis DSM8785, in Saccharomyces cerevisiae INVSc1: Scientific paper" in Journal of the Serbian Chemical Society, 87, no. 6 (2022):677-692,
https://doi.org/10.2298/JSC210913017M . .

Optimization of phenol removal with horseradish peroxidase encapsulated within tyramine-alginate micro-beads

Pantić, Nevena; Prodanović, Radivoje; Ilić Đurđić, Karla; Polović, Natalija; Spasojević, Milica; Prodanović, Olivera

(Elsevier, 2021)

TY  - JOUR
AU  - Pantić, Nevena
AU  - Prodanović, Radivoje
AU  - Ilić Đurđić, Karla
AU  - Polović, Natalija
AU  - Spasojević, Milica
AU  - Prodanović, Olivera
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4768
AB  - Removal of phenolic compounds from water is of major interest over the years, since they are one of the most common pollutants in aqueous systems. Horseradish peroxidase (HRP) is the most investigated biocatalyst for this purpose. Inactivation of the enzyme is a major issue which can be successfully overcome by the enzyme immobilization on different polymers. In this study, tyramine-alginate micro-beads were used as carriers for the immobilization of horseradish peroxidase. The effect of the oxidation degree of tyramine-alginates on a specific activity of the enzyme was tested. An increase in the concentration of oxidized alginate from 2.5 to 20% resulted in a gradual increase in the specific activity from 0.05 to 0.67 U/mL. HRP immobilized within these micro-beads was tested for the phenol removal in a batch reactor. Reaction conditions were optimized to achieve a high removal efficiency and substantial reusability of the system. In this study, for the first time, an internal generation of hydrogen peroxide from glucose and glucose oxidase was employed in the phenol removal process with HRP immobilized on tyramine-alginate. Within 6 h of repeated use 96% of phenol was removed when the system for internal delivery of H2O2, composed of 0.187 U/mL of glucose oxidase and 4 mmol/L of glucose was employed. A common straightforward addition of hydrogen peroxide provided the removal efficiency of only 42%, under the same reaction conditions. The highest efficiency of the phenol removal (96%) was obtained with HRP immobilized within 20 mol% oxidized tyramine-alginate micro-beads. Fifteen mol% oxidized tyramine-alginate showed lower removal efficiency in the first cycle of use (73%) but more promising reusability, since the immobilized enzyme retained 61% of its initial activity even after four consecutive cycles of use.
PB  - Elsevier
T2  - Environmental Technology & Innovation
T2  - Environmental Technology & InnovationEnvironmental Technology & Innovation
T1  - Optimization of phenol removal with horseradish peroxidase encapsulated within tyramine-alginate micro-beads
VL  - 21
SP  - 101211
DO  - 10.1016/j.eti.2020.101211
ER  - 
@article{
author = "Pantić, Nevena and Prodanović, Radivoje and Ilić Đurđić, Karla and Polović, Natalija and Spasojević, Milica and Prodanović, Olivera",
year = "2021",
abstract = "Removal of phenolic compounds from water is of major interest over the years, since they are one of the most common pollutants in aqueous systems. Horseradish peroxidase (HRP) is the most investigated biocatalyst for this purpose. Inactivation of the enzyme is a major issue which can be successfully overcome by the enzyme immobilization on different polymers. In this study, tyramine-alginate micro-beads were used as carriers for the immobilization of horseradish peroxidase. The effect of the oxidation degree of tyramine-alginates on a specific activity of the enzyme was tested. An increase in the concentration of oxidized alginate from 2.5 to 20% resulted in a gradual increase in the specific activity from 0.05 to 0.67 U/mL. HRP immobilized within these micro-beads was tested for the phenol removal in a batch reactor. Reaction conditions were optimized to achieve a high removal efficiency and substantial reusability of the system. In this study, for the first time, an internal generation of hydrogen peroxide from glucose and glucose oxidase was employed in the phenol removal process with HRP immobilized on tyramine-alginate. Within 6 h of repeated use 96% of phenol was removed when the system for internal delivery of H2O2, composed of 0.187 U/mL of glucose oxidase and 4 mmol/L of glucose was employed. A common straightforward addition of hydrogen peroxide provided the removal efficiency of only 42%, under the same reaction conditions. The highest efficiency of the phenol removal (96%) was obtained with HRP immobilized within 20 mol% oxidized tyramine-alginate micro-beads. Fifteen mol% oxidized tyramine-alginate showed lower removal efficiency in the first cycle of use (73%) but more promising reusability, since the immobilized enzyme retained 61% of its initial activity even after four consecutive cycles of use.",
publisher = "Elsevier",
journal = "Environmental Technology & Innovation, Environmental Technology & InnovationEnvironmental Technology & Innovation",
title = "Optimization of phenol removal with horseradish peroxidase encapsulated within tyramine-alginate micro-beads",
volume = "21",
pages = "101211",
doi = "10.1016/j.eti.2020.101211"
}
Pantić, N., Prodanović, R., Ilić Đurđić, K., Polović, N., Spasojević, M.,& Prodanović, O.. (2021). Optimization of phenol removal with horseradish peroxidase encapsulated within tyramine-alginate micro-beads. in Environmental Technology & Innovation
Elsevier., 21, 101211.
https://doi.org/10.1016/j.eti.2020.101211
Pantić N, Prodanović R, Ilić Đurđić K, Polović N, Spasojević M, Prodanović O. Optimization of phenol removal with horseradish peroxidase encapsulated within tyramine-alginate micro-beads. in Environmental Technology & Innovation. 2021;21:101211.
doi:10.1016/j.eti.2020.101211 .
Pantić, Nevena, Prodanović, Radivoje, Ilić Đurđić, Karla, Polović, Natalija, Spasojević, Milica, Prodanović, Olivera, "Optimization of phenol removal with horseradish peroxidase encapsulated within tyramine-alginate micro-beads" in Environmental Technology & Innovation, 21 (2021):101211,
https://doi.org/10.1016/j.eti.2020.101211 . .
20
5
19
13

Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase

Stanišić, Marija D.; Popović Kokar, Nikolina; Ristić, Predrag; Balaž, Ana Marija; Senćanski, Milan; Ognjanović, Miloš; Đokić, Veljko R.; Prodanović, Radivoje; Todorović, Tamara

(MDPI, 2021)

TY  - JOUR
AU  - Stanišić, Marija D.
AU  - Popović Kokar, Nikolina
AU  - Ristić, Predrag
AU  - Balaž, Ana Marija
AU  - Senćanski, Milan
AU  - Ognjanović, Miloš
AU  - Đokić, Veljko R.
AU  - Prodanović, Radivoje
AU  - Todorović, Tamara
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/4782
AB  - Zeolitic imidazolate framework-8 (ZIF-8) is widely used as a protective coating to encapsulate proteins via biomimetic mineralization. The formation of nucleation centers and further biocomposite crystal growth is entirely governed by the pure electrostatic interactions between the protein’s surface and the positively charged Zn(II) metal ions. It was previously shown that enhancing these electrostatic interactions by a chemical modification of surface amino acid residues can lead to a rapid biocomposite crystal formation. However, a chemical modification of carbohydrate components by periodate oxidation for glycoproteins can serve as an alternative strategy. In the present study, an industrially important enzyme glucose oxidase (GOx) was selected as a model system. Periodate oxidation of GOx by 2.5 mM sodium periodate increased negative charge on the enzyme molecule, from −10.2 to −36.9 mV, as shown by zeta potential measurements and native PAGE electrophoresis. Biomineralization experiments with oxidized GOx resulted in higher specific activity, effectiveness factor, and higher thermostability of the ZIF-8 biocomposites. Periodate oxidation of carbohydrate components for glycoproteins can serve as a facile and general method for facilitating the biomimetic mineralization of other industrially relevant glycoproteins.
PB  - MDPI
T2  - Polymers
T1  - Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase
VL  - 13
IS  - 22
SP  - 3875
DO  - 10.3390/polym13223875
ER  - 
@article{
author = "Stanišić, Marija D. and Popović Kokar, Nikolina and Ristić, Predrag and Balaž, Ana Marija and Senćanski, Milan and Ognjanović, Miloš and Đokić, Veljko R. and Prodanović, Radivoje and Todorović, Tamara",
year = "2021",
abstract = "Zeolitic imidazolate framework-8 (ZIF-8) is widely used as a protective coating to encapsulate proteins via biomimetic mineralization. The formation of nucleation centers and further biocomposite crystal growth is entirely governed by the pure electrostatic interactions between the protein’s surface and the positively charged Zn(II) metal ions. It was previously shown that enhancing these electrostatic interactions by a chemical modification of surface amino acid residues can lead to a rapid biocomposite crystal formation. However, a chemical modification of carbohydrate components by periodate oxidation for glycoproteins can serve as an alternative strategy. In the present study, an industrially important enzyme glucose oxidase (GOx) was selected as a model system. Periodate oxidation of GOx by 2.5 mM sodium periodate increased negative charge on the enzyme molecule, from −10.2 to −36.9 mV, as shown by zeta potential measurements and native PAGE electrophoresis. Biomineralization experiments with oxidized GOx resulted in higher specific activity, effectiveness factor, and higher thermostability of the ZIF-8 biocomposites. Periodate oxidation of carbohydrate components for glycoproteins can serve as a facile and general method for facilitating the biomimetic mineralization of other industrially relevant glycoproteins.",
publisher = "MDPI",
journal = "Polymers",
title = "Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase",
volume = "13",
number = "22",
pages = "3875",
doi = "10.3390/polym13223875"
}
Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Senćanski, M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2021). Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. in Polymers
MDPI., 13(22), 3875.
https://doi.org/10.3390/polym13223875
Stanišić MD, Popović Kokar N, Ristić P, Balaž AM, Senćanski M, Ognjanović M, Đokić VR, Prodanović R, Todorović T. Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. in Polymers. 2021;13(22):3875.
doi:10.3390/polym13223875 .
Stanišić, Marija D., Popović Kokar, Nikolina, Ristić, Predrag, Balaž, Ana Marija, Senćanski, Milan, Ognjanović, Miloš, Đokić, Veljko R., Prodanović, Radivoje, Todorović, Tamara, "Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase" in Polymers, 13, no. 22 (2021):3875,
https://doi.org/10.3390/polym13223875 . .
1
3
1
1

Primary research data for: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Senćanski, M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2021). Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. in Polymers MDPI., 13(22), 3875. https://doi.org/10.3390/polym13223875

Stanišić, Marija D.; Popović Kokar, Nikolina; Ristić, Predrag; Balaž, Ana Marija; Senćanski, Milan; Ognjanović, Miloš; Đokić, Veljko R.; Prodanović, Radivoje; Todorović, Tamara

(2021)

TY  - DATA
AU  - Stanišić, Marija D.
AU  - Popović Kokar, Nikolina
AU  - Ristić, Predrag
AU  - Balaž, Ana Marija
AU  - Senćanski, Milan
AU  - Ognjanović, Miloš
AU  - Đokić, Veljko R.
AU  - Prodanović, Radivoje
AU  - Todorović, Tamara
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5741
T1  - Primary research data for: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Senćanski, M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2021). Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. in Polymers
MDPI., 13(22), 3875.
https://doi.org/10.3390/polym13223875
VL  - 13
IS  - 22
SP  - 3875
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5741
ER  - 
@misc{
author = "Stanišić, Marija D. and Popović Kokar, Nikolina and Ristić, Predrag and Balaž, Ana Marija and Senćanski, Milan and Ognjanović, Miloš and Đokić, Veljko R. and Prodanović, Radivoje and Todorović, Tamara",
year = "2021",
title = "Primary research data for: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Senćanski, M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2021). Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. in Polymers
MDPI., 13(22), 3875.
https://doi.org/10.3390/polym13223875",
volume = "13",
number = "22",
pages = "3875",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5741"
}
Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Senćanski, M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2021). Primary research data for: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Senćanski, M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2021). Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. in Polymers
MDPI., 13(22), 3875.
https://doi.org/10.3390/polym13223875. , 13(22), 3875.
https://hdl.handle.net/21.15107/rcub_cherry_5741
Stanišić MD, Popović Kokar N, Ristić P, Balaž AM, Senćanski M, Ognjanović M, Đokić VR, Prodanović R, Todorović T. Primary research data for: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Senćanski, M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2021). Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. in Polymers
MDPI., 13(22), 3875.
https://doi.org/10.3390/polym13223875. 2021;13(22):3875.
https://hdl.handle.net/21.15107/rcub_cherry_5741 .
Stanišić, Marija D., Popović Kokar, Nikolina, Ristić, Predrag, Balaž, Ana Marija, Senćanski, Milan, Ognjanović, Miloš, Đokić, Veljko R., Prodanović, Radivoje, Todorović, Tamara, "Primary research data for: Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Senćanski, M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2021). Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. in Polymers
MDPI., 13(22), 3875.
https://doi.org/10.3390/polym13223875", 13, no. 22 (2021):3875,
https://hdl.handle.net/21.15107/rcub_cherry_5741 .

Horseradish peroxidase C1A wild type gene and its variants expressed in Pichia pastoris KM71H strain

Balaž, Ana Marija; Crnoglavac Popović, Milica; Stanišić, Marija D.; Ristić, Predrag; Senćanski, Milan; Todorović, Tamara; Prodanović, Radivoje

(2021)

TY  - CONF
AU  - Balaž, Ana Marija
AU  - Crnoglavac Popović, Milica
AU  - Stanišić, Marija D.
AU  - Ristić, Predrag
AU  - Senćanski, Milan
AU  - Todorović, Tamara
AU  - Prodanović, Radivoje
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5747
AB  - Enzyme immobilization enables maintenance of enzyme activity and structural stability even in adverse conditions 1. Structural changes in enzymes that can occur due to the action of organic solvents, inhibitors or increased temperature can be prevented by immobilization of the enzymes in metal–organic frameworks (MOFs). It is reported that several enzymes, such as cytochrome c and horseradish peroxidase (HRP) have been successfully incorporated into MOFs 2. The aim of this work is to produce wild type horseradish peroxidase, isoform C1A, and several mutants specially designed to increase the activity and stability of HRP while immobilized within selected MOFs. Wild type and its variants were produced in metalotrophic yeast, Pichia pastoris KM71H strain, their activity and basic kinetic parameters were determined and compared prior imobilization.
C3  - Tenth Conference of Serbian Biochemical Society, 24 September 2021, Kragujevac
T1  - Horseradish peroxidase C1A wild type gene and its variants expressed in Pichia pastoris KM71H strain
SP  - 49
EP  - 49
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5747
ER  - 
@conference{
author = "Balaž, Ana Marija and Crnoglavac Popović, Milica and Stanišić, Marija D. and Ristić, Predrag and Senćanski, Milan and Todorović, Tamara and Prodanović, Radivoje",
year = "2021",
abstract = "Enzyme immobilization enables maintenance of enzyme activity and structural stability even in adverse conditions 1. Structural changes in enzymes that can occur due to the action of organic solvents, inhibitors or increased temperature can be prevented by immobilization of the enzymes in metal–organic frameworks (MOFs). It is reported that several enzymes, such as cytochrome c and horseradish peroxidase (HRP) have been successfully incorporated into MOFs 2. The aim of this work is to produce wild type horseradish peroxidase, isoform C1A, and several mutants specially designed to increase the activity and stability of HRP while immobilized within selected MOFs. Wild type and its variants were produced in metalotrophic yeast, Pichia pastoris KM71H strain, their activity and basic kinetic parameters were determined and compared prior imobilization.",
journal = "Tenth Conference of Serbian Biochemical Society, 24 September 2021, Kragujevac",
title = "Horseradish peroxidase C1A wild type gene and its variants expressed in Pichia pastoris KM71H strain",
pages = "49-49",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5747"
}
Balaž, A. M., Crnoglavac Popović, M., Stanišić, M. D., Ristić, P., Senćanski, M., Todorović, T.,& Prodanović, R.. (2021). Horseradish peroxidase C1A wild type gene and its variants expressed in Pichia pastoris KM71H strain. in Tenth Conference of Serbian Biochemical Society, 24 September 2021, Kragujevac, 49-49.
https://hdl.handle.net/21.15107/rcub_cherry_5747
Balaž AM, Crnoglavac Popović M, Stanišić MD, Ristić P, Senćanski M, Todorović T, Prodanović R. Horseradish peroxidase C1A wild type gene and its variants expressed in Pichia pastoris KM71H strain. in Tenth Conference of Serbian Biochemical Society, 24 September 2021, Kragujevac. 2021;:49-49.
https://hdl.handle.net/21.15107/rcub_cherry_5747 .
Balaž, Ana Marija, Crnoglavac Popović, Milica, Stanišić, Marija D., Ristić, Predrag, Senćanski, Milan, Todorović, Tamara, Prodanović, Radivoje, "Horseradish peroxidase C1A wild type gene and its variants expressed in Pichia pastoris KM71H strain" in Tenth Conference of Serbian Biochemical Society, 24 September 2021, Kragujevac (2021):49-49,
https://hdl.handle.net/21.15107/rcub_cherry_5747 .

Biomimetic mineralisation of periodate oxidized glucose oxidase

Stanišić, Marija D.; Popović, Nikolina; Ristić, Predrag; Balaž, Ana Marija; Senćanski, Milan; Prodanović, Radivoje; Todorović, Tamara

(Beograd : Biohemijsko društvo Srbije, 2021)

TY  - CONF
AU  - Stanišić, Marija D.
AU  - Popović, Nikolina
AU  - Ristić, Predrag
AU  - Balaž, Ana Marija
AU  - Senćanski, Milan
AU  - Prodanović, Radivoje
AU  - Todorović, Tamara
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5748
AB  - Glucose oxidase (GOx) is an enzyme that belongs to a group of oxidoreductases. This enzyme catalyzes the oxidation of glucose to gluconic acid using molecular oxygen as an electron acceptor. Glucose oxidase contains carbohydrates in its structure, most often mannose and glucose (11-13%) 1. Durability of GOx in harsh conditions can be enhanced by encapsulation within metal–organic frameworks via a process called biomimetic mineralisation. We demonstrate that chemical modification of carbohydrate parts on the protein surface by periodate oxidation is an effective method for control of biomimetic mineralisation by zeolitic imidazolate framework-8 (ZIF-8). Obtained GOx-ZIF-8 biocomposite had the higher half-life at 65oC, and higher specific activity than native GOx.
PB  - Beograd : Biohemijsko društvo Srbije
C3  - Tenth Conference of Serbian Biochemical Society, 24 September 2021, Kragujevac, Book of Abstracts
T1  - Biomimetic mineralisation of periodate oxidized glucose oxidase
SP  - 148
EP  - 148
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5748
ER  - 
@conference{
author = "Stanišić, Marija D. and Popović, Nikolina and Ristić, Predrag and Balaž, Ana Marija and Senćanski, Milan and Prodanović, Radivoje and Todorović, Tamara",
year = "2021",
abstract = "Glucose oxidase (GOx) is an enzyme that belongs to a group of oxidoreductases. This enzyme catalyzes the oxidation of glucose to gluconic acid using molecular oxygen as an electron acceptor. Glucose oxidase contains carbohydrates in its structure, most often mannose and glucose (11-13%) 1. Durability of GOx in harsh conditions can be enhanced by encapsulation within metal–organic frameworks via a process called biomimetic mineralisation. We demonstrate that chemical modification of carbohydrate parts on the protein surface by periodate oxidation is an effective method for control of biomimetic mineralisation by zeolitic imidazolate framework-8 (ZIF-8). Obtained GOx-ZIF-8 biocomposite had the higher half-life at 65oC, and higher specific activity than native GOx.",
publisher = "Beograd : Biohemijsko društvo Srbije",
journal = "Tenth Conference of Serbian Biochemical Society, 24 September 2021, Kragujevac, Book of Abstracts",
title = "Biomimetic mineralisation of periodate oxidized glucose oxidase",
pages = "148-148",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5748"
}
Stanišić, M. D., Popović, N., Ristić, P., Balaž, A. M., Senćanski, M., Prodanović, R.,& Todorović, T.. (2021). Biomimetic mineralisation of periodate oxidized glucose oxidase. in Tenth Conference of Serbian Biochemical Society, 24 September 2021, Kragujevac, Book of Abstracts
Beograd : Biohemijsko društvo Srbije., 148-148.
https://hdl.handle.net/21.15107/rcub_cherry_5748
Stanišić MD, Popović N, Ristić P, Balaž AM, Senćanski M, Prodanović R, Todorović T. Biomimetic mineralisation of periodate oxidized glucose oxidase. in Tenth Conference of Serbian Biochemical Society, 24 September 2021, Kragujevac, Book of Abstracts. 2021;:148-148.
https://hdl.handle.net/21.15107/rcub_cherry_5748 .
Stanišić, Marija D., Popović, Nikolina, Ristić, Predrag, Balaž, Ana Marija, Senćanski, Milan, Prodanović, Radivoje, Todorović, Tamara, "Biomimetic mineralisation of periodate oxidized glucose oxidase" in Tenth Conference of Serbian Biochemical Society, 24 September 2021, Kragujevac, Book of Abstracts (2021):148-148,
https://hdl.handle.net/21.15107/rcub_cherry_5748 .

Modelling of catalytic activity and enzyme-MOF interactions using combined in silico approach

Senćanski, Milan; Prodanović, Radivoje; Ristić, Predrag; Balaž, Ana Marija; Stanišić, Marija D.; Todorović, Tamara

(Materials Research Society of Serbia, 2021)

TY  - CONF
AU  - Senćanski, Milan
AU  - Prodanović, Radivoje
AU  - Ristić, Predrag
AU  - Balaž, Ana Marija
AU  - Stanišić, Marija D.
AU  - Todorović, Tamara
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5749
AB  - Enzymes as industrial biocatalysts offer numerous advantages over traditional chemical processes
concerning sustainability and process efficiency. Immobilization of enzymes on solid supporters is
one of the key strategies for improving the practical performances of enzymes.
Metal-organic frameworks (MOFs) are promising candidates for enzyme immobilization. MOFs are
porous coordination polymers consisting of metal-containing nodes and organic ligands linked
through coordination bonds. It has been demonstrated that proteins can be successfully immobilized
even in MOF pores whose apertures are smaller than the molecular dimension of the protein due to its
conformational flexibility.
For our study, we selected horseradish peroxidase (HRP) encapsulated in MOF PCN-888(Al). We
report the modelling of PCN-888(Al) MOF and the design of novel HRP mutants, which determine
their enzymatic activity and magnitude of intermolecular interactions with MOF. Using a combined
in silico approach, consisting of Informational Spectrum Method (ISM) bioinformatics method,
molecular docking and molecular dynamics simulations, we propose new HRP mutants, which show
higher/lower specific catalytic activity and higher/lower MOF-HRP dissociation constant, compared
to the wild type of enzyme.
PB  - Materials Research Society of Serbia
C3  - Twenty-Second Annual Conference YUCOMAT 2021, Herceg Novi, Montenegro, August 30 - September 3, 2021
T1  - Modelling of catalytic activity and enzyme-MOF interactions using combined in silico approach
SP  - 124
EP  - 124
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5749
ER  - 
@conference{
author = "Senćanski, Milan and Prodanović, Radivoje and Ristić, Predrag and Balaž, Ana Marija and Stanišić, Marija D. and Todorović, Tamara",
year = "2021",
abstract = "Enzymes as industrial biocatalysts offer numerous advantages over traditional chemical processes
concerning sustainability and process efficiency. Immobilization of enzymes on solid supporters is
one of the key strategies for improving the practical performances of enzymes.
Metal-organic frameworks (MOFs) are promising candidates for enzyme immobilization. MOFs are
porous coordination polymers consisting of metal-containing nodes and organic ligands linked
through coordination bonds. It has been demonstrated that proteins can be successfully immobilized
even in MOF pores whose apertures are smaller than the molecular dimension of the protein due to its
conformational flexibility.
For our study, we selected horseradish peroxidase (HRP) encapsulated in MOF PCN-888(Al). We
report the modelling of PCN-888(Al) MOF and the design of novel HRP mutants, which determine
their enzymatic activity and magnitude of intermolecular interactions with MOF. Using a combined
in silico approach, consisting of Informational Spectrum Method (ISM) bioinformatics method,
molecular docking and molecular dynamics simulations, we propose new HRP mutants, which show
higher/lower specific catalytic activity and higher/lower MOF-HRP dissociation constant, compared
to the wild type of enzyme.",
publisher = "Materials Research Society of Serbia",
journal = "Twenty-Second Annual Conference YUCOMAT 2021, Herceg Novi, Montenegro, August 30 - September 3, 2021",
title = "Modelling of catalytic activity and enzyme-MOF interactions using combined in silico approach",
pages = "124-124",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5749"
}
Senćanski, M., Prodanović, R., Ristić, P., Balaž, A. M., Stanišić, M. D.,& Todorović, T.. (2021). Modelling of catalytic activity and enzyme-MOF interactions using combined in silico approach. in Twenty-Second Annual Conference YUCOMAT 2021, Herceg Novi, Montenegro, August 30 - September 3, 2021
Materials Research Society of Serbia., 124-124.
https://hdl.handle.net/21.15107/rcub_cherry_5749
Senćanski M, Prodanović R, Ristić P, Balaž AM, Stanišić MD, Todorović T. Modelling of catalytic activity and enzyme-MOF interactions using combined in silico approach. in Twenty-Second Annual Conference YUCOMAT 2021, Herceg Novi, Montenegro, August 30 - September 3, 2021. 2021;:124-124.
https://hdl.handle.net/21.15107/rcub_cherry_5749 .
Senćanski, Milan, Prodanović, Radivoje, Ristić, Predrag, Balaž, Ana Marija, Stanišić, Marija D., Todorović, Tamara, "Modelling of catalytic activity and enzyme-MOF interactions using combined in silico approach" in Twenty-Second Annual Conference YUCOMAT 2021, Herceg Novi, Montenegro, August 30 - September 3, 2021 (2021):124-124,
https://hdl.handle.net/21.15107/rcub_cherry_5749 .

Uticaj anjona, pufera i detergenata na topologiju i morfologiju ZIF-8 kristalita

Ristić, Predrag; Pavlović, Pavle; Stanišić, Marija D.; Prodanović, Radivoje; Ognjanović, Miloš; Đokić, Veljko; Todorović, Tamara

(Beograd : Srpsko kristalografsko društvo, 2021)

TY  - CONF
AU  - Ristić, Predrag
AU  - Pavlović, Pavle
AU  - Stanišić, Marija D.
AU  - Prodanović, Radivoje
AU  - Ognjanović, Miloš
AU  - Đokić, Veljko
AU  - Todorović, Tamara
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5750
AB  - Metal-organic frameworks (MOFs) are a class of inorganic materials with potential application in gas adsorption, biosensitization, biocatalysis, and drug delivery [1]. Zeolitic imidazolate frame-works (ZIFs) are a subclass of MOFs, particularly suitable for enzyme immobilization by biomi-metic mineralization [1]. ZIF-8 consisting of tetrahedral Zn(II) ions bridged via 2-methylimidazole ligands (mIM) is most commonly used for this purpose. However, the topology and morphology of ZIF-8 crystals vary depending on the experimental synthesis conditions. In addition, during the process of biomimetic mineralization, the biocomposite composed of the enzyme immobilized in ZIF-8 is washed with buffers and detergents to remove excess of an adsorbed enzyme, which can lead to the chemical transformation of the surface and undesirable release of the enzyme. There-fore, the influence of anion nature on the topology and morphology of ZIF-8 was investigated in this work, and the stability of ZIF-8 crystallites was tested in acetate buffer (0.1 M; pH = 5.5) and sodium dodecyl sulfate solution (ω = 10%). Crystal morphology was monitored by scanning elec-tron microscopy, while topology was determined using powder X-ray diffraction.
PB  - Beograd : Srpsko kristalografsko društvo
C3  - XXVII Konferencija Srpskog kristalografskog društva, 16-17. Septembar 2021, Kragujevac
T1  - Uticaj anjona, pufera i detergenata na topologiju i morfologiju ZIF-8 kristalita
SP  - 64
EP  - 65
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5750
ER  - 
@conference{
author = "Ristić, Predrag and Pavlović, Pavle and Stanišić, Marija D. and Prodanović, Radivoje and Ognjanović, Miloš and Đokić, Veljko and Todorović, Tamara",
year = "2021",
abstract = "Metal-organic frameworks (MOFs) are a class of inorganic materials with potential application in gas adsorption, biosensitization, biocatalysis, and drug delivery [1]. Zeolitic imidazolate frame-works (ZIFs) are a subclass of MOFs, particularly suitable for enzyme immobilization by biomi-metic mineralization [1]. ZIF-8 consisting of tetrahedral Zn(II) ions bridged via 2-methylimidazole ligands (mIM) is most commonly used for this purpose. However, the topology and morphology of ZIF-8 crystals vary depending on the experimental synthesis conditions. In addition, during the process of biomimetic mineralization, the biocomposite composed of the enzyme immobilized in ZIF-8 is washed with buffers and detergents to remove excess of an adsorbed enzyme, which can lead to the chemical transformation of the surface and undesirable release of the enzyme. There-fore, the influence of anion nature on the topology and morphology of ZIF-8 was investigated in this work, and the stability of ZIF-8 crystallites was tested in acetate buffer (0.1 M; pH = 5.5) and sodium dodecyl sulfate solution (ω = 10%). Crystal morphology was monitored by scanning elec-tron microscopy, while topology was determined using powder X-ray diffraction.",
publisher = "Beograd : Srpsko kristalografsko društvo",
journal = "XXVII Konferencija Srpskog kristalografskog društva, 16-17. Septembar 2021, Kragujevac",
title = "Uticaj anjona, pufera i detergenata na topologiju i morfologiju ZIF-8 kristalita",
pages = "64-65",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5750"
}
Ristić, P., Pavlović, P., Stanišić, M. D., Prodanović, R., Ognjanović, M., Đokić, V.,& Todorović, T.. (2021). Uticaj anjona, pufera i detergenata na topologiju i morfologiju ZIF-8 kristalita. in XXVII Konferencija Srpskog kristalografskog društva, 16-17. Septembar 2021, Kragujevac
Beograd : Srpsko kristalografsko društvo., 64-65.
https://hdl.handle.net/21.15107/rcub_cherry_5750
Ristić P, Pavlović P, Stanišić MD, Prodanović R, Ognjanović M, Đokić V, Todorović T. Uticaj anjona, pufera i detergenata na topologiju i morfologiju ZIF-8 kristalita. in XXVII Konferencija Srpskog kristalografskog društva, 16-17. Septembar 2021, Kragujevac. 2021;:64-65.
https://hdl.handle.net/21.15107/rcub_cherry_5750 .
Ristić, Predrag, Pavlović, Pavle, Stanišić, Marija D., Prodanović, Radivoje, Ognjanović, Miloš, Đokić, Veljko, Todorović, Tamara, "Uticaj anjona, pufera i detergenata na topologiju i morfologiju ZIF-8 kristalita" in XXVII Konferencija Srpskog kristalografskog društva, 16-17. Septembar 2021, Kragujevac (2021):64-65,
https://hdl.handle.net/21.15107/rcub_cherry_5750 .

Supplementary data for the article: Popović, N.; Stanišić, M.; Ilić Đurđić, K.; Prodanović, O.; Polović, N.; Prodanović, R. Dopamine-Modified Pectin for a Streptomyces Cyaneus Laccase Induced Microbeads Formation, Immobilization, and Textile Dyes Decolorization. Environmental Technology & Innovation 2021, 22, 101399. https://doi.org/10.1016/j.eti.2021.101399.

Popović, Nikolina; Stanišić, Marija D.; Ilić Đurđić, Karla; Prodanović, Olivera; Polović, Natalija; Prodanović, Radivoje

(Elsevier, 2021)

TY  - DATA
AU  - Popović, Nikolina
AU  - Stanišić, Marija D.
AU  - Ilić Đurđić, Karla
AU  - Prodanović, Olivera
AU  - Polović, Natalija
AU  - Prodanović, Radivoje
PY  - 2021
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4493
PB  - Elsevier
T2  - Environmental Technology & Innovation
T2  - Environmental Technology & InnovationEnvironmental Technology & Innovation
T1  - Supplementary data for the article: Popović, N.; Stanišić, M.; Ilić Đurđić, K.; Prodanović, O.; Polović, N.; Prodanović, R. Dopamine-Modified Pectin for a Streptomyces Cyaneus Laccase Induced Microbeads Formation, Immobilization, and Textile Dyes Decolorization. Environmental Technology & Innovation 2021, 22, 101399. https://doi.org/10.1016/j.eti.2021.101399.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4494
ER  - 
@misc{
author = "Popović, Nikolina and Stanišić, Marija D. and Ilić Đurđić, Karla and Prodanović, Olivera and Polović, Natalija and Prodanović, Radivoje",
year = "2021",
publisher = "Elsevier",
journal = "Environmental Technology & Innovation, Environmental Technology & InnovationEnvironmental Technology & Innovation",
title = "Supplementary data for the article: Popović, N.; Stanišić, M.; Ilić Đurđić, K.; Prodanović, O.; Polović, N.; Prodanović, R. Dopamine-Modified Pectin for a Streptomyces Cyaneus Laccase Induced Microbeads Formation, Immobilization, and Textile Dyes Decolorization. Environmental Technology & Innovation 2021, 22, 101399. https://doi.org/10.1016/j.eti.2021.101399.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4494"
}
Popović, N., Stanišić, M. D., Ilić Đurđić, K., Prodanović, O., Polović, N.,& Prodanović, R.. (2021). Supplementary data for the article: Popović, N.; Stanišić, M.; Ilić Đurđić, K.; Prodanović, O.; Polović, N.; Prodanović, R. Dopamine-Modified Pectin for a Streptomyces Cyaneus Laccase Induced Microbeads Formation, Immobilization, and Textile Dyes Decolorization. Environmental Technology & Innovation 2021, 22, 101399. https://doi.org/10.1016/j.eti.2021.101399.. in Environmental Technology & Innovation
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_4494
Popović N, Stanišić MD, Ilić Đurđić K, Prodanović O, Polović N, Prodanović R. Supplementary data for the article: Popović, N.; Stanišić, M.; Ilić Đurđić, K.; Prodanović, O.; Polović, N.; Prodanović, R. Dopamine-Modified Pectin for a Streptomyces Cyaneus Laccase Induced Microbeads Formation, Immobilization, and Textile Dyes Decolorization. Environmental Technology & Innovation 2021, 22, 101399. https://doi.org/10.1016/j.eti.2021.101399.. in Environmental Technology & Innovation. 2021;.
https://hdl.handle.net/21.15107/rcub_cherry_4494 .
Popović, Nikolina, Stanišić, Marija D., Ilić Đurđić, Karla, Prodanović, Olivera, Polović, Natalija, Prodanović, Radivoje, "Supplementary data for the article: Popović, N.; Stanišić, M.; Ilić Đurđić, K.; Prodanović, O.; Polović, N.; Prodanović, R. Dopamine-Modified Pectin for a Streptomyces Cyaneus Laccase Induced Microbeads Formation, Immobilization, and Textile Dyes Decolorization. Environmental Technology & Innovation 2021, 22, 101399. https://doi.org/10.1016/j.eti.2021.101399." in Environmental Technology & Innovation (2021),
https://hdl.handle.net/21.15107/rcub_cherry_4494 .

Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization

Popović, Nikolina; Stanišić, Marija D.; Ilić Đurđić, Karla; Prodanović, Olivera; Polović, Natalija; Prodanović, Radivoje

(Elsevier, 2021)

TY  - JOUR
AU  - Popović, Nikolina
AU  - Stanišić, Marija D.
AU  - Ilić Đurđić, Karla
AU  - Prodanović, Olivera
AU  - Polović, Natalija
AU  - Prodanović, Radivoje
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S235218642100047X
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4493
AB  - Pectins are a group of heterologous polysaccharides capable of forming hydrogels and applicable in many industrial processes. A new type of modified pectin was synthesized by periodate oxidation and reductive amination with dopamine and sodium cyanoborohydride. The success of modification was confirmed by UV–Vis,FTIR, and 1H NMR spectroscopy. The obtained dopamine-pectin could form hydrogels by ionic crosslinking of carboxyl groups with calcium or by crosslinking phenol groups with laccase. For enzymatic crosslinking with laccase from Streptomyces cyaneus expressed in E. coli, isolation and purification of the enzyme was done. Using emulsion-based enzymatic crosslinking polymerization, dopamine-pectin microbeads with immobilized laccase were made. The immobilized laccase showed improved thermal and pH stability in comparison to the free enzyme. The immobilized biocatalyst effectively decolorized various dyes: Amido Black 10B, Reactive Black 5, and Evans Blue. After ten cycles of repeated use, the microbead immobilized laccase could still decolorize 60% and 36% of Amido Black 10B and Reactive Black 5, respectively.
PB  - Elsevier
T2  - Environmental Technology & Innovation
T2  - Environmental Technology & InnovationEnvironmental Technology & Innovation
T1  - Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization
VL  - 22
SP  - 101399
DO  - 10.1016/j.eti.2021.101399
ER  - 
@article{
author = "Popović, Nikolina and Stanišić, Marija D. and Ilić Đurđić, Karla and Prodanović, Olivera and Polović, Natalija and Prodanović, Radivoje",
year = "2021",
abstract = "Pectins are a group of heterologous polysaccharides capable of forming hydrogels and applicable in many industrial processes. A new type of modified pectin was synthesized by periodate oxidation and reductive amination with dopamine and sodium cyanoborohydride. The success of modification was confirmed by UV–Vis,FTIR, and 1H NMR spectroscopy. The obtained dopamine-pectin could form hydrogels by ionic crosslinking of carboxyl groups with calcium or by crosslinking phenol groups with laccase. For enzymatic crosslinking with laccase from Streptomyces cyaneus expressed in E. coli, isolation and purification of the enzyme was done. Using emulsion-based enzymatic crosslinking polymerization, dopamine-pectin microbeads with immobilized laccase were made. The immobilized laccase showed improved thermal and pH stability in comparison to the free enzyme. The immobilized biocatalyst effectively decolorized various dyes: Amido Black 10B, Reactive Black 5, and Evans Blue. After ten cycles of repeated use, the microbead immobilized laccase could still decolorize 60% and 36% of Amido Black 10B and Reactive Black 5, respectively.",
publisher = "Elsevier",
journal = "Environmental Technology & Innovation, Environmental Technology & InnovationEnvironmental Technology & Innovation",
title = "Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization",
volume = "22",
pages = "101399",
doi = "10.1016/j.eti.2021.101399"
}
Popović, N., Stanišić, M. D., Ilić Đurđić, K., Prodanović, O., Polović, N.,& Prodanović, R.. (2021). Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization. in Environmental Technology & Innovation
Elsevier., 22, 101399.
https://doi.org/10.1016/j.eti.2021.101399
Popović N, Stanišić MD, Ilić Đurđić K, Prodanović O, Polović N, Prodanović R. Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization. in Environmental Technology & Innovation. 2021;22:101399.
doi:10.1016/j.eti.2021.101399 .
Popović, Nikolina, Stanišić, Marija D., Ilić Đurđić, Karla, Prodanović, Olivera, Polović, Natalija, Prodanović, Radivoje, "Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization" in Environmental Technology & Innovation, 22 (2021):101399,
https://doi.org/10.1016/j.eti.2021.101399 . .
10
2
9
7