Budimir, Milica D.

Link to this page

Authority KeyName Variants
orcid::0000-0003-0742-0983
  • Budimir, Milica D. (3)
  • Budimir, Milica (1)
Projects

Author's Bibliography

Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study

Kepić, Dejan P.; Stefanović, Anđela M.; Budimir, Milica D.; Pavlović, Vladimir B.; Bonasera, Aurelio; Scopelliti, Michelangelo; Todorović-Marković, Biljana

(Elsevier, 2023)

TY  - JOUR
AU  - Kepić, Dejan P.
AU  - Stefanović, Anđela M.
AU  - Budimir, Milica D.
AU  - Pavlović, Vladimir B.
AU  - Bonasera, Aurelio
AU  - Scopelliti, Michelangelo
AU  - Todorović-Marković, Biljana
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5627
AB  - Gamma irradiation provides an alternative pathway to conventional gold nanoparticle synthesis because it is simple, fast, and economical. Here, we employed gamma irradiation at low doses (1–20 kGy) to obtain gold nanoparticles (Au NPs) anchored onto graphene oxide (GO) sheets. GO was selected as a suitable platform for the nucleation and growth of Au NPs because of its large surface area and good dispersibility in water due to the presence of polar oxygen-containing functional groups in its structure. Gamma irradiation at all the applied doses led to the reduction of chloroauric acid and the formation of evenly distributed Au NPs at the GO surface, simultaneously causing the reduction of GO and partial restoration of the graphene structure. As-prepared Au NPs have predominately spheric shapes and the smallest nanoparticles were reported for the dose of 1 kGy. The increase in the irradiation dose caused either the growth of larger particles (5 and 10 kGy) or the broad distribution of particles’ sizes (20 kGy). All samples showed a temperature increase upon exposure to 800 nm laser and photothermal efficiency was the highest for the sample prepared at 20 kGy.
PB  - Elsevier
T2  - Radiation Physics and Chemistry
T1  - Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study
VL  - 202
SP  - 110545
DO  - 10.1016/j.radphyschem.2022.110545
ER  - 
@article{
author = "Kepić, Dejan P. and Stefanović, Anđela M. and Budimir, Milica D. and Pavlović, Vladimir B. and Bonasera, Aurelio and Scopelliti, Michelangelo and Todorović-Marković, Biljana",
year = "2023",
abstract = "Gamma irradiation provides an alternative pathway to conventional gold nanoparticle synthesis because it is simple, fast, and economical. Here, we employed gamma irradiation at low doses (1–20 kGy) to obtain gold nanoparticles (Au NPs) anchored onto graphene oxide (GO) sheets. GO was selected as a suitable platform for the nucleation and growth of Au NPs because of its large surface area and good dispersibility in water due to the presence of polar oxygen-containing functional groups in its structure. Gamma irradiation at all the applied doses led to the reduction of chloroauric acid and the formation of evenly distributed Au NPs at the GO surface, simultaneously causing the reduction of GO and partial restoration of the graphene structure. As-prepared Au NPs have predominately spheric shapes and the smallest nanoparticles were reported for the dose of 1 kGy. The increase in the irradiation dose caused either the growth of larger particles (5 and 10 kGy) or the broad distribution of particles’ sizes (20 kGy). All samples showed a temperature increase upon exposure to 800 nm laser and photothermal efficiency was the highest for the sample prepared at 20 kGy.",
publisher = "Elsevier",
journal = "Radiation Physics and Chemistry",
title = "Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study",
volume = "202",
pages = "110545",
doi = "10.1016/j.radphyschem.2022.110545"
}
Kepić, D. P., Stefanović, A. M., Budimir, M. D., Pavlović, V. B., Bonasera, A., Scopelliti, M.,& Todorović-Marković, B.. (2023). Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study. in Radiation Physics and Chemistry
Elsevier., 202, 110545.
https://doi.org/10.1016/j.radphyschem.2022.110545
Kepić DP, Stefanović AM, Budimir MD, Pavlović VB, Bonasera A, Scopelliti M, Todorović-Marković B. Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study. in Radiation Physics and Chemistry. 2023;202:110545.
doi:10.1016/j.radphyschem.2022.110545 .
Kepić, Dejan P., Stefanović, Anđela M., Budimir, Milica D., Pavlović, Vladimir B., Bonasera, Aurelio, Scopelliti, Michelangelo, Todorović-Marković, Biljana, "Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study" in Radiation Physics and Chemistry, 202 (2023):110545,
https://doi.org/10.1016/j.radphyschem.2022.110545 . .
4
3
1

Gamma-ray-induced structural transformation of GQDs towards the improvement of their optical properties, monitoring of selected toxic compounds, and photo-induced effect on bacterial strains

Dorontic, Sladjana; Bonasera, Aurelio; Scopelliti, Michelangelo; Marković, Olivera S.; Bajuk Bogdanović, Danica; Ciasca, Gabriele; Romanò, Sabrina; Dimkić, Ivica; Budimir, Milica; Marinković, Dragana; Jovanovic, Svetlana

(MDPI, 2022)

TY  - JOUR
AU  - Dorontic, Sladjana
AU  - Bonasera, Aurelio
AU  - Scopelliti, Michelangelo
AU  - Marković, Olivera S.
AU  - Bajuk Bogdanović, Danica
AU  - Ciasca, Gabriele
AU  - Romanò, Sabrina
AU  - Dimkić, Ivica
AU  - Budimir, Milica
AU  - Marinković, Dragana
AU  - Jovanovic, Svetlana
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5883
AB  - Structural modification of different carbon-based nanomaterials is often necessary to
improve their morphology and optical properties, particularly the incorporation of N-atoms in
graphene quantum dots (GQDs). Here, a clean, simple, one-step, and eco-friendly method for
N-doping of GQDs using gamma irradiation is reported. GQDs were irradiated in the presence
of the different ethylenediamine (EDA) amounts (1 g, 5 g, and 10 g) and the highest % of N was
detected in the presence of 10 g. N-doped GQDs emitted strong, blue photoluminescence (PL).
Photoluminescence quantum yield was increased from 1.45, as obtained for non-irradiated dots,
to 7.24% for those irradiated in the presence of 1 g of EDA. Modified GQDs were investigated as
a PL probe for the detection of insecticide Carbofuran (2,2-Dimethyl-2,3-dihydro-1-benzofuran-7-
yl methylcarbamate) and herbicide Amitrole (3-amino-1,2,4-triazole). The limit of detection was
5.4 µmol L−1
for Carbofuran. For the first time, Amitrole was detected by GQDs in a turn-off/turn-on
mechanism using Pd(II) ions as a quenching agent. First, Pd(II) ions were quenched (turn-off) PL
of GQDs, while after Amitrole addition, PL was recovered linearly with Amitrole concentration
(turn-on). LOD was 2.03 µmol L−1
. These results suggest that modified GQDs can be used as an
efficient new material for Carbofuran and Amitrole detection. Furthermore, the phototoxicity of dots
was investigated on both Gram-positive and Gram-negative bacterial strains. When bacterial cells
were exposed to different GQD concentrations and illuminated with light of 470 nm wavelength, the
toxic effects were not observed.
PB  - MDPI
T2  - Nanomaterials
T1  - Gamma-ray-induced structural transformation of GQDs  towards the improvement of their optical properties, monitoring of selected toxic compounds,  and photo-induced effect on bacterial strains
VL  - 12
SP  - 2714
DO  - https://doi.org/10.3390/nano12152714
ER  - 
@article{
author = "Dorontic, Sladjana and Bonasera, Aurelio and Scopelliti, Michelangelo and Marković, Olivera S. and Bajuk Bogdanović, Danica and Ciasca, Gabriele and Romanò, Sabrina and Dimkić, Ivica and Budimir, Milica and Marinković, Dragana and Jovanovic, Svetlana",
year = "2022",
abstract = "Structural modification of different carbon-based nanomaterials is often necessary to
improve their morphology and optical properties, particularly the incorporation of N-atoms in
graphene quantum dots (GQDs). Here, a clean, simple, one-step, and eco-friendly method for
N-doping of GQDs using gamma irradiation is reported. GQDs were irradiated in the presence
of the different ethylenediamine (EDA) amounts (1 g, 5 g, and 10 g) and the highest % of N was
detected in the presence of 10 g. N-doped GQDs emitted strong, blue photoluminescence (PL).
Photoluminescence quantum yield was increased from 1.45, as obtained for non-irradiated dots,
to 7.24% for those irradiated in the presence of 1 g of EDA. Modified GQDs were investigated as
a PL probe for the detection of insecticide Carbofuran (2,2-Dimethyl-2,3-dihydro-1-benzofuran-7-
yl methylcarbamate) and herbicide Amitrole (3-amino-1,2,4-triazole). The limit of detection was
5.4 µmol L−1
for Carbofuran. For the first time, Amitrole was detected by GQDs in a turn-off/turn-on
mechanism using Pd(II) ions as a quenching agent. First, Pd(II) ions were quenched (turn-off) PL
of GQDs, while after Amitrole addition, PL was recovered linearly with Amitrole concentration
(turn-on). LOD was 2.03 µmol L−1
. These results suggest that modified GQDs can be used as an
efficient new material for Carbofuran and Amitrole detection. Furthermore, the phototoxicity of dots
was investigated on both Gram-positive and Gram-negative bacterial strains. When bacterial cells
were exposed to different GQD concentrations and illuminated with light of 470 nm wavelength, the
toxic effects were not observed.",
publisher = "MDPI",
journal = "Nanomaterials",
title = "Gamma-ray-induced structural transformation of GQDs  towards the improvement of their optical properties, monitoring of selected toxic compounds,  and photo-induced effect on bacterial strains",
volume = "12",
pages = "2714",
doi = "https://doi.org/10.3390/nano12152714"
}
Dorontic, S., Bonasera, A., Scopelliti, M., Marković, O. S., Bajuk Bogdanović, D., Ciasca, G., Romanò, S., Dimkić, I., Budimir, M., Marinković, D.,& Jovanovic, S.. (2022). Gamma-ray-induced structural transformation of GQDs  towards the improvement of their optical properties, monitoring of selected toxic compounds,  and photo-induced effect on bacterial strains. in Nanomaterials
MDPI., 12, 2714.
https://doi.org/https://doi.org/10.3390/nano12152714
Dorontic S, Bonasera A, Scopelliti M, Marković OS, Bajuk Bogdanović D, Ciasca G, Romanò S, Dimkić I, Budimir M, Marinković D, Jovanovic S. Gamma-ray-induced structural transformation of GQDs  towards the improvement of their optical properties, monitoring of selected toxic compounds,  and photo-induced effect on bacterial strains. in Nanomaterials. 2022;12:2714.
doi:https://doi.org/10.3390/nano12152714 .
Dorontic, Sladjana, Bonasera, Aurelio, Scopelliti, Michelangelo, Marković, Olivera S., Bajuk Bogdanović, Danica, Ciasca, Gabriele, Romanò, Sabrina, Dimkić, Ivica, Budimir, Milica, Marinković, Dragana, Jovanovic, Svetlana, "Gamma-ray-induced structural transformation of GQDs  towards the improvement of their optical properties, monitoring of selected toxic compounds,  and photo-induced effect on bacterial strains" in Nanomaterials, 12 (2022):2714,
https://doi.org/https://doi.org/10.3390/nano12152714 . .

Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing

Jovanović, Svetlana; Dorontić, Slađana; Jovanović, Dragana; Ciasca, Gabriele; Budimir, Milica D.; Bonasera, Aurelio; Scopelliti, Michelangelo; Marković, Olivera S.; Todorović Marković, Biljana

(Elsevier, 2020)

TY  - JOUR
AU  - Jovanović, Svetlana
AU  - Dorontić, Slađana
AU  - Jovanović, Dragana
AU  - Ciasca, Gabriele
AU  - Budimir, Milica D.
AU  - Bonasera, Aurelio
AU  - Scopelliti, Michelangelo
AU  - Marković, Olivera S.
AU  - Todorović Marković, Biljana
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5466
AB  - Due to the low consumption of chemicals, the absence of toxic residual side products, the procedure simplicity
and time-saving aspects, gamma irradiation offers advantages over the classical chemical protocols. We suc cessfully employed gamma irradiation in order to introduce N-atoms in Graphene Quantum Dots (GQDs). By
irradiating GQDs water dispersions in the presence of isopropyl alcohol and ethylenediamine, at doses of 25, 50
and 200 kGy, we attached amino groups onto GQDs in a single synthetic step. At the same time, a chemical
reduction is achieved, too. Selected conditions induced incorporation of N-atoms within GDQs atomic lattice
(around 3 at%), at all applied doses. Additionally, the C-atoms percentage was highly increased, from 63 to 79 at
% or higher. The zeta potential of dots changed from −34.6 to +9.1 mV, due to the modification of functio nalizing groups localized at the surface. Produced chemical changes lead to the desired alteration of the GQDs
optical properties, such as an increased photoluminescence intensity, a higher photoluminescence quantum
yields (from 2.07 to 18.40%) and a narrowing of the spectral features in the emission spectra. The ability of
gamma-irradiated GQDs to quench free radical species was investigated and positively assessed; additionally,
non-enzymatic optical detection of Cu(II) ions using GQDs as a sensor was studied and the detection limits are
herein reported. These results suggest that GQDs can be potentially applied as smart photoluminescent sensors
for metal cations.
PB  - Elsevier
T2  - Ceramics International
T1  - Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing
VL  - 46
SP  - 23611
EP  - 23622
DO  - 10.1016/j.ceramint.2020.06.133
ER  - 
@article{
author = "Jovanović, Svetlana and Dorontić, Slađana and Jovanović, Dragana and Ciasca, Gabriele and Budimir, Milica D. and Bonasera, Aurelio and Scopelliti, Michelangelo and Marković, Olivera S. and Todorović Marković, Biljana",
year = "2020",
abstract = "Due to the low consumption of chemicals, the absence of toxic residual side products, the procedure simplicity
and time-saving aspects, gamma irradiation offers advantages over the classical chemical protocols. We suc cessfully employed gamma irradiation in order to introduce N-atoms in Graphene Quantum Dots (GQDs). By
irradiating GQDs water dispersions in the presence of isopropyl alcohol and ethylenediamine, at doses of 25, 50
and 200 kGy, we attached amino groups onto GQDs in a single synthetic step. At the same time, a chemical
reduction is achieved, too. Selected conditions induced incorporation of N-atoms within GDQs atomic lattice
(around 3 at%), at all applied doses. Additionally, the C-atoms percentage was highly increased, from 63 to 79 at
% or higher. The zeta potential of dots changed from −34.6 to +9.1 mV, due to the modification of functio nalizing groups localized at the surface. Produced chemical changes lead to the desired alteration of the GQDs
optical properties, such as an increased photoluminescence intensity, a higher photoluminescence quantum
yields (from 2.07 to 18.40%) and a narrowing of the spectral features in the emission spectra. The ability of
gamma-irradiated GQDs to quench free radical species was investigated and positively assessed; additionally,
non-enzymatic optical detection of Cu(II) ions using GQDs as a sensor was studied and the detection limits are
herein reported. These results suggest that GQDs can be potentially applied as smart photoluminescent sensors
for metal cations.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing",
volume = "46",
pages = "23611-23622",
doi = "10.1016/j.ceramint.2020.06.133"
}
Jovanović, S., Dorontić, S., Jovanović, D., Ciasca, G., Budimir, M. D., Bonasera, A., Scopelliti, M., Marković, O. S.,& Todorović Marković, B.. (2020). Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing. in Ceramics International
Elsevier., 46, 23611-23622.
https://doi.org/10.1016/j.ceramint.2020.06.133
Jovanović S, Dorontić S, Jovanović D, Ciasca G, Budimir MD, Bonasera A, Scopelliti M, Marković OS, Todorović Marković B. Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing. in Ceramics International. 2020;46:23611-23622.
doi:10.1016/j.ceramint.2020.06.133 .
Jovanović, Svetlana, Dorontić, Slađana, Jovanović, Dragana, Ciasca, Gabriele, Budimir, Milica D., Bonasera, Aurelio, Scopelliti, Michelangelo, Marković, Olivera S., Todorović Marković, Biljana, "Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing" in Ceramics International, 46 (2020):23611-23622,
https://doi.org/10.1016/j.ceramint.2020.06.133 . .
16
7
17
15

Synthesis, structural characterisation and antibacterial activity of Ag+-doped fluorapatite nanomaterials prepared by neutralization method

Stanić, Vojislav; Radosavljević-Mihajlović, Ana S.; Živković-Radovanović, Vukosava; Nastasijevic, Branislav; Marinovic-Cincovic, Milena; Marković, Jelena; Budimir, Milica D.

(Elsevier Science Bv, Amsterdam, 2015)

TY  - JOUR
AU  - Stanić, Vojislav
AU  - Radosavljević-Mihajlović, Ana S.
AU  - Živković-Radovanović, Vukosava
AU  - Nastasijevic, Branislav
AU  - Marinovic-Cincovic, Milena
AU  - Marković, Jelena
AU  - Budimir, Milica D.
PY  - 2015
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/1679
AB  - Silver doped fluorapatite nanopowders were synthesised by neutralization method, which consists of dissolving Ag2O in solution of HF and H3PO4 and addition to suspension of Ca(OH)(2). The powder XRD, SEM and FTIR studies indicated the formation of a fluorapatite nanomaterials with average length of the particles is about 80 nm and a width of about 15 nm. The FUR studies show that carbonate content in samples is very small and carbonte ions substitute both phosphate and hydroxyl groups in the crystal structure of samples, forming AB-type fluorapatite. Antibacterial studies have demonstrated that all Ag+-doped fluorapatite samples exhibit bactericidal effect against pathogens: Staphylococcus aureus, Micrococcus luteus and Kllebsiela pneumoniae. Antibacterial activity increased with the increase of Ag+ in the samples. The atomic force microscopy studies revealed extensive damage to the bacterial cell envelops in the presence of AW-doped fluorapatite particles which may lead to their death. The synthesized Ag+-doped fluorapatite nanomaterials are promising as antibacterial biomaterials in orthopedics and dentistry. (C) 2015 Elsevier B.V. All rights reserved.
PB  - Elsevier Science Bv, Amsterdam
T2  - Applied Surface Science
T1  - Synthesis, structural characterisation and antibacterial activity of Ag+-doped fluorapatite nanomaterials prepared by neutralization method
VL  - 337
SP  - 72
EP  - 80
DO  - 10.1016/j.apsusc.2015.02.065
ER  - 
@article{
author = "Stanić, Vojislav and Radosavljević-Mihajlović, Ana S. and Živković-Radovanović, Vukosava and Nastasijevic, Branislav and Marinovic-Cincovic, Milena and Marković, Jelena and Budimir, Milica D.",
year = "2015",
abstract = "Silver doped fluorapatite nanopowders were synthesised by neutralization method, which consists of dissolving Ag2O in solution of HF and H3PO4 and addition to suspension of Ca(OH)(2). The powder XRD, SEM and FTIR studies indicated the formation of a fluorapatite nanomaterials with average length of the particles is about 80 nm and a width of about 15 nm. The FUR studies show that carbonate content in samples is very small and carbonte ions substitute both phosphate and hydroxyl groups in the crystal structure of samples, forming AB-type fluorapatite. Antibacterial studies have demonstrated that all Ag+-doped fluorapatite samples exhibit bactericidal effect against pathogens: Staphylococcus aureus, Micrococcus luteus and Kllebsiela pneumoniae. Antibacterial activity increased with the increase of Ag+ in the samples. The atomic force microscopy studies revealed extensive damage to the bacterial cell envelops in the presence of AW-doped fluorapatite particles which may lead to their death. The synthesized Ag+-doped fluorapatite nanomaterials are promising as antibacterial biomaterials in orthopedics and dentistry. (C) 2015 Elsevier B.V. All rights reserved.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Applied Surface Science",
title = "Synthesis, structural characterisation and antibacterial activity of Ag+-doped fluorapatite nanomaterials prepared by neutralization method",
volume = "337",
pages = "72-80",
doi = "10.1016/j.apsusc.2015.02.065"
}
Stanić, V., Radosavljević-Mihajlović, A. S., Živković-Radovanović, V., Nastasijevic, B., Marinovic-Cincovic, M., Marković, J.,& Budimir, M. D.. (2015). Synthesis, structural characterisation and antibacterial activity of Ag+-doped fluorapatite nanomaterials prepared by neutralization method. in Applied Surface Science
Elsevier Science Bv, Amsterdam., 337, 72-80.
https://doi.org/10.1016/j.apsusc.2015.02.065
Stanić V, Radosavljević-Mihajlović AS, Živković-Radovanović V, Nastasijevic B, Marinovic-Cincovic M, Marković J, Budimir MD. Synthesis, structural characterisation and antibacterial activity of Ag+-doped fluorapatite nanomaterials prepared by neutralization method. in Applied Surface Science. 2015;337:72-80.
doi:10.1016/j.apsusc.2015.02.065 .
Stanić, Vojislav, Radosavljević-Mihajlović, Ana S., Živković-Radovanović, Vukosava, Nastasijevic, Branislav, Marinovic-Cincovic, Milena, Marković, Jelena, Budimir, Milica D., "Synthesis, structural characterisation and antibacterial activity of Ag+-doped fluorapatite nanomaterials prepared by neutralization method" in Applied Surface Science, 337 (2015):72-80,
https://doi.org/10.1016/j.apsusc.2015.02.065 . .
42
29
43
40