Ilić-Tomić, Tatjana

Link to this page

Authority KeyName Variants
orcid::0000-0001-7198-2855
  • Ilić-Tomić, Tatjana (30)
Projects
Microbial diversity study and characterization of beneficial environmental microorganisms Synthesis of new metal complexes and investigation of their reactions with peptides
Natural products of wild, cultivated and edible plants: structure and bioactivity determination The synthesis of aminoquinoline-based antimalarials and botulinum neurotoxin A inhibitors
European Union’s Horizon 2020 research and innovation programme under grant agreement No 870292 (BioICEP) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry) bilateral Slovenian-Serbian project [BI-RS/16-17-024]
Erasmus Mundus Action 2 Project Basileus V German Academic Exchange Service (DAAD)
Combinatorial libraries of heterogeneous catalysts, natural products, and their derivatives and analogues: the way to biologically active compounds Micromorphological, phytochemical and molecular investigations of plants - systematic, ecological and applicative aspects
Serbian Academy of Sciences and Arts [F128] Slovenian Research Agency [P1-0175, Z1-6735]
SupraMedChem'Balkans.Net SCOPES [IZ74Z0_160515] Graph theory and mathematical programming with applications in chemistry and computer science
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200042 (University of Belgrade, Institute of Molecular Genetics and Genetic Engineering) PL-Grid infrastructure
Serbian Academy of Sciences and Arts (Grant No. F188) The European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 870292 (BioICEP)
The National Natural Science Foundation of China (Nos. 31961133014) The National Natural Science Foundation of China (Nos. 31961133015)
The National Natural Science Foundation of China (Nos. 31961133016)

Author's Bibliography

Bisbibenzyls from Serbian Primula veris subsp. Columnae (Ten.) Lȕdi and P. acaulis (L.) L

Novaković, Miroslav M.; Ilić-Tomić, Tatjana; Đorđević, Iris; Anđelković, Boban D.; Tešević, Vele; Milosavljević, Slobodan M.; Asakawa, Yoshinori

(Elsevier, 2023)

TY  - JOUR
AU  - Novaković, Miroslav M.
AU  - Ilić-Tomić, Tatjana
AU  - Đorđević, Iris
AU  - Anđelković, Boban D.
AU  - Tešević, Vele
AU  - Milosavljević, Slobodan M.
AU  - Asakawa, Yoshinori
PY  - 2023
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6259
AB  - Bisbibenzyls are specialized metabolites found exclusively in liverworts, until recently; they represent chemical markers of liverworts. Their occurrence in vascular plants was noticed in 2007, when they were found in Primula veris subsp. macrocalyx from Russia. This report prompted us to chemically analyze the two most common Serbian Primula species, P. veris subsp. columnae and P. acaulis, in order to determine the presence of bisbibenzyls in them. Our study revealed nine structurally distinct bisbibenzyls (1–9), identified based on 1D and 2D NMR, IR, UV and HRESIMS data. Among them were five previously undescribed compounds (2–6). The remaining com­ pounds found and previously described in the literature were: the bisbibenzyls riccardin C (1), isoperrottetin A (7), isoplagiochin E (8) and 11-O-demethylmarchantin I (9), as well as 4-hydroxyphenylmethylketone (10) and 4-hydroxy-3-methoxyphenylmethylketone (11). Riccardin C was the most dominant bisbibenzyl in both species studied. Previously, it was the first bisbibenzyl found in vascular plants (P. veris subsp. macrocalyx). An assessment of the cytotoxic activity of the isolated compounds against A549 lung cancer and healthy MRC5 cell lines was also the subject of our study. Compounds 6 and 9 exhibited significant cytotoxic activity expressed by IC50 values of 12 μM, but the selectivity was not satisfactory.
PB  - Elsevier
T2  - Phytochemistry
T1  - Bisbibenzyls from Serbian Primula veris subsp. Columnae (Ten.) Lȕdi and P. acaulis (L.) L
VL  - 212
EP  - 113719
DO  - 10.1016/j.phytochem.2023.113719
ER  - 
@article{
author = "Novaković, Miroslav M. and Ilić-Tomić, Tatjana and Đorđević, Iris and Anđelković, Boban D. and Tešević, Vele and Milosavljević, Slobodan M. and Asakawa, Yoshinori",
year = "2023, 2023",
abstract = "Bisbibenzyls are specialized metabolites found exclusively in liverworts, until recently; they represent chemical markers of liverworts. Their occurrence in vascular plants was noticed in 2007, when they were found in Primula veris subsp. macrocalyx from Russia. This report prompted us to chemically analyze the two most common Serbian Primula species, P. veris subsp. columnae and P. acaulis, in order to determine the presence of bisbibenzyls in them. Our study revealed nine structurally distinct bisbibenzyls (1–9), identified based on 1D and 2D NMR, IR, UV and HRESIMS data. Among them were five previously undescribed compounds (2–6). The remaining com­ pounds found and previously described in the literature were: the bisbibenzyls riccardin C (1), isoperrottetin A (7), isoplagiochin E (8) and 11-O-demethylmarchantin I (9), as well as 4-hydroxyphenylmethylketone (10) and 4-hydroxy-3-methoxyphenylmethylketone (11). Riccardin C was the most dominant bisbibenzyl in both species studied. Previously, it was the first bisbibenzyl found in vascular plants (P. veris subsp. macrocalyx). An assessment of the cytotoxic activity of the isolated compounds against A549 lung cancer and healthy MRC5 cell lines was also the subject of our study. Compounds 6 and 9 exhibited significant cytotoxic activity expressed by IC50 values of 12 μM, but the selectivity was not satisfactory.",
publisher = "Elsevier",
journal = "Phytochemistry",
title = "Bisbibenzyls from Serbian Primula veris subsp. Columnae (Ten.) Lȕdi and P. acaulis (L.) L",
volume = "212",
pages = "113719",
doi = "10.1016/j.phytochem.2023.113719"
}
Novaković, M. M., Ilić-Tomić, T., Đorđević, I., Anđelković, B. D., Tešević, V., Milosavljević, S. M.,& Asakawa, Y.. (2023). Bisbibenzyls from Serbian Primula veris subsp. Columnae (Ten.) Lȕdi and P. acaulis (L.) L. in Phytochemistry
Elsevier., 212.
https://doi.org/10.1016/j.phytochem.2023.113719
Novaković MM, Ilić-Tomić T, Đorđević I, Anđelković BD, Tešević V, Milosavljević SM, Asakawa Y. Bisbibenzyls from Serbian Primula veris subsp. Columnae (Ten.) Lȕdi and P. acaulis (L.) L. in Phytochemistry. 2023;212:null-113719.
doi:10.1016/j.phytochem.2023.113719 .
Novaković, Miroslav M., Ilić-Tomić, Tatjana, Đorđević, Iris, Anđelković, Boban D., Tešević, Vele, Milosavljević, Slobodan M., Asakawa, Yoshinori, "Bisbibenzyls from Serbian Primula veris subsp. Columnae (Ten.) Lȕdi and P. acaulis (L.) L" in Phytochemistry, 212 (2023),
https://doi.org/10.1016/j.phytochem.2023.113719 . .

Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts

Topakas, Evangelos; Siaperas, Romanos; Taxeidis, George; Makryniotis, Konstantinos; Guzik, Maciej; Maslak, Veselin; Beškoski, Vladimir; Lončarević, Branka; Ilić-Tomić, Tatjana; Milivojević, Dušan; Škaro Bogojević, Sanja; Pantelić, Brana

(MDPI, 2023)

TY  - JOUR
AU  - Topakas, Evangelos
AU  - Siaperas, Romanos
AU  - Taxeidis, George
AU  - Makryniotis, Konstantinos
AU  - Guzik, Maciej
AU  - Maslak, Veselin
AU  - Beškoski, Vladimir
AU  - Lončarević, Branka
AU  - Ilić-Tomić, Tatjana
AU  - Milivojević, Dušan
AU  - Škaro Bogojević, Sanja
AU  - Pantelić, Brana
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5969
AB  - Polyurethanes (PUs) are an exceedingly heterogeneous group of plastic polymers, widely used in a variety of industries from construction to medical implants. In the past decades, we have witnessed the accumulation of PU waste and its detrimental environmental impacts. PUs have been identified as one of the most toxic polymers leaching hazardous compounds derived both from the polymer itself and the additives used in production. Further environmental impact assessment, identification and characterization of substances derived from PU materials and establishing efficient degradation strategies are crucial. Thus, a selection of eight synthetic model compounds which represent partial PU hydrolysis products were synthesized and characterized both in terms of toxicity and suitability to be used as substrates for the identification of novel biocatalysts for PU biodegradation. Overall, the compounds exhibited low in vitro cytotoxicity against a healthy human fibroblast cell line and virtually no toxic effect on the nematode Caenorhabditis elegans up to 500 µg mL−1, and two of the substrates showed moderate aquatic ecotoxicity with EC50 values 53 µg mL−1 and 45 µg mL−1, respectively, on Aliivibrio fischeri. The compounds were successfully applied to study the mechanism of ester and urethane bond cleaving preference of known plastic-degrading enzymes and were used to single out a novel PU-degrading biocatalyst, Amycolatopsis mediterranei ISP5501, among 220 microbial strains. A. mediterranei ISP5501 can also degrade commercially available polyether and polyester PU materials, reducing the average molecular number of the polymer up to 13.5%. This study uncovered a biocatalyst capable of degrading different types of PUs and identified potential enzymes responsible as a key step in developing biotechnological process for PU waste treatment options.
PB  - MDPI
T2  - Catalysts
T1  - Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts
VL  - 13
IS  - 2
SP  - 278
DO  - 10.3390/catal13020278
ER  - 
@article{
author = "Topakas, Evangelos and Siaperas, Romanos and Taxeidis, George and Makryniotis, Konstantinos and Guzik, Maciej and Maslak, Veselin and Beškoski, Vladimir and Lončarević, Branka and Ilić-Tomić, Tatjana and Milivojević, Dušan and Škaro Bogojević, Sanja and Pantelić, Brana",
year = "2023",
abstract = "Polyurethanes (PUs) are an exceedingly heterogeneous group of plastic polymers, widely used in a variety of industries from construction to medical implants. In the past decades, we have witnessed the accumulation of PU waste and its detrimental environmental impacts. PUs have been identified as one of the most toxic polymers leaching hazardous compounds derived both from the polymer itself and the additives used in production. Further environmental impact assessment, identification and characterization of substances derived from PU materials and establishing efficient degradation strategies are crucial. Thus, a selection of eight synthetic model compounds which represent partial PU hydrolysis products were synthesized and characterized both in terms of toxicity and suitability to be used as substrates for the identification of novel biocatalysts for PU biodegradation. Overall, the compounds exhibited low in vitro cytotoxicity against a healthy human fibroblast cell line and virtually no toxic effect on the nematode Caenorhabditis elegans up to 500 µg mL−1, and two of the substrates showed moderate aquatic ecotoxicity with EC50 values 53 µg mL−1 and 45 µg mL−1, respectively, on Aliivibrio fischeri. The compounds were successfully applied to study the mechanism of ester and urethane bond cleaving preference of known plastic-degrading enzymes and were used to single out a novel PU-degrading biocatalyst, Amycolatopsis mediterranei ISP5501, among 220 microbial strains. A. mediterranei ISP5501 can also degrade commercially available polyether and polyester PU materials, reducing the average molecular number of the polymer up to 13.5%. This study uncovered a biocatalyst capable of degrading different types of PUs and identified potential enzymes responsible as a key step in developing biotechnological process for PU waste treatment options.",
publisher = "MDPI",
journal = "Catalysts",
title = "Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts",
volume = "13",
number = "2",
pages = "278",
doi = "10.3390/catal13020278"
}
Topakas, E., Siaperas, R., Taxeidis, G., Makryniotis, K., Guzik, M., Maslak, V., Beškoski, V., Lončarević, B., Ilić-Tomić, T., Milivojević, D., Škaro Bogojević, S.,& Pantelić, B.. (2023). Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts. in Catalysts
MDPI., 13(2), 278.
https://doi.org/10.3390/catal13020278
Topakas E, Siaperas R, Taxeidis G, Makryniotis K, Guzik M, Maslak V, Beškoski V, Lončarević B, Ilić-Tomić T, Milivojević D, Škaro Bogojević S, Pantelić B. Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts. in Catalysts. 2023;13(2):278.
doi:10.3390/catal13020278 .
Topakas, Evangelos, Siaperas, Romanos, Taxeidis, George, Makryniotis, Konstantinos, Guzik, Maciej, Maslak, Veselin, Beškoski, Vladimir, Lončarević, Branka, Ilić-Tomić, Tatjana, Milivojević, Dušan, Škaro Bogojević, Sanja, Pantelić, Brana, "Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts" in Catalysts, 13, no. 2 (2023):278,
https://doi.org/10.3390/catal13020278 . .
2
5
2
1

Supplementary data for the article: Djapovic, M.; Milivojevic, D.; Ilic-Tomic, T.; Lješević, M.; Nikolaivits, E.; Topakas, E.; Maslak, V.; Nikodinovic-Runic, J. Synthesis and Characterization of Polyethylene Terephthalate (PET) Precursors and Potential Degradation Products: Toxicity Study and Application in Discovery of Novel PETases. Chemosphere 2021, 275, 130005. https://doi.org/10.1016/j.chemosphere.2021.130005.

Đapović, Milica; Milivojević, Dušan; Ilić-Tomić, Tatjana; Lješević, Marija; Nikolaivits, Efstratios; Topakas, Evangelos; Maslak, Veselin; Nikodinović-Runić, Jasmina

(Elsevier, 2021)

TY  - DATA
AU  - Đapović, Milica
AU  - Milivojević, Dušan
AU  - Ilić-Tomić, Tatjana
AU  - Lješević, Marija
AU  - Nikolaivits, Efstratios
AU  - Topakas, Evangelos
AU  - Maslak, Veselin
AU  - Nikodinović-Runić, Jasmina
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0045653521004744
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4410
PB  - Elsevier
T2  - Chemosphere
T1  - Supplementary data for the article: Djapovic, M.; Milivojevic, D.; Ilic-Tomic, T.; Lješević, M.; Nikolaivits, E.; Topakas, E.; Maslak, V.; Nikodinovic-Runic, J. Synthesis and Characterization of Polyethylene Terephthalate (PET) Precursors and Potential Degradation Products: Toxicity Study and Application in Discovery of Novel PETases. Chemosphere 2021, 275, 130005. https://doi.org/10.1016/j.chemosphere.2021.130005.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4410
ER  - 
@misc{
author = "Đapović, Milica and Milivojević, Dušan and Ilić-Tomić, Tatjana and Lješević, Marija and Nikolaivits, Efstratios and Topakas, Evangelos and Maslak, Veselin and Nikodinović-Runić, Jasmina",
year = "2021",
publisher = "Elsevier",
journal = "Chemosphere",
title = "Supplementary data for the article: Djapovic, M.; Milivojevic, D.; Ilic-Tomic, T.; Lješević, M.; Nikolaivits, E.; Topakas, E.; Maslak, V.; Nikodinovic-Runic, J. Synthesis and Characterization of Polyethylene Terephthalate (PET) Precursors and Potential Degradation Products: Toxicity Study and Application in Discovery of Novel PETases. Chemosphere 2021, 275, 130005. https://doi.org/10.1016/j.chemosphere.2021.130005.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4410"
}
Đapović, M., Milivojević, D., Ilić-Tomić, T., Lješević, M., Nikolaivits, E., Topakas, E., Maslak, V.,& Nikodinović-Runić, J.. (2021). Supplementary data for the article: Djapovic, M.; Milivojevic, D.; Ilic-Tomic, T.; Lješević, M.; Nikolaivits, E.; Topakas, E.; Maslak, V.; Nikodinovic-Runic, J. Synthesis and Characterization of Polyethylene Terephthalate (PET) Precursors and Potential Degradation Products: Toxicity Study and Application in Discovery of Novel PETases. Chemosphere 2021, 275, 130005. https://doi.org/10.1016/j.chemosphere.2021.130005.. in Chemosphere
Elsevier..
https://hdl.handle.net/21.15107/rcub_cherry_4410
Đapović M, Milivojević D, Ilić-Tomić T, Lješević M, Nikolaivits E, Topakas E, Maslak V, Nikodinović-Runić J. Supplementary data for the article: Djapovic, M.; Milivojevic, D.; Ilic-Tomic, T.; Lješević, M.; Nikolaivits, E.; Topakas, E.; Maslak, V.; Nikodinovic-Runic, J. Synthesis and Characterization of Polyethylene Terephthalate (PET) Precursors and Potential Degradation Products: Toxicity Study and Application in Discovery of Novel PETases. Chemosphere 2021, 275, 130005. https://doi.org/10.1016/j.chemosphere.2021.130005.. in Chemosphere. 2021;.
https://hdl.handle.net/21.15107/rcub_cherry_4410 .
Đapović, Milica, Milivojević, Dušan, Ilić-Tomić, Tatjana, Lješević, Marija, Nikolaivits, Efstratios, Topakas, Evangelos, Maslak, Veselin, Nikodinović-Runić, Jasmina, "Supplementary data for the article: Djapovic, M.; Milivojevic, D.; Ilic-Tomic, T.; Lješević, M.; Nikolaivits, E.; Topakas, E.; Maslak, V.; Nikodinovic-Runic, J. Synthesis and Characterization of Polyethylene Terephthalate (PET) Precursors and Potential Degradation Products: Toxicity Study and Application in Discovery of Novel PETases. Chemosphere 2021, 275, 130005. https://doi.org/10.1016/j.chemosphere.2021.130005." in Chemosphere (2021),
https://hdl.handle.net/21.15107/rcub_cherry_4410 .

Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases

Đapović, Milica; Milivojević, Dušan; Ilić-Tomić, Tatjana; Lješević, Marija; Nikolaivits, Efstratios; Topakas, Evangelos; Maslak, Veselin; Nikodinović-Runić, Jasmina

(Elsevier, 2021)

TY  - JOUR
AU  - Đapović, Milica
AU  - Milivojević, Dušan
AU  - Ilić-Tomić, Tatjana
AU  - Lješević, Marija
AU  - Nikolaivits, Efstratios
AU  - Topakas, Evangelos
AU  - Maslak, Veselin
AU  - Nikodinović-Runić, Jasmina
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0045653521004744
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4409
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4411
AB  - Polyethylene terephthalate (PET) is widely used material and as such became highly enriched in nature. It is generally considered inert and safe plastic, but due to the recent increased efforts to break-down PET using biotechnological approaches, we realized the scarcity of information about structural analysis of possible degradation products and their ecotoxicological assessment. Therefore, in this study, 11 compounds belonging to the group of PET precursors and possible degradation products have been comprehensively characterized. Seven of these compounds including 1-(2-hydroxyethyl)-4-methylterephthalate, ethylene glycol bis(methyl terephthalate), methyl bis(2-hydroxyethyl terephtahalate), 1,4-benzenedicarboxylic acid, 1,4-bis[2-[[4-(methoxycarbonyl)benzoyl]oxy]ethyl] ester and methyl tris(2-hydroxyethyl terephthalate) corresponding to mono-, 1.5-, di-, 2,5- and trimer of PET were synthetized and structurally characterized for the first time. In-silico druglikeness and physico-chemical properties of these compounds were predicted using variety of platforms. No antimicrobial properties were detected even at 1000 μg/mL. Ecotoxicological impact of the compounds against marine bacteria Allivibrio fischeri proved that the 6 out of 11 tested PET-associated compounds may be classified as harmful to aquatic microorganisms, with PET trimer being one of the most toxic. In comparison, most of the compounds were not toxic on human lung fibroblasts (MRC-5) at 200 μg/mL with inhibiting concentration (IC50) values of 30 μg/mL and 50 μg/mL determined for PET dimer and trimer. Only three of these compounds including PET monomer were toxic to nematode Caenorhabditis elegans at high concentration of 500 μg/mL. In terms of the applicative potential, PET dimer can be used as suitable substrate for the screening, identification and characterization of novel PET-depolymerizing enzymes.
PB  - Elsevier
T2  - Chemosphere
T2  - ChemosphereChemosphere
T1  - Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases
VL  - 275
SP  - 130005
DO  - 10.1016/j.chemosphere.2021.130005
ER  - 
@article{
author = "Đapović, Milica and Milivojević, Dušan and Ilić-Tomić, Tatjana and Lješević, Marija and Nikolaivits, Efstratios and Topakas, Evangelos and Maslak, Veselin and Nikodinović-Runić, Jasmina",
year = "2021",
abstract = "Polyethylene terephthalate (PET) is widely used material and as such became highly enriched in nature. It is generally considered inert and safe plastic, but due to the recent increased efforts to break-down PET using biotechnological approaches, we realized the scarcity of information about structural analysis of possible degradation products and their ecotoxicological assessment. Therefore, in this study, 11 compounds belonging to the group of PET precursors and possible degradation products have been comprehensively characterized. Seven of these compounds including 1-(2-hydroxyethyl)-4-methylterephthalate, ethylene glycol bis(methyl terephthalate), methyl bis(2-hydroxyethyl terephtahalate), 1,4-benzenedicarboxylic acid, 1,4-bis[2-[[4-(methoxycarbonyl)benzoyl]oxy]ethyl] ester and methyl tris(2-hydroxyethyl terephthalate) corresponding to mono-, 1.5-, di-, 2,5- and trimer of PET were synthetized and structurally characterized for the first time. In-silico druglikeness and physico-chemical properties of these compounds were predicted using variety of platforms. No antimicrobial properties were detected even at 1000 μg/mL. Ecotoxicological impact of the compounds against marine bacteria Allivibrio fischeri proved that the 6 out of 11 tested PET-associated compounds may be classified as harmful to aquatic microorganisms, with PET trimer being one of the most toxic. In comparison, most of the compounds were not toxic on human lung fibroblasts (MRC-5) at 200 μg/mL with inhibiting concentration (IC50) values of 30 μg/mL and 50 μg/mL determined for PET dimer and trimer. Only three of these compounds including PET monomer were toxic to nematode Caenorhabditis elegans at high concentration of 500 μg/mL. In terms of the applicative potential, PET dimer can be used as suitable substrate for the screening, identification and characterization of novel PET-depolymerizing enzymes.",
publisher = "Elsevier",
journal = "Chemosphere, ChemosphereChemosphere",
title = "Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases",
volume = "275",
pages = "130005",
doi = "10.1016/j.chemosphere.2021.130005"
}
Đapović, M., Milivojević, D., Ilić-Tomić, T., Lješević, M., Nikolaivits, E., Topakas, E., Maslak, V.,& Nikodinović-Runić, J.. (2021). Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases. in Chemosphere
Elsevier., 275, 130005.
https://doi.org/10.1016/j.chemosphere.2021.130005
Đapović M, Milivojević D, Ilić-Tomić T, Lješević M, Nikolaivits E, Topakas E, Maslak V, Nikodinović-Runić J. Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases. in Chemosphere. 2021;275:130005.
doi:10.1016/j.chemosphere.2021.130005 .
Đapović, Milica, Milivojević, Dušan, Ilić-Tomić, Tatjana, Lješević, Marija, Nikolaivits, Efstratios, Topakas, Evangelos, Maslak, Veselin, Nikodinović-Runić, Jasmina, "Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases" in Chemosphere, 275 (2021):130005,
https://doi.org/10.1016/j.chemosphere.2021.130005 . .
7
43
13
37
35

Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases

Đapović, Milica; Milivojević, Dušan; Ilić-Tomić, Tatjana; Lješević, Marija; Nikolaivits, Efstratios; Topakas, Evangelos; Maslak, Veselin; Nikodinović-Runić, Jasmina

(Elsevier, 2021)

TY  - JOUR
AU  - Đapović, Milica
AU  - Milivojević, Dušan
AU  - Ilić-Tomić, Tatjana
AU  - Lješević, Marija
AU  - Nikolaivits, Efstratios
AU  - Topakas, Evangelos
AU  - Maslak, Veselin
AU  - Nikodinović-Runić, Jasmina
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0045653521004744
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4409
AB  - Polyethylene terephthalate (PET) is widely used material and as such became highly enriched in nature. It is generally considered inert and safe plastic, but due to the recent increased efforts to break-down PET using biotechnological approaches, we realized the scarcity of information about structural analysis of possible degradation products and their ecotoxicological assessment. Therefore, in this study, 11 compounds belonging to the group of PET precursors and possible degradation products have been comprehensively characterized. Seven of these compounds including 1-(2-hydroxyethyl)-4-methylterephthalate, ethylene glycol bis(methyl terephthalate), methyl bis(2-hydroxyethyl terephtahalate), 1,4-benzenedicarboxylic acid, 1,4-bis[2-[[4-(methoxycarbonyl)benzoyl]oxy]ethyl] ester and methyl tris(2-hydroxyethyl terephthalate) corresponding to mono-, 1.5-, di-, 2,5- and trimer of PET were synthetized and structurally characterized for the first time. In-silico druglikeness and physico-chemical properties of these compounds were predicted using variety of platforms. No antimicrobial properties were detected even at 1000 μg/mL. Ecotoxicological impact of the compounds against marine bacteria Allivibrio fischeri proved that the 6 out of 11 tested PET-associated compounds may be classified as harmful to aquatic microorganisms, with PET trimer being one of the most toxic. In comparison, most of the compounds were not toxic on human lung fibroblasts (MRC-5) at 200 μg/mL with inhibiting concentration (IC50) values of 30 μg/mL and 50 μg/mL determined for PET dimer and trimer. Only three of these compounds including PET monomer were toxic to nematode Caenorhabditis elegans at high concentration of 500 μg/mL. In terms of the applicative potential, PET dimer can be used as suitable substrate for the screening, identification and characterization of novel PET-depolymerizing enzymes.
PB  - Elsevier
T2  - Chemosphere
T2  - ChemosphereChemosphere
T1  - Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases
VL  - 275
SP  - 130005
DO  - 10.1016/j.chemosphere.2021.130005
ER  - 
@article{
author = "Đapović, Milica and Milivojević, Dušan and Ilić-Tomić, Tatjana and Lješević, Marija and Nikolaivits, Efstratios and Topakas, Evangelos and Maslak, Veselin and Nikodinović-Runić, Jasmina",
year = "2021",
abstract = "Polyethylene terephthalate (PET) is widely used material and as such became highly enriched in nature. It is generally considered inert and safe plastic, but due to the recent increased efforts to break-down PET using biotechnological approaches, we realized the scarcity of information about structural analysis of possible degradation products and their ecotoxicological assessment. Therefore, in this study, 11 compounds belonging to the group of PET precursors and possible degradation products have been comprehensively characterized. Seven of these compounds including 1-(2-hydroxyethyl)-4-methylterephthalate, ethylene glycol bis(methyl terephthalate), methyl bis(2-hydroxyethyl terephtahalate), 1,4-benzenedicarboxylic acid, 1,4-bis[2-[[4-(methoxycarbonyl)benzoyl]oxy]ethyl] ester and methyl tris(2-hydroxyethyl terephthalate) corresponding to mono-, 1.5-, di-, 2,5- and trimer of PET were synthetized and structurally characterized for the first time. In-silico druglikeness and physico-chemical properties of these compounds were predicted using variety of platforms. No antimicrobial properties were detected even at 1000 μg/mL. Ecotoxicological impact of the compounds against marine bacteria Allivibrio fischeri proved that the 6 out of 11 tested PET-associated compounds may be classified as harmful to aquatic microorganisms, with PET trimer being one of the most toxic. In comparison, most of the compounds were not toxic on human lung fibroblasts (MRC-5) at 200 μg/mL with inhibiting concentration (IC50) values of 30 μg/mL and 50 μg/mL determined for PET dimer and trimer. Only three of these compounds including PET monomer were toxic to nematode Caenorhabditis elegans at high concentration of 500 μg/mL. In terms of the applicative potential, PET dimer can be used as suitable substrate for the screening, identification and characterization of novel PET-depolymerizing enzymes.",
publisher = "Elsevier",
journal = "Chemosphere, ChemosphereChemosphere",
title = "Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases",
volume = "275",
pages = "130005",
doi = "10.1016/j.chemosphere.2021.130005"
}
Đapović, M., Milivojević, D., Ilić-Tomić, T., Lješević, M., Nikolaivits, E., Topakas, E., Maslak, V.,& Nikodinović-Runić, J.. (2021). Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases. in Chemosphere
Elsevier., 275, 130005.
https://doi.org/10.1016/j.chemosphere.2021.130005
Đapović M, Milivojević D, Ilić-Tomić T, Lješević M, Nikolaivits E, Topakas E, Maslak V, Nikodinović-Runić J. Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases. in Chemosphere. 2021;275:130005.
doi:10.1016/j.chemosphere.2021.130005 .
Đapović, Milica, Milivojević, Dušan, Ilić-Tomić, Tatjana, Lješević, Marija, Nikolaivits, Efstratios, Topakas, Evangelos, Maslak, Veselin, Nikodinović-Runić, Jasmina, "Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases" in Chemosphere, 275 (2021):130005,
https://doi.org/10.1016/j.chemosphere.2021.130005 . .
7
43
13
37
35

Supplementary data for the article: Novakovic, M.; Ilic-Tomic, T.; Tesevic, V.; Simic, K.; Ivanovic, S.; Simic, S.; Opsenica, I.; Nikodinovic-Runic, J. Bisaurones – Enzymatic Production and Biological Evaluation. New J. Chem. 2020, 44 (23), 9647–9655. https://doi.org/10.1039/D0NJ00758G

Novaković, Miroslav M.; Ilić-Tomić, Tatjana; Tešević, Vele; Simić, Katarina; Ivanović, Stefan; Simić, Stefan; Opsenica, Igor; Nikodinović-Runić, Jasmina

(Royal Society of Chemistry, 2020)

TY  - DATA
AU  - Novaković, Miroslav M.
AU  - Ilić-Tomić, Tatjana
AU  - Tešević, Vele
AU  - Simić, Katarina
AU  - Ivanović, Stefan
AU  - Simić, Stefan
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4078
PB  - Royal Society of Chemistry
T2  - New Journal of Chemistry
T1  - Supplementary data for the article: Novakovic, M.; Ilic-Tomic, T.; Tesevic, V.; Simic, K.; Ivanovic, S.; Simic, S.; Opsenica, I.; Nikodinovic-Runic, J. Bisaurones – Enzymatic Production and Biological Evaluation. New J. Chem. 2020, 44 (23), 9647–9655. https://doi.org/10.1039/D0NJ00758G
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4078
ER  - 
@misc{
author = "Novaković, Miroslav M. and Ilić-Tomić, Tatjana and Tešević, Vele and Simić, Katarina and Ivanović, Stefan and Simić, Stefan and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2020",
publisher = "Royal Society of Chemistry",
journal = "New Journal of Chemistry",
title = "Supplementary data for the article: Novakovic, M.; Ilic-Tomic, T.; Tesevic, V.; Simic, K.; Ivanovic, S.; Simic, S.; Opsenica, I.; Nikodinovic-Runic, J. Bisaurones – Enzymatic Production and Biological Evaluation. New J. Chem. 2020, 44 (23), 9647–9655. https://doi.org/10.1039/D0NJ00758G",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4078"
}
Novaković, M. M., Ilić-Tomić, T., Tešević, V., Simić, K., Ivanović, S., Simić, S., Opsenica, I.,& Nikodinović-Runić, J.. (2020). Supplementary data for the article: Novakovic, M.; Ilic-Tomic, T.; Tesevic, V.; Simic, K.; Ivanovic, S.; Simic, S.; Opsenica, I.; Nikodinovic-Runic, J. Bisaurones – Enzymatic Production and Biological Evaluation. New J. Chem. 2020, 44 (23), 9647–9655. https://doi.org/10.1039/D0NJ00758G. in New Journal of Chemistry
Royal Society of Chemistry..
https://hdl.handle.net/21.15107/rcub_cherry_4078
Novaković MM, Ilić-Tomić T, Tešević V, Simić K, Ivanović S, Simić S, Opsenica I, Nikodinović-Runić J. Supplementary data for the article: Novakovic, M.; Ilic-Tomic, T.; Tesevic, V.; Simic, K.; Ivanovic, S.; Simic, S.; Opsenica, I.; Nikodinovic-Runic, J. Bisaurones – Enzymatic Production and Biological Evaluation. New J. Chem. 2020, 44 (23), 9647–9655. https://doi.org/10.1039/D0NJ00758G. in New Journal of Chemistry. 2020;.
https://hdl.handle.net/21.15107/rcub_cherry_4078 .
Novaković, Miroslav M., Ilić-Tomić, Tatjana, Tešević, Vele, Simić, Katarina, Ivanović, Stefan, Simić, Stefan, Opsenica, Igor, Nikodinović-Runić, Jasmina, "Supplementary data for the article: Novakovic, M.; Ilic-Tomic, T.; Tesevic, V.; Simic, K.; Ivanovic, S.; Simic, S.; Opsenica, I.; Nikodinovic-Runic, J. Bisaurones – Enzymatic Production and Biological Evaluation. New J. Chem. 2020, 44 (23), 9647–9655. https://doi.org/10.1039/D0NJ00758G" in New Journal of Chemistry (2020),
https://hdl.handle.net/21.15107/rcub_cherry_4078 .

Bisaurones – enzymatic production and biological evaluation

Novaković, Miroslav M.; Ilić-Tomić, Tatjana; Tešević, Vele; Simić, Katarina; Ivanović, Stefan; Simić, Stefan; Opsenica, Igor; Nikodinović-Runić, Jasmina

(Royal Society of Chemistry, 2020)

TY  - JOUR
AU  - Novaković, Miroslav M.
AU  - Ilić-Tomić, Tatjana
AU  - Tešević, Vele
AU  - Simić, Katarina
AU  - Ivanović, Stefan
AU  - Simić, Stefan
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4052
AB  - The Trametes versicolor laccase catalyzed oxidation of chalcone butein afforded four dimers of aurone sulfuretin (i.e. two regioisomeric pairs of diasteromers, 1-4) as the major products. The formation of the dimers was explained by a two step process involving the initial cyclization of butein into aurone sulfuretin, followed by the combination of two molecules of sulfuretin. The coupling process occurred between the 2,10-double bond of one molecule of sulfuretin and the (3′,4′) catechol group of the other to yield a dimeric structure. This was confirmed by the experiment involving the laccase catalyzed oxidation of sulfuretin yielding the same dimeric bisaurones. Compounds 1, 3 and 4, were isolated using semipreparative HPLC and characterized by the detailed analysis of the NMR, MS, IR, and UV-vis data. The structure of compound 2, isolated as a mixture containing ca. 25% of compound 1, was proposed by the comparison of 1H NMR data to compound 1 and by using LC-ESIMS analysis. The starting chalcone butein and the products of the biocatalytic transformation, aurone sulfuretin and sulfuretin dimers 1, 3 and 4, were evaluated for their cytotoxic and antioxidative properties in vitro using a healthy human fibroblast (MRC5) cell line. The biotransformation products showed lower cytotoxicity but higher antioxidative properties. The C. coggygria bark methanol extract rich in butein and sulfuretin was also biotransformed by laccase. The transformed extract exhibited significantly improved antioxidative activities.
PB  - Royal Society of Chemistry
T2  - New Journal of Chemistry
T1  - Bisaurones – enzymatic production and biological evaluation
VL  - 44
IS  - 23
SP  - 9647
EP  - 9655
DO  - 10.1039/d0nj00758g
ER  - 
@article{
author = "Novaković, Miroslav M. and Ilić-Tomić, Tatjana and Tešević, Vele and Simić, Katarina and Ivanović, Stefan and Simić, Stefan and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2020",
abstract = "The Trametes versicolor laccase catalyzed oxidation of chalcone butein afforded four dimers of aurone sulfuretin (i.e. two regioisomeric pairs of diasteromers, 1-4) as the major products. The formation of the dimers was explained by a two step process involving the initial cyclization of butein into aurone sulfuretin, followed by the combination of two molecules of sulfuretin. The coupling process occurred between the 2,10-double bond of one molecule of sulfuretin and the (3′,4′) catechol group of the other to yield a dimeric structure. This was confirmed by the experiment involving the laccase catalyzed oxidation of sulfuretin yielding the same dimeric bisaurones. Compounds 1, 3 and 4, were isolated using semipreparative HPLC and characterized by the detailed analysis of the NMR, MS, IR, and UV-vis data. The structure of compound 2, isolated as a mixture containing ca. 25% of compound 1, was proposed by the comparison of 1H NMR data to compound 1 and by using LC-ESIMS analysis. The starting chalcone butein and the products of the biocatalytic transformation, aurone sulfuretin and sulfuretin dimers 1, 3 and 4, were evaluated for their cytotoxic and antioxidative properties in vitro using a healthy human fibroblast (MRC5) cell line. The biotransformation products showed lower cytotoxicity but higher antioxidative properties. The C. coggygria bark methanol extract rich in butein and sulfuretin was also biotransformed by laccase. The transformed extract exhibited significantly improved antioxidative activities.",
publisher = "Royal Society of Chemistry",
journal = "New Journal of Chemistry",
title = "Bisaurones – enzymatic production and biological evaluation",
volume = "44",
number = "23",
pages = "9647-9655",
doi = "10.1039/d0nj00758g"
}
Novaković, M. M., Ilić-Tomić, T., Tešević, V., Simić, K., Ivanović, S., Simić, S., Opsenica, I.,& Nikodinović-Runić, J.. (2020). Bisaurones – enzymatic production and biological evaluation. in New Journal of Chemistry
Royal Society of Chemistry., 44(23), 9647-9655.
https://doi.org/10.1039/d0nj00758g
Novaković MM, Ilić-Tomić T, Tešević V, Simić K, Ivanović S, Simić S, Opsenica I, Nikodinović-Runić J. Bisaurones – enzymatic production and biological evaluation. in New Journal of Chemistry. 2020;44(23):9647-9655.
doi:10.1039/d0nj00758g .
Novaković, Miroslav M., Ilić-Tomić, Tatjana, Tešević, Vele, Simić, Katarina, Ivanović, Stefan, Simić, Stefan, Opsenica, Igor, Nikodinović-Runić, Jasmina, "Bisaurones – enzymatic production and biological evaluation" in New Journal of Chemistry, 44, no. 23 (2020):9647-9655,
https://doi.org/10.1039/d0nj00758g . .
1
1
1

N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa

Aleksic, Ivana; Jeremic, Jelena; Milivojević, Dušan; Ilić-Tomić, Tatjana; Šegan, Sandra B.; Zlatović, Mario; Opsenica, Dejan M.; Senerovic, Lidija

(American Chemical Society, 2019)

TY  - JOUR
AU  - Aleksic, Ivana
AU  - Jeremic, Jelena
AU  - Milivojević, Dušan
AU  - Ilić-Tomić, Tatjana
AU  - Šegan, Sandra B.
AU  - Zlatović, Mario
AU  - Opsenica, Dejan M.
AU  - Senerovic, Lidija
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3771
AB  - Pseudomonas aeruginosa is a leading cause of nosocomial infections that are becoming increasingly difficult to treat due to the occurrence of antibiotic resistant strains. Since P. aeruginosa virulence is controlled through quorum sensing, small molecule treatments inhibiting quorum sensing signaling pathways provide a promising therapeutic option. Consequently, we synthesized a series of N-octaneamino-4-aminoquinoline derivatives to optimize this chemotype’s antivirulence activity against P. aeruginosa via inhibition of pyocyanin production. The most potent derivative, which possesses a benzofuran substituent, provided effective inhibition of pyocyanin production (IC50 = 12 μM), biofilm formation (BFIC50 = 50 μM), and motility. Experimentally, the compound’s activity is achieved through competitive inhibition of PqsR, and structure–activity data were rationalized using molecular docking studies.
PB  - American Chemical Society
T2  - ACS Chemical Biology
T1  - N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa
DO  - 10.1021/acschembio.9b00682
ER  - 
@article{
author = "Aleksic, Ivana and Jeremic, Jelena and Milivojević, Dušan and Ilić-Tomić, Tatjana and Šegan, Sandra B. and Zlatović, Mario and Opsenica, Dejan M. and Senerovic, Lidija",
year = "2019",
abstract = "Pseudomonas aeruginosa is a leading cause of nosocomial infections that are becoming increasingly difficult to treat due to the occurrence of antibiotic resistant strains. Since P. aeruginosa virulence is controlled through quorum sensing, small molecule treatments inhibiting quorum sensing signaling pathways provide a promising therapeutic option. Consequently, we synthesized a series of N-octaneamino-4-aminoquinoline derivatives to optimize this chemotype’s antivirulence activity against P. aeruginosa via inhibition of pyocyanin production. The most potent derivative, which possesses a benzofuran substituent, provided effective inhibition of pyocyanin production (IC50 = 12 μM), biofilm formation (BFIC50 = 50 μM), and motility. Experimentally, the compound’s activity is achieved through competitive inhibition of PqsR, and structure–activity data were rationalized using molecular docking studies.",
publisher = "American Chemical Society",
journal = "ACS Chemical Biology",
title = "N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa",
doi = "10.1021/acschembio.9b00682"
}
Aleksic, I., Jeremic, J., Milivojević, D., Ilić-Tomić, T., Šegan, S. B., Zlatović, M., Opsenica, D. M.,& Senerovic, L.. (2019). N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa. in ACS Chemical Biology
American Chemical Society..
https://doi.org/10.1021/acschembio.9b00682
Aleksic I, Jeremic J, Milivojević D, Ilić-Tomić T, Šegan SB, Zlatović M, Opsenica DM, Senerovic L. N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa. in ACS Chemical Biology. 2019;.
doi:10.1021/acschembio.9b00682 .
Aleksic, Ivana, Jeremic, Jelena, Milivojević, Dušan, Ilić-Tomić, Tatjana, Šegan, Sandra B., Zlatović, Mario, Opsenica, Dejan M., Senerovic, Lidija, "N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa" in ACS Chemical Biology (2019),
https://doi.org/10.1021/acschembio.9b00682 . .
1
20
9
19
17

N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa

Aleksic, Ivana; Jeremic, Jelena; Milivojević, Dušan; Ilić-Tomić, Tatjana; Šegan, Sandra B.; Zlatović, Mario; Opsenica, Dejan M.; Senerovic, Lidija

(American Chemical Society, 2019)

TY  - JOUR
AU  - Aleksic, Ivana
AU  - Jeremic, Jelena
AU  - Milivojević, Dušan
AU  - Ilić-Tomić, Tatjana
AU  - Šegan, Sandra B.
AU  - Zlatović, Mario
AU  - Opsenica, Dejan M.
AU  - Senerovic, Lidija
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3772
AB  - Pseudomonas aeruginosa is a leading cause of nosocomial infections that are becoming increasingly difficult to treat due to the occurrence of antibiotic resistant strains. Since P. aeruginosa virulence is controlled through quorum sensing, small molecule treatments inhibiting quorum sensing signaling pathways provide a promising therapeutic option. Consequently, we synthesized a series of N-octaneamino-4-aminoquinoline derivatives to optimize this chemotype’s antivirulence activity against P. aeruginosa via inhibition of pyocyanin production. The most potent derivative, which possesses a benzofuran substituent, provided effective inhibition of pyocyanin production (IC50 = 12 μM), biofilm formation (BFIC50 = 50 μM), and motility. Experimentally, the compound’s activity is achieved through competitive inhibition of PqsR, and structure–activity data were rationalized using molecular docking studies.
PB  - American Chemical Society
T2  - ACS Chemical Biology
T1  - N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa
DO  - 10.1021/acschembio.9b00682
ER  - 
@article{
author = "Aleksic, Ivana and Jeremic, Jelena and Milivojević, Dušan and Ilić-Tomić, Tatjana and Šegan, Sandra B. and Zlatović, Mario and Opsenica, Dejan M. and Senerovic, Lidija",
year = "2019",
abstract = "Pseudomonas aeruginosa is a leading cause of nosocomial infections that are becoming increasingly difficult to treat due to the occurrence of antibiotic resistant strains. Since P. aeruginosa virulence is controlled through quorum sensing, small molecule treatments inhibiting quorum sensing signaling pathways provide a promising therapeutic option. Consequently, we synthesized a series of N-octaneamino-4-aminoquinoline derivatives to optimize this chemotype’s antivirulence activity against P. aeruginosa via inhibition of pyocyanin production. The most potent derivative, which possesses a benzofuran substituent, provided effective inhibition of pyocyanin production (IC50 = 12 μM), biofilm formation (BFIC50 = 50 μM), and motility. Experimentally, the compound’s activity is achieved through competitive inhibition of PqsR, and structure–activity data were rationalized using molecular docking studies.",
publisher = "American Chemical Society",
journal = "ACS Chemical Biology",
title = "N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa",
doi = "10.1021/acschembio.9b00682"
}
Aleksic, I., Jeremic, J., Milivojević, D., Ilić-Tomić, T., Šegan, S. B., Zlatović, M., Opsenica, D. M.,& Senerovic, L.. (2019). N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa. in ACS Chemical Biology
American Chemical Society..
https://doi.org/10.1021/acschembio.9b00682
Aleksic I, Jeremic J, Milivojević D, Ilić-Tomić T, Šegan SB, Zlatović M, Opsenica DM, Senerovic L. N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa. in ACS Chemical Biology. 2019;.
doi:10.1021/acschembio.9b00682 .
Aleksic, Ivana, Jeremic, Jelena, Milivojević, Dušan, Ilić-Tomić, Tatjana, Šegan, Sandra B., Zlatović, Mario, Opsenica, Dejan M., Senerovic, Lidija, "N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa" in ACS Chemical Biology (2019),
https://doi.org/10.1021/acschembio.9b00682 . .
1
20
9
19
17

Supplementary data for article: N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa

Aleksic, Ivana; Jeremic, Jelena; Milivojević, Dušan; Ilić-Tomić, Tatjana; Šegan, Sandra B.; Zlatović, Mario; Opsenica, Dejan M.; Senerovic, Lidija

(American Chemical Society, 2019)

TY  - DATA
AU  - Aleksic, Ivana
AU  - Jeremic, Jelena
AU  - Milivojević, Dušan
AU  - Ilić-Tomić, Tatjana
AU  - Šegan, Sandra B.
AU  - Zlatović, Mario
AU  - Opsenica, Dejan M.
AU  - Senerovic, Lidija
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3773
PB  - American Chemical Society
T2  - ACS Chemical Biology
T1  - Supplementary data for article: N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3773
ER  - 
@misc{
author = "Aleksic, Ivana and Jeremic, Jelena and Milivojević, Dušan and Ilić-Tomić, Tatjana and Šegan, Sandra B. and Zlatović, Mario and Opsenica, Dejan M. and Senerovic, Lidija",
year = "2019",
publisher = "American Chemical Society",
journal = "ACS Chemical Biology",
title = "Supplementary data for article: N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3773"
}
Aleksic, I., Jeremic, J., Milivojević, D., Ilić-Tomić, T., Šegan, S. B., Zlatović, M., Opsenica, D. M.,& Senerovic, L.. (2019). Supplementary data for article: N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa. in ACS Chemical Biology
American Chemical Society..
https://hdl.handle.net/21.15107/rcub_cherry_3773
Aleksic I, Jeremic J, Milivojević D, Ilić-Tomić T, Šegan SB, Zlatović M, Opsenica DM, Senerovic L. Supplementary data for article: N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa. in ACS Chemical Biology. 2019;.
https://hdl.handle.net/21.15107/rcub_cherry_3773 .
Aleksic, Ivana, Jeremic, Jelena, Milivojević, Dušan, Ilić-Tomić, Tatjana, Šegan, Sandra B., Zlatović, Mario, Opsenica, Dejan M., Senerovic, Lidija, "Supplementary data for article: N-benzyl derivatives of long-chained 4-Amino-7-chloro-quionolines as inhibitors of pyocyanin production in Pseudomonas aeruginosa" in ACS Chemical Biology (2019),
https://hdl.handle.net/21.15107/rcub_cherry_3773 .

Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia cruciata

Novaković, Miroslav M.; Bukvicki, Danka; Anđelković, Boban D.; Ilić-Tomić, Tatjana; Veljić, Milan; Tešević, Vele; Asakawa, Yoshinori

(American Chemical Society and American Society of Pharmacognosy, 2019)

TY  - JOUR
AU  - Novaković, Miroslav M.
AU  - Bukvicki, Danka
AU  - Anđelković, Boban D.
AU  - Ilić-Tomić, Tatjana
AU  - Veljić, Milan
AU  - Tešević, Vele
AU  - Asakawa, Yoshinori
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3096
AB  - Seven new bisbibenzyls (1-7) were isolated from the methanol extract of the liverwort Lunularia cruciata along with one previously known bibenzyl and five known bisbibenzyls. The structures of compounds 1-7 were elucidated on the basis of the spectroscopic data. These newly isolated bisbibenzyls may be divided into two groups, the acyclic bisbibenzyls, perrottetins (1-3), and the cyclic analogues, riccardins (4-7). Besides standard perrottetin and riccardin structures (1 and 4, respectively), they contain phenanthrene (3 and 5), dihydrophenanthrene (2), and quinone moieties (6 and 7), rarely found in natural products. The new compounds 3 and 5, as well as the known riccardin G, exhibited cytotoxic activity against the A549 lung cancer cell line with IC 50 values of 5.0, 5.0, and 2.5 μM, respectively.
PB  - American Chemical Society and American Society of Pharmacognosy
T2  - Journal of Natural Products
T1  - Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia cruciata
VL  - 82
IS  - 4
SP  - 694
EP  - 701
DO  - 10.1021/acs.jnatprod.8b00390
ER  - 
@article{
author = "Novaković, Miroslav M. and Bukvicki, Danka and Anđelković, Boban D. and Ilić-Tomić, Tatjana and Veljić, Milan and Tešević, Vele and Asakawa, Yoshinori",
year = "2019",
abstract = "Seven new bisbibenzyls (1-7) were isolated from the methanol extract of the liverwort Lunularia cruciata along with one previously known bibenzyl and five known bisbibenzyls. The structures of compounds 1-7 were elucidated on the basis of the spectroscopic data. These newly isolated bisbibenzyls may be divided into two groups, the acyclic bisbibenzyls, perrottetins (1-3), and the cyclic analogues, riccardins (4-7). Besides standard perrottetin and riccardin structures (1 and 4, respectively), they contain phenanthrene (3 and 5), dihydrophenanthrene (2), and quinone moieties (6 and 7), rarely found in natural products. The new compounds 3 and 5, as well as the known riccardin G, exhibited cytotoxic activity against the A549 lung cancer cell line with IC 50 values of 5.0, 5.0, and 2.5 μM, respectively.",
publisher = "American Chemical Society and American Society of Pharmacognosy",
journal = "Journal of Natural Products",
title = "Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia cruciata",
volume = "82",
number = "4",
pages = "694-701",
doi = "10.1021/acs.jnatprod.8b00390"
}
Novaković, M. M., Bukvicki, D., Anđelković, B. D., Ilić-Tomić, T., Veljić, M., Tešević, V.,& Asakawa, Y.. (2019). Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia cruciata. in Journal of Natural Products
American Chemical Society and American Society of Pharmacognosy., 82(4), 694-701.
https://doi.org/10.1021/acs.jnatprod.8b00390
Novaković MM, Bukvicki D, Anđelković BD, Ilić-Tomić T, Veljić M, Tešević V, Asakawa Y. Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia cruciata. in Journal of Natural Products. 2019;82(4):694-701.
doi:10.1021/acs.jnatprod.8b00390 .
Novaković, Miroslav M., Bukvicki, Danka, Anđelković, Boban D., Ilić-Tomić, Tatjana, Veljić, Milan, Tešević, Vele, Asakawa, Yoshinori, "Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia cruciata" in Journal of Natural Products, 82, no. 4 (2019):694-701,
https://doi.org/10.1021/acs.jnatprod.8b00390 . .
1
23
8
23
19

Supplementary data for article: Novakovic, M.; Bukvicki, D.; Andjelkovic, B.; Ilic-Tomic, T.; Veljic, M.; Tesevic, V.; Asakawa, Y. Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia Cruciata. Journal of Natural Products 2019, 82 (4), 694–701. https://doi.org/10.1021/acs.jnatprod.8b00390

Novaković, Miroslav M.; Bukvicki, Danka; Anđelković, Boban D.; Ilić-Tomić, Tatjana; Veljić, Milan; Tešević, Vele; Asakawa, Yoshinori

(American Chemical Society and American Society of Pharmacognosy, 2019)

TY  - DATA
AU  - Novaković, Miroslav M.
AU  - Bukvicki, Danka
AU  - Anđelković, Boban D.
AU  - Ilić-Tomić, Tatjana
AU  - Veljić, Milan
AU  - Tešević, Vele
AU  - Asakawa, Yoshinori
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3097
PB  - American Chemical Society and American Society of Pharmacognosy
T2  - Journal of Natural Products
T1  - Supplementary data for article:   	Novakovic, M.; Bukvicki, D.; Andjelkovic, B.; Ilic-Tomic, T.; Veljic, M.; Tesevic, V.; Asakawa, Y. Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia Cruciata. Journal of Natural Products 2019, 82 (4), 694–701. https://doi.org/10.1021/acs.jnatprod.8b00390
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3097
ER  - 
@misc{
author = "Novaković, Miroslav M. and Bukvicki, Danka and Anđelković, Boban D. and Ilić-Tomić, Tatjana and Veljić, Milan and Tešević, Vele and Asakawa, Yoshinori",
year = "2019",
publisher = "American Chemical Society and American Society of Pharmacognosy",
journal = "Journal of Natural Products",
title = "Supplementary data for article:   	Novakovic, M.; Bukvicki, D.; Andjelkovic, B.; Ilic-Tomic, T.; Veljic, M.; Tesevic, V.; Asakawa, Y. Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia Cruciata. Journal of Natural Products 2019, 82 (4), 694–701. https://doi.org/10.1021/acs.jnatprod.8b00390",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3097"
}
Novaković, M. M., Bukvicki, D., Anđelković, B. D., Ilić-Tomić, T., Veljić, M., Tešević, V.,& Asakawa, Y.. (2019). Supplementary data for article:   	Novakovic, M.; Bukvicki, D.; Andjelkovic, B.; Ilic-Tomic, T.; Veljic, M.; Tesevic, V.; Asakawa, Y. Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia Cruciata. Journal of Natural Products 2019, 82 (4), 694–701. https://doi.org/10.1021/acs.jnatprod.8b00390. in Journal of Natural Products
American Chemical Society and American Society of Pharmacognosy..
https://hdl.handle.net/21.15107/rcub_cherry_3097
Novaković MM, Bukvicki D, Anđelković BD, Ilić-Tomić T, Veljić M, Tešević V, Asakawa Y. Supplementary data for article:   	Novakovic, M.; Bukvicki, D.; Andjelkovic, B.; Ilic-Tomic, T.; Veljic, M.; Tesevic, V.; Asakawa, Y. Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia Cruciata. Journal of Natural Products 2019, 82 (4), 694–701. https://doi.org/10.1021/acs.jnatprod.8b00390. in Journal of Natural Products. 2019;.
https://hdl.handle.net/21.15107/rcub_cherry_3097 .
Novaković, Miroslav M., Bukvicki, Danka, Anđelković, Boban D., Ilić-Tomić, Tatjana, Veljić, Milan, Tešević, Vele, Asakawa, Yoshinori, "Supplementary data for article:   	Novakovic, M.; Bukvicki, D.; Andjelkovic, B.; Ilic-Tomic, T.; Veljic, M.; Tesevic, V.; Asakawa, Y. Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia Cruciata. Journal of Natural Products 2019, 82 (4), 694–701. https://doi.org/10.1021/acs.jnatprod.8b00390" in Journal of Natural Products (2019),
https://hdl.handle.net/21.15107/rcub_cherry_3097 .

Supplementary data for the article: Živković, M. D.; Kljun, J.; Ilic-Tomic, T.; Pavic, A.; Veselinović, A.; Manojlović, D. D.; Nikodinovic-Runic, J.; Turel, I. A New Class of Platinum(II) Complexes with the Phosphine Ligand Pta Which Show Potent Anticancer Activity. Inorganic Chemistry Frontiers 2018, 5 (1), 39–53. https://doi.org/10.1039/c7qi00299h

Živković, Marija; Kljun, Jakob; Ilić-Tomić, Tatjana; Pavić, Aleksandar; Veselinovic, A.; Manojlović, Dragan D.; Nikodinović-Runić, Jasmina; Turel, Iztok

(Royal Soc Chemistry, Cambridge, 2018)

TY  - DATA
AU  - Živković, Marija
AU  - Kljun, Jakob
AU  - Ilić-Tomić, Tatjana
AU  - Pavić, Aleksandar
AU  - Veselinovic, A.
AU  - Manojlović, Dragan D.
AU  - Nikodinović-Runić, Jasmina
AU  - Turel, Iztok
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3144
PB  - Royal Soc Chemistry, Cambridge
T2  - INORGANIC CHEMISTRY FRONTIERS
T1  - Supplementary data for the article: Živković, M. D.; Kljun, J.; Ilic-Tomic, T.; Pavic, A.; Veselinović, A.; Manojlović, D. D.; Nikodinovic-Runic, J.; Turel, I. A New Class of Platinum(II) Complexes with the Phosphine Ligand Pta Which Show Potent Anticancer Activity. Inorganic Chemistry Frontiers 2018, 5 (1), 39–53. https://doi.org/10.1039/c7qi00299h
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3144
ER  - 
@misc{
author = "Živković, Marija and Kljun, Jakob and Ilić-Tomić, Tatjana and Pavić, Aleksandar and Veselinovic, A. and Manojlović, Dragan D. and Nikodinović-Runić, Jasmina and Turel, Iztok",
year = "2018",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "INORGANIC CHEMISTRY FRONTIERS",
title = "Supplementary data for the article: Živković, M. D.; Kljun, J.; Ilic-Tomic, T.; Pavic, A.; Veselinović, A.; Manojlović, D. D.; Nikodinovic-Runic, J.; Turel, I. A New Class of Platinum(II) Complexes with the Phosphine Ligand Pta Which Show Potent Anticancer Activity. Inorganic Chemistry Frontiers 2018, 5 (1), 39–53. https://doi.org/10.1039/c7qi00299h",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3144"
}
Živković, M., Kljun, J., Ilić-Tomić, T., Pavić, A., Veselinovic, A., Manojlović, D. D., Nikodinović-Runić, J.,& Turel, I.. (2018). Supplementary data for the article: Živković, M. D.; Kljun, J.; Ilic-Tomic, T.; Pavic, A.; Veselinović, A.; Manojlović, D. D.; Nikodinovic-Runic, J.; Turel, I. A New Class of Platinum(II) Complexes with the Phosphine Ligand Pta Which Show Potent Anticancer Activity. Inorganic Chemistry Frontiers 2018, 5 (1), 39–53. https://doi.org/10.1039/c7qi00299h. in INORGANIC CHEMISTRY FRONTIERS
Royal Soc Chemistry, Cambridge..
https://hdl.handle.net/21.15107/rcub_cherry_3144
Živković M, Kljun J, Ilić-Tomić T, Pavić A, Veselinovic A, Manojlović DD, Nikodinović-Runić J, Turel I. Supplementary data for the article: Živković, M. D.; Kljun, J.; Ilic-Tomic, T.; Pavic, A.; Veselinović, A.; Manojlović, D. D.; Nikodinovic-Runic, J.; Turel, I. A New Class of Platinum(II) Complexes with the Phosphine Ligand Pta Which Show Potent Anticancer Activity. Inorganic Chemistry Frontiers 2018, 5 (1), 39–53. https://doi.org/10.1039/c7qi00299h. in INORGANIC CHEMISTRY FRONTIERS. 2018;.
https://hdl.handle.net/21.15107/rcub_cherry_3144 .
Živković, Marija, Kljun, Jakob, Ilić-Tomić, Tatjana, Pavić, Aleksandar, Veselinovic, A., Manojlović, Dragan D., Nikodinović-Runić, Jasmina, Turel, Iztok, "Supplementary data for the article: Živković, M. D.; Kljun, J.; Ilic-Tomic, T.; Pavic, A.; Veselinović, A.; Manojlović, D. D.; Nikodinovic-Runic, J.; Turel, I. A New Class of Platinum(II) Complexes with the Phosphine Ligand Pta Which Show Potent Anticancer Activity. Inorganic Chemistry Frontiers 2018, 5 (1), 39–53. https://doi.org/10.1039/c7qi00299h" in INORGANIC CHEMISTRY FRONTIERS (2018),
https://hdl.handle.net/21.15107/rcub_cherry_3144 .

Supplementary data for the article: Glišić, B. Đ.; Nikodinovic-Runic, J.; Ilic-Tomic, T.; Wadepohl, H.; Veselinović, A.; Opsenica, I. M.; Djuran, M. I. Synthesis, Cytotoxic Activity and DNA-Binding Properties of Copper(II) Complexes with Terpyridine. Polyhedron 2018, 139, 313–322. https://doi.org/10.1016/j.poly.2017.11.008

Glišić, Biljana Đ.; Nikodinović-Runić, Jasmina; Ilić-Tomić, Tatjana; Wadepohl, Hubert; Veselinović, Aleksandar; Opsenica, Igor; Đuran, Miloš I.

(Pergamon-Elsevier Science Ltd, Oxford, 2018)

TY  - DATA
AU  - Glišić, Biljana Đ.
AU  - Nikodinović-Runić, Jasmina
AU  - Ilić-Tomić, Tatjana
AU  - Wadepohl, Hubert
AU  - Veselinović, Aleksandar
AU  - Opsenica, Igor
AU  - Đuran, Miloš I.
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3308
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Polyhedron
T1  - Supplementary data for the article: Glišić, B. Đ.; Nikodinovic-Runic, J.; Ilic-Tomic, T.; Wadepohl, H.; Veselinović, A.; Opsenica, I. M.; Djuran, M. I. Synthesis, Cytotoxic Activity and DNA-Binding Properties of Copper(II) Complexes with Terpyridine. Polyhedron 2018, 139, 313–322. https://doi.org/10.1016/j.poly.2017.11.008
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3308
ER  - 
@misc{
author = "Glišić, Biljana Đ. and Nikodinović-Runić, Jasmina and Ilić-Tomić, Tatjana and Wadepohl, Hubert and Veselinović, Aleksandar and Opsenica, Igor and Đuran, Miloš I.",
year = "2018",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Polyhedron",
title = "Supplementary data for the article: Glišić, B. Đ.; Nikodinovic-Runic, J.; Ilic-Tomic, T.; Wadepohl, H.; Veselinović, A.; Opsenica, I. M.; Djuran, M. I. Synthesis, Cytotoxic Activity and DNA-Binding Properties of Copper(II) Complexes with Terpyridine. Polyhedron 2018, 139, 313–322. https://doi.org/10.1016/j.poly.2017.11.008",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3308"
}
Glišić, B. Đ., Nikodinović-Runić, J., Ilić-Tomić, T., Wadepohl, H., Veselinović, A., Opsenica, I.,& Đuran, M. I.. (2018). Supplementary data for the article: Glišić, B. Đ.; Nikodinovic-Runic, J.; Ilic-Tomic, T.; Wadepohl, H.; Veselinović, A.; Opsenica, I. M.; Djuran, M. I. Synthesis, Cytotoxic Activity and DNA-Binding Properties of Copper(II) Complexes with Terpyridine. Polyhedron 2018, 139, 313–322. https://doi.org/10.1016/j.poly.2017.11.008. in Polyhedron
Pergamon-Elsevier Science Ltd, Oxford..
https://hdl.handle.net/21.15107/rcub_cherry_3308
Glišić BĐ, Nikodinović-Runić J, Ilić-Tomić T, Wadepohl H, Veselinović A, Opsenica I, Đuran MI. Supplementary data for the article: Glišić, B. Đ.; Nikodinovic-Runic, J.; Ilic-Tomic, T.; Wadepohl, H.; Veselinović, A.; Opsenica, I. M.; Djuran, M. I. Synthesis, Cytotoxic Activity and DNA-Binding Properties of Copper(II) Complexes with Terpyridine. Polyhedron 2018, 139, 313–322. https://doi.org/10.1016/j.poly.2017.11.008. in Polyhedron. 2018;.
https://hdl.handle.net/21.15107/rcub_cherry_3308 .
Glišić, Biljana Đ., Nikodinović-Runić, Jasmina, Ilić-Tomić, Tatjana, Wadepohl, Hubert, Veselinović, Aleksandar, Opsenica, Igor, Đuran, Miloš I., "Supplementary data for the article: Glišić, B. Đ.; Nikodinovic-Runic, J.; Ilic-Tomic, T.; Wadepohl, H.; Veselinović, A.; Opsenica, I. M.; Djuran, M. I. Synthesis, Cytotoxic Activity and DNA-Binding Properties of Copper(II) Complexes with Terpyridine. Polyhedron 2018, 139, 313–322. https://doi.org/10.1016/j.poly.2017.11.008" in Polyhedron (2018),
https://hdl.handle.net/21.15107/rcub_cherry_3308 .

A new class of platinum(II) complexes with the phosphine ligand pta which show potent anticancer activity

Živković, Marija; Kljun, Jakob; Ilić-Tomić, Tatjana; Pavić, Aleksandar; Veselinovic, A.; Manojlović, Dragan D.; Nikodinović-Runić, Jasmina; Turel, Iztok

(Royal Soc Chemistry, Cambridge, 2018)

TY  - JOUR
AU  - Živković, Marija
AU  - Kljun, Jakob
AU  - Ilić-Tomić, Tatjana
AU  - Pavić, Aleksandar
AU  - Veselinovic, A.
AU  - Manojlović, Dragan D.
AU  - Nikodinović-Runić, Jasmina
AU  - Turel, Iztok
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2071
AB  - The anticancer potential of sixteen platinum(II) complexes with general formulae [PtCl(hq)(S-dmso)] (1a-8a) and [PtCl(hq)(pta)] (1b-8b) (where hq is 5-chloro-7-iodo-8-quinolinol (clioquinol; cqH) (1a, 1b), 8-hydroxy-5-nitroquinoline (nitroxoline; nxH) (2a, 2b), 5,7-dichloro-8-quinolinol (3a, 3b), 5,7-diiodo-8-quinolinol (4a, 4b), 5,7-dibromo-8-quinolinol (5a, 5b), 5,7-dichloro-8-hydroxy-2-methyl-quinoline (6a, 6b), 8-hydroxyquinoline (7a, 7b) and 8-quinolinethiol (8a, 8b); dmso is dimethyl sulfoxide and pta is 1,3,5triaza- 7-phosphaadamantane) was determined through in vitro cytotoxicity assay in human fibroblasts (MRC5) and two carcinoma cell lines (A375 and A549) and embryotoxicity assay in a zebrafish model. Interactions with double stranded DNA through in vitro assay and a molecular docking study were examined. All complexes, except 6a, exhibited a high cytotoxic effect on MRC5 cells at a concentration of 10 mu g mL(-1) while 1b, 5a, 6a and 3b showed selective toxicity towards carcinoma cell lines. In general, pta-based complexes (series b) were more toxic according to the results of a MTT screen and the LC50 values obtained in zebrafish (Danio rerio) assay; they also induced higher oxidative stress in this model. Successful cellular uptake of complexes was shown by the ICP-MS methodology. The binding propensity of the complex with DNA obtained in in silico studies can be correlated with those from the experimental investigation. Compounds with the highest binding potential, according to the interaction energy value, were 1b, 3b, 6b and 5b. From observations of the DNA interaction ability and of the in silico assessment, no apparent DNA fragmentation was observed either on DNA extracted from the treated cancer cell line or from the zebrafish embryos.
PB  - Royal Soc Chemistry, Cambridge
T2  - INORGANIC CHEMISTRY FRONTIERS
T1  - A new class of platinum(II) complexes with the phosphine ligand pta which show potent anticancer activity
VL  - 5
IS  - 1
SP  - 39
EP  - 53
DO  - 10.1039/c7qi00299h
ER  - 
@article{
author = "Živković, Marija and Kljun, Jakob and Ilić-Tomić, Tatjana and Pavić, Aleksandar and Veselinovic, A. and Manojlović, Dragan D. and Nikodinović-Runić, Jasmina and Turel, Iztok",
year = "2018",
abstract = "The anticancer potential of sixteen platinum(II) complexes with general formulae [PtCl(hq)(S-dmso)] (1a-8a) and [PtCl(hq)(pta)] (1b-8b) (where hq is 5-chloro-7-iodo-8-quinolinol (clioquinol; cqH) (1a, 1b), 8-hydroxy-5-nitroquinoline (nitroxoline; nxH) (2a, 2b), 5,7-dichloro-8-quinolinol (3a, 3b), 5,7-diiodo-8-quinolinol (4a, 4b), 5,7-dibromo-8-quinolinol (5a, 5b), 5,7-dichloro-8-hydroxy-2-methyl-quinoline (6a, 6b), 8-hydroxyquinoline (7a, 7b) and 8-quinolinethiol (8a, 8b); dmso is dimethyl sulfoxide and pta is 1,3,5triaza- 7-phosphaadamantane) was determined through in vitro cytotoxicity assay in human fibroblasts (MRC5) and two carcinoma cell lines (A375 and A549) and embryotoxicity assay in a zebrafish model. Interactions with double stranded DNA through in vitro assay and a molecular docking study were examined. All complexes, except 6a, exhibited a high cytotoxic effect on MRC5 cells at a concentration of 10 mu g mL(-1) while 1b, 5a, 6a and 3b showed selective toxicity towards carcinoma cell lines. In general, pta-based complexes (series b) were more toxic according to the results of a MTT screen and the LC50 values obtained in zebrafish (Danio rerio) assay; they also induced higher oxidative stress in this model. Successful cellular uptake of complexes was shown by the ICP-MS methodology. The binding propensity of the complex with DNA obtained in in silico studies can be correlated with those from the experimental investigation. Compounds with the highest binding potential, according to the interaction energy value, were 1b, 3b, 6b and 5b. From observations of the DNA interaction ability and of the in silico assessment, no apparent DNA fragmentation was observed either on DNA extracted from the treated cancer cell line or from the zebrafish embryos.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "INORGANIC CHEMISTRY FRONTIERS",
title = "A new class of platinum(II) complexes with the phosphine ligand pta which show potent anticancer activity",
volume = "5",
number = "1",
pages = "39-53",
doi = "10.1039/c7qi00299h"
}
Živković, M., Kljun, J., Ilić-Tomić, T., Pavić, A., Veselinovic, A., Manojlović, D. D., Nikodinović-Runić, J.,& Turel, I.. (2018). A new class of platinum(II) complexes with the phosphine ligand pta which show potent anticancer activity. in INORGANIC CHEMISTRY FRONTIERS
Royal Soc Chemistry, Cambridge., 5(1), 39-53.
https://doi.org/10.1039/c7qi00299h
Živković M, Kljun J, Ilić-Tomić T, Pavić A, Veselinovic A, Manojlović DD, Nikodinović-Runić J, Turel I. A new class of platinum(II) complexes with the phosphine ligand pta which show potent anticancer activity. in INORGANIC CHEMISTRY FRONTIERS. 2018;5(1):39-53.
doi:10.1039/c7qi00299h .
Živković, Marija, Kljun, Jakob, Ilić-Tomić, Tatjana, Pavić, Aleksandar, Veselinovic, A., Manojlović, Dragan D., Nikodinović-Runić, Jasmina, Turel, Iztok, "A new class of platinum(II) complexes with the phosphine ligand pta which show potent anticancer activity" in INORGANIC CHEMISTRY FRONTIERS, 5, no. 1 (2018):39-53,
https://doi.org/10.1039/c7qi00299h . .
44
31
45
42

Synthesis, cytotoxic activity and DNA-binding properties of copper(II) complexes with terpyridine

Glišić, Biljana Đ.; Nikodinović-Runić, Jasmina; Ilić-Tomić, Tatjana; Wadepohl, Hubert; Veselinović, Aleksandar; Opsenica, Igor; Đuran, Miloš I.

(Pergamon-Elsevier Science Ltd, Oxford, 2018)

TY  - JOUR
AU  - Glišić, Biljana Đ.
AU  - Nikodinović-Runić, Jasmina
AU  - Ilić-Tomić, Tatjana
AU  - Wadepohl, Hubert
AU  - Veselinović, Aleksandar
AU  - Opsenica, Igor
AU  - Đuran, Miloš I.
PY  - 2018
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2581
AB  - Mononuclear copper(II) complexes with 2,2':6',2 ''-terpyridine (terpy), [Cu(terpy)(ClO4)(2)(H2O)] (1) and [Cu(terpy())2](CF3SO3)(2)center dot 2H(2)O (2), were synthesized and structurally characterized by UV-Vis and IR spectroscopy, ESI mass spectrometry and single-crystal X-ray diffraction analysis. In vitro study of cytotoxicity of the complexes demonstrated good antiproliferative properties in the case of human non-small cell lung cancer (A549), as well as in lung fibroblast (MRC5) cell line. Copper(II) complexes with terpy showed significant ability to interact with the high molecular weight double stranded DNA, without induction of DNA damage. On the other side, they caused nicking of plasmid DNA without presence of co-oxidant, indicating moderate nucleolytic activity. Circular dichroism spectra confirmed intercalation of the complexes to double-stranded DNA. Molecular docking studies also indicated strong binding affinity of the complexes with DNA revealing that two forms of 1 (1a and 1b with and without coordinated perchlorate ion, respectively) and 2 bind to the major groove of DNA. (C) 2017 Elsevier Ltd. All rights reserved.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Polyhedron
T1  - Synthesis, cytotoxic activity and DNA-binding properties of copper(II) complexes with terpyridine
VL  - 139
SP  - 313
EP  - 322
DO  - 10.1016/j.poly.2017.11.008
ER  - 
@article{
author = "Glišić, Biljana Đ. and Nikodinović-Runić, Jasmina and Ilić-Tomić, Tatjana and Wadepohl, Hubert and Veselinović, Aleksandar and Opsenica, Igor and Đuran, Miloš I.",
year = "2018",
abstract = "Mononuclear copper(II) complexes with 2,2':6',2 ''-terpyridine (terpy), [Cu(terpy)(ClO4)(2)(H2O)] (1) and [Cu(terpy())2](CF3SO3)(2)center dot 2H(2)O (2), were synthesized and structurally characterized by UV-Vis and IR spectroscopy, ESI mass spectrometry and single-crystal X-ray diffraction analysis. In vitro study of cytotoxicity of the complexes demonstrated good antiproliferative properties in the case of human non-small cell lung cancer (A549), as well as in lung fibroblast (MRC5) cell line. Copper(II) complexes with terpy showed significant ability to interact with the high molecular weight double stranded DNA, without induction of DNA damage. On the other side, they caused nicking of plasmid DNA without presence of co-oxidant, indicating moderate nucleolytic activity. Circular dichroism spectra confirmed intercalation of the complexes to double-stranded DNA. Molecular docking studies also indicated strong binding affinity of the complexes with DNA revealing that two forms of 1 (1a and 1b with and without coordinated perchlorate ion, respectively) and 2 bind to the major groove of DNA. (C) 2017 Elsevier Ltd. All rights reserved.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Polyhedron",
title = "Synthesis, cytotoxic activity and DNA-binding properties of copper(II) complexes with terpyridine",
volume = "139",
pages = "313-322",
doi = "10.1016/j.poly.2017.11.008"
}
Glišić, B. Đ., Nikodinović-Runić, J., Ilić-Tomić, T., Wadepohl, H., Veselinović, A., Opsenica, I.,& Đuran, M. I.. (2018). Synthesis, cytotoxic activity and DNA-binding properties of copper(II) complexes with terpyridine. in Polyhedron
Pergamon-Elsevier Science Ltd, Oxford., 139, 313-322.
https://doi.org/10.1016/j.poly.2017.11.008
Glišić BĐ, Nikodinović-Runić J, Ilić-Tomić T, Wadepohl H, Veselinović A, Opsenica I, Đuran MI. Synthesis, cytotoxic activity and DNA-binding properties of copper(II) complexes with terpyridine. in Polyhedron. 2018;139:313-322.
doi:10.1016/j.poly.2017.11.008 .
Glišić, Biljana Đ., Nikodinović-Runić, Jasmina, Ilić-Tomić, Tatjana, Wadepohl, Hubert, Veselinović, Aleksandar, Opsenica, Igor, Đuran, Miloš I., "Synthesis, cytotoxic activity and DNA-binding properties of copper(II) complexes with terpyridine" in Polyhedron, 139 (2018):313-322,
https://doi.org/10.1016/j.poly.2017.11.008 . .
6
27
10
25
24

Supplementary data for article: Ilic-Tomic, T.; Sokovic, M.; Vojnovic, S.; Ciric, A.; Veljic, M.; Nikodinovic-Runic, J.; Novakovic, M. Diarylheptanoids from Alnus Viridis Ssp Viridis and Alnus Glutinosa: Modulation of Quorum Sensing Activity in Pseudomonas Aeruginosa. Planta Medica 2017, 83 (1–2), 117–125. https://doi.org/10.1055/s-0042-107674

Ilić-Tomić, Tatjana; Soković, Marina; Vojnović, Sandra; Cirić, Ana D.; Veljić, Milan; Nikodinović-Runić, Jasmina; Novaković, Miroslav M.

(Georg Thieme Verlag Kg, Stuttgart, 2017)

TY  - DATA
AU  - Ilić-Tomić, Tatjana
AU  - Soković, Marina
AU  - Vojnović, Sandra
AU  - Cirić, Ana D.
AU  - Veljić, Milan
AU  - Nikodinović-Runić, Jasmina
AU  - Novaković, Miroslav M.
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3034
PB  - Georg Thieme Verlag Kg, Stuttgart
T2  - Planta Medica
T1  - Supplementary data for article: Ilic-Tomic, T.; Sokovic, M.; Vojnovic, S.; Ciric, A.; Veljic, M.; Nikodinovic-Runic, J.; Novakovic, M. Diarylheptanoids from Alnus Viridis Ssp Viridis and Alnus Glutinosa: Modulation of Quorum Sensing Activity in Pseudomonas Aeruginosa. Planta Medica 2017, 83 (1–2), 117–125. https://doi.org/10.1055/s-0042-107674
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3034
ER  - 
@misc{
author = "Ilić-Tomić, Tatjana and Soković, Marina and Vojnović, Sandra and Cirić, Ana D. and Veljić, Milan and Nikodinović-Runić, Jasmina and Novaković, Miroslav M.",
year = "2017",
publisher = "Georg Thieme Verlag Kg, Stuttgart",
journal = "Planta Medica",
title = "Supplementary data for article: Ilic-Tomic, T.; Sokovic, M.; Vojnovic, S.; Ciric, A.; Veljic, M.; Nikodinovic-Runic, J.; Novakovic, M. Diarylheptanoids from Alnus Viridis Ssp Viridis and Alnus Glutinosa: Modulation of Quorum Sensing Activity in Pseudomonas Aeruginosa. Planta Medica 2017, 83 (1–2), 117–125. https://doi.org/10.1055/s-0042-107674",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3034"
}
Ilić-Tomić, T., Soković, M., Vojnović, S., Cirić, A. D., Veljić, M., Nikodinović-Runić, J.,& Novaković, M. M.. (2017). Supplementary data for article: Ilic-Tomic, T.; Sokovic, M.; Vojnovic, S.; Ciric, A.; Veljic, M.; Nikodinovic-Runic, J.; Novakovic, M. Diarylheptanoids from Alnus Viridis Ssp Viridis and Alnus Glutinosa: Modulation of Quorum Sensing Activity in Pseudomonas Aeruginosa. Planta Medica 2017, 83 (1–2), 117–125. https://doi.org/10.1055/s-0042-107674. in Planta Medica
Georg Thieme Verlag Kg, Stuttgart..
https://hdl.handle.net/21.15107/rcub_cherry_3034
Ilić-Tomić T, Soković M, Vojnović S, Cirić AD, Veljić M, Nikodinović-Runić J, Novaković MM. Supplementary data for article: Ilic-Tomic, T.; Sokovic, M.; Vojnovic, S.; Ciric, A.; Veljic, M.; Nikodinovic-Runic, J.; Novakovic, M. Diarylheptanoids from Alnus Viridis Ssp Viridis and Alnus Glutinosa: Modulation of Quorum Sensing Activity in Pseudomonas Aeruginosa. Planta Medica 2017, 83 (1–2), 117–125. https://doi.org/10.1055/s-0042-107674. in Planta Medica. 2017;.
https://hdl.handle.net/21.15107/rcub_cherry_3034 .
Ilić-Tomić, Tatjana, Soković, Marina, Vojnović, Sandra, Cirić, Ana D., Veljić, Milan, Nikodinović-Runić, Jasmina, Novaković, Miroslav M., "Supplementary data for article: Ilic-Tomic, T.; Sokovic, M.; Vojnovic, S.; Ciric, A.; Veljic, M.; Nikodinovic-Runic, J.; Novakovic, M. Diarylheptanoids from Alnus Viridis Ssp Viridis and Alnus Glutinosa: Modulation of Quorum Sensing Activity in Pseudomonas Aeruginosa. Planta Medica 2017, 83 (1–2), 117–125. https://doi.org/10.1055/s-0042-107674" in Planta Medica (2017),
https://hdl.handle.net/21.15107/rcub_cherry_3034 .

Supplementary data for article: Novakovic, M.; Nikodinovic-Runic, J.; Veselinovic, J.; Ilic-Tomic, T.; Vidakovic, V.; Tesevic, V.; Milosavljevic, S. Bioactive Pentacyclic Triterpene Ester Derivatives from Alnus Viridis Ssp. Viridis Bark. Journal of Natural Products 2017, 80 (5), 1255–1263. https://doi.org/10.1021/acs.jnatprod.6b00805

Novaković, Miroslav M.; Nikodinović-Runić, Jasmina; Veselinović, Jovana; Ilić-Tomić, Tatjana; Vidaković, Vera; Tešević, Vele; Milosavljević, Slobodan M.

(Amer Chemical Soc, Washington, 2017)

TY  - DATA
AU  - Novaković, Miroslav M.
AU  - Nikodinović-Runić, Jasmina
AU  - Veselinović, Jovana
AU  - Ilić-Tomić, Tatjana
AU  - Vidaković, Vera
AU  - Tešević, Vele
AU  - Milosavljević, Slobodan M.
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3088
PB  - Amer Chemical Soc, Washington
T2  - Journal of Natural Products
T1  - Supplementary data for article:  Novakovic, M.; Nikodinovic-Runic, J.; Veselinovic, J.; Ilic-Tomic, T.; Vidakovic, V.; Tesevic, V.; Milosavljevic, S. Bioactive Pentacyclic Triterpene Ester Derivatives from Alnus Viridis Ssp. Viridis Bark. Journal of Natural Products 2017, 80 (5), 1255–1263. https://doi.org/10.1021/acs.jnatprod.6b00805
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3088
ER  - 
@misc{
author = "Novaković, Miroslav M. and Nikodinović-Runić, Jasmina and Veselinović, Jovana and Ilić-Tomić, Tatjana and Vidaković, Vera and Tešević, Vele and Milosavljević, Slobodan M.",
year = "2017",
publisher = "Amer Chemical Soc, Washington",
journal = "Journal of Natural Products",
title = "Supplementary data for article:  Novakovic, M.; Nikodinovic-Runic, J.; Veselinovic, J.; Ilic-Tomic, T.; Vidakovic, V.; Tesevic, V.; Milosavljevic, S. Bioactive Pentacyclic Triterpene Ester Derivatives from Alnus Viridis Ssp. Viridis Bark. Journal of Natural Products 2017, 80 (5), 1255–1263. https://doi.org/10.1021/acs.jnatprod.6b00805",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3088"
}
Novaković, M. M., Nikodinović-Runić, J., Veselinović, J., Ilić-Tomić, T., Vidaković, V., Tešević, V.,& Milosavljević, S. M.. (2017). Supplementary data for article:  Novakovic, M.; Nikodinovic-Runic, J.; Veselinovic, J.; Ilic-Tomic, T.; Vidakovic, V.; Tesevic, V.; Milosavljevic, S. Bioactive Pentacyclic Triterpene Ester Derivatives from Alnus Viridis Ssp. Viridis Bark. Journal of Natural Products 2017, 80 (5), 1255–1263. https://doi.org/10.1021/acs.jnatprod.6b00805. in Journal of Natural Products
Amer Chemical Soc, Washington..
https://hdl.handle.net/21.15107/rcub_cherry_3088
Novaković MM, Nikodinović-Runić J, Veselinović J, Ilić-Tomić T, Vidaković V, Tešević V, Milosavljević SM. Supplementary data for article:  Novakovic, M.; Nikodinovic-Runic, J.; Veselinovic, J.; Ilic-Tomic, T.; Vidakovic, V.; Tesevic, V.; Milosavljevic, S. Bioactive Pentacyclic Triterpene Ester Derivatives from Alnus Viridis Ssp. Viridis Bark. Journal of Natural Products 2017, 80 (5), 1255–1263. https://doi.org/10.1021/acs.jnatprod.6b00805. in Journal of Natural Products. 2017;.
https://hdl.handle.net/21.15107/rcub_cherry_3088 .
Novaković, Miroslav M., Nikodinović-Runić, Jasmina, Veselinović, Jovana, Ilić-Tomić, Tatjana, Vidaković, Vera, Tešević, Vele, Milosavljević, Slobodan M., "Supplementary data for article:  Novakovic, M.; Nikodinovic-Runic, J.; Veselinovic, J.; Ilic-Tomic, T.; Vidakovic, V.; Tesevic, V.; Milosavljevic, S. Bioactive Pentacyclic Triterpene Ester Derivatives from Alnus Viridis Ssp. Viridis Bark. Journal of Natural Products 2017, 80 (5), 1255–1263. https://doi.org/10.1021/acs.jnatprod.6b00805" in Journal of Natural Products (2017),
https://hdl.handle.net/21.15107/rcub_cherry_3088 .

Bioactive Pentacyclic Triterpene Ester Derivatives from Alnus viridis ssp viridis Bark

Novaković, Miroslav M.; Nikodinović-Runić, Jasmina; Veselinović, Jovana; Ilić-Tomić, Tatjana; Vidaković, Vera; Tešević, Vele; Milosavljević, Slobodan M.

(Amer Chemical Soc, Washington, 2017)

TY  - JOUR
AU  - Novaković, Miroslav M.
AU  - Nikodinović-Runić, Jasmina
AU  - Veselinović, Jovana
AU  - Ilić-Tomić, Tatjana
AU  - Vidaković, Vera
AU  - Tešević, Vele
AU  - Milosavljević, Slobodan M.
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2466
AB  - Seven derivatives of pentacyclic triterpene acids (1-7) were isolated from the bark of Alnus viridis ssp. viridis using a combination of column chromatography and semipreparative HPLC. Compounds 1-3, 6, and 7 were determined to be new after spectroscopic data interpretation and were assigned as 27-hydroxyalphitolic acid derivatives (1-3), a 27-hydroxybetulinic acid derivative (6), and a 3-epi-maslinic acid derivative (7), respectively. Pentacyclic triterpenoids with a C-27 hydroxymethyl group have been found in species of the genus Alnus for the first time. These compounds were subjected to cytotoxicity testing against a number of canter cell lines. Also, selected pentacyclic triterpenoids were selected as potential inhibitors of topoisomerases I and Ha for an in silico investigation.
PB  - Amer Chemical Soc, Washington
T2  - Journal of Natural Products
T1  - Bioactive Pentacyclic Triterpene Ester Derivatives from Alnus viridis ssp viridis Bark
VL  - 80
IS  - 5
SP  - 1255
EP  - 1263
DO  - 10.1021/acs.jnatprod.6b00805
ER  - 
@article{
author = "Novaković, Miroslav M. and Nikodinović-Runić, Jasmina and Veselinović, Jovana and Ilić-Tomić, Tatjana and Vidaković, Vera and Tešević, Vele and Milosavljević, Slobodan M.",
year = "2017",
abstract = "Seven derivatives of pentacyclic triterpene acids (1-7) were isolated from the bark of Alnus viridis ssp. viridis using a combination of column chromatography and semipreparative HPLC. Compounds 1-3, 6, and 7 were determined to be new after spectroscopic data interpretation and were assigned as 27-hydroxyalphitolic acid derivatives (1-3), a 27-hydroxybetulinic acid derivative (6), and a 3-epi-maslinic acid derivative (7), respectively. Pentacyclic triterpenoids with a C-27 hydroxymethyl group have been found in species of the genus Alnus for the first time. These compounds were subjected to cytotoxicity testing against a number of canter cell lines. Also, selected pentacyclic triterpenoids were selected as potential inhibitors of topoisomerases I and Ha for an in silico investigation.",
publisher = "Amer Chemical Soc, Washington",
journal = "Journal of Natural Products",
title = "Bioactive Pentacyclic Triterpene Ester Derivatives from Alnus viridis ssp viridis Bark",
volume = "80",
number = "5",
pages = "1255-1263",
doi = "10.1021/acs.jnatprod.6b00805"
}
Novaković, M. M., Nikodinović-Runić, J., Veselinović, J., Ilić-Tomić, T., Vidaković, V., Tešević, V.,& Milosavljević, S. M.. (2017). Bioactive Pentacyclic Triterpene Ester Derivatives from Alnus viridis ssp viridis Bark. in Journal of Natural Products
Amer Chemical Soc, Washington., 80(5), 1255-1263.
https://doi.org/10.1021/acs.jnatprod.6b00805
Novaković MM, Nikodinović-Runić J, Veselinović J, Ilić-Tomić T, Vidaković V, Tešević V, Milosavljević SM. Bioactive Pentacyclic Triterpene Ester Derivatives from Alnus viridis ssp viridis Bark. in Journal of Natural Products. 2017;80(5):1255-1263.
doi:10.1021/acs.jnatprod.6b00805 .
Novaković, Miroslav M., Nikodinović-Runić, Jasmina, Veselinović, Jovana, Ilić-Tomić, Tatjana, Vidaković, Vera, Tešević, Vele, Milosavljević, Slobodan M., "Bioactive Pentacyclic Triterpene Ester Derivatives from Alnus viridis ssp viridis Bark" in Journal of Natural Products, 80, no. 5 (2017):1255-1263,
https://doi.org/10.1021/acs.jnatprod.6b00805 . .
6
12
7
11
11

Supplementary data for the article: Savić, N. D.; Milivojevic, D. R.; Glišić, B. D.; Ilic-Tomic, T.; Veselinovic, J.; Pavic, A.; Vasiljevic, B.; Nikodinovic-Runic, J.; Djuran, M. I. A Comparative Antimicrobial and Toxicological Study of Gold(III) and Silver(i) Complexes with Aromatic Nitrogen-Containing Heterocycles: Synergistic Activity and Improved Selectivity Index of Au(III)/Ag(i) Complexes Mixture. RSC Advances 2016, 6 (16), 13193–13206. https://doi.org/10.1039/c5ra26002g

Savić, Nada D.; Milivojević, Dušan R.; Glišić, Biljana Đ.; Ilić-Tomić, Tatjana; Veselinović, Jovana; Pavić, Aleksandar; Vasiljević, Branka; Nikodinović-Runić, Jasmina; Đuran, Miloš I.

(Royal Soc Chemistry, Cambridge, 2016)

TY  - DATA
AU  - Savić, Nada D.
AU  - Milivojević, Dušan R.
AU  - Glišić, Biljana Đ.
AU  - Ilić-Tomić, Tatjana
AU  - Veselinović, Jovana
AU  - Pavić, Aleksandar
AU  - Vasiljević, Branka
AU  - Nikodinović-Runić, Jasmina
AU  - Đuran, Miloš I.
PY  - 2016
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3334
PB  - Royal Soc Chemistry, Cambridge
T2  - RSC Advances
T1  - Supplementary data for the article: Savić, N. D.; Milivojevic, D. R.; Glišić, B. D.; Ilic-Tomic, T.; Veselinovic, J.; Pavic, A.; Vasiljevic, B.; Nikodinovic-Runic, J.; Djuran, M. I. A Comparative Antimicrobial and Toxicological Study of Gold(III) and Silver(i) Complexes with Aromatic Nitrogen-Containing Heterocycles: Synergistic Activity and Improved Selectivity Index of Au(III)/Ag(i) Complexes Mixture. RSC Advances 2016, 6 (16), 13193–13206. https://doi.org/10.1039/c5ra26002g
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3334
ER  - 
@misc{
author = "Savić, Nada D. and Milivojević, Dušan R. and Glišić, Biljana Đ. and Ilić-Tomić, Tatjana and Veselinović, Jovana and Pavić, Aleksandar and Vasiljević, Branka and Nikodinović-Runić, Jasmina and Đuran, Miloš I.",
year = "2016",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "RSC Advances",
title = "Supplementary data for the article: Savić, N. D.; Milivojevic, D. R.; Glišić, B. D.; Ilic-Tomic, T.; Veselinovic, J.; Pavic, A.; Vasiljevic, B.; Nikodinovic-Runic, J.; Djuran, M. I. A Comparative Antimicrobial and Toxicological Study of Gold(III) and Silver(i) Complexes with Aromatic Nitrogen-Containing Heterocycles: Synergistic Activity and Improved Selectivity Index of Au(III)/Ag(i) Complexes Mixture. RSC Advances 2016, 6 (16), 13193–13206. https://doi.org/10.1039/c5ra26002g",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3334"
}
Savić, N. D., Milivojević, D. R., Glišić, B. Đ., Ilić-Tomić, T., Veselinović, J., Pavić, A., Vasiljević, B., Nikodinović-Runić, J.,& Đuran, M. I.. (2016). Supplementary data for the article: Savić, N. D.; Milivojevic, D. R.; Glišić, B. D.; Ilic-Tomic, T.; Veselinovic, J.; Pavic, A.; Vasiljevic, B.; Nikodinovic-Runic, J.; Djuran, M. I. A Comparative Antimicrobial and Toxicological Study of Gold(III) and Silver(i) Complexes with Aromatic Nitrogen-Containing Heterocycles: Synergistic Activity and Improved Selectivity Index of Au(III)/Ag(i) Complexes Mixture. RSC Advances 2016, 6 (16), 13193–13206. https://doi.org/10.1039/c5ra26002g. in RSC Advances
Royal Soc Chemistry, Cambridge..
https://hdl.handle.net/21.15107/rcub_cherry_3334
Savić ND, Milivojević DR, Glišić BĐ, Ilić-Tomić T, Veselinović J, Pavić A, Vasiljević B, Nikodinović-Runić J, Đuran MI. Supplementary data for the article: Savić, N. D.; Milivojevic, D. R.; Glišić, B. D.; Ilic-Tomic, T.; Veselinovic, J.; Pavic, A.; Vasiljevic, B.; Nikodinovic-Runic, J.; Djuran, M. I. A Comparative Antimicrobial and Toxicological Study of Gold(III) and Silver(i) Complexes with Aromatic Nitrogen-Containing Heterocycles: Synergistic Activity and Improved Selectivity Index of Au(III)/Ag(i) Complexes Mixture. RSC Advances 2016, 6 (16), 13193–13206. https://doi.org/10.1039/c5ra26002g. in RSC Advances. 2016;.
https://hdl.handle.net/21.15107/rcub_cherry_3334 .
Savić, Nada D., Milivojević, Dušan R., Glišić, Biljana Đ., Ilić-Tomić, Tatjana, Veselinović, Jovana, Pavić, Aleksandar, Vasiljević, Branka, Nikodinović-Runić, Jasmina, Đuran, Miloš I., "Supplementary data for the article: Savić, N. D.; Milivojevic, D. R.; Glišić, B. D.; Ilic-Tomic, T.; Veselinovic, J.; Pavic, A.; Vasiljevic, B.; Nikodinovic-Runic, J.; Djuran, M. I. A Comparative Antimicrobial and Toxicological Study of Gold(III) and Silver(i) Complexes with Aromatic Nitrogen-Containing Heterocycles: Synergistic Activity and Improved Selectivity Index of Au(III)/Ag(i) Complexes Mixture. RSC Advances 2016, 6 (16), 13193–13206. https://doi.org/10.1039/c5ra26002g" in RSC Advances (2016),
https://hdl.handle.net/21.15107/rcub_cherry_3334 .

A comparative antimicrobial and toxicological study of gold(III) and silver(I) complexes with aromatic nitrogen-containing heterocycles: synergistic activity and improved selectivity index of Au(III)/Ag(I) complexes mixture

Savić, Nada D.; Milivojević, Dušan R.; Glišić, Biljana Đ.; Ilić-Tomić, Tatjana; Veselinović, Jovana; Pavić, Aleksandar; Vasiljević, Branka; Nikodinović-Runić, Jasmina; Đuran, Miloš I.

(Royal Soc Chemistry, Cambridge, 2016)

TY  - JOUR
AU  - Savić, Nada D.
AU  - Milivojević, Dušan R.
AU  - Glišić, Biljana Đ.
AU  - Ilić-Tomić, Tatjana
AU  - Veselinović, Jovana
AU  - Pavić, Aleksandar
AU  - Vasiljević, Branka
AU  - Nikodinović-Runić, Jasmina
AU  - Đuran, Miloš I.
PY  - 2016
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2041
AB  - Five aromatic nitrogen-containing heterocycles, pyridazine (pydz, 1), pyrimidine (pm, 2), pyrazine (pz, 3), quinoxaline (qx, 4) and phenazine (phz, 5) have been used for the synthesis of gold(III) and silver(I) complexes. In contrast to the mononuclear Au1-5 complexes all having square-planar geometry, the corresponding Ag1-5 complexes have been found to be polynuclear and of different geometries. Complexes Au1-5 and Ag1-5, along with K[AuCl4], AgNO3 and N-heterocyclic ligands used for their synthesis, were evaluated by in vitro antimicrobial studies against a panel of microbial strains that lead to many skin and soft tissue, respiratory, wound and nosocomial infections. All tested complexes exhibited excellent to good antibacterial activity with minimal inhibitory (MIC) values in the range of 2.5 to 100 mu g mL(-1) against the investigated strains. The complexes were particularly efficient against pathogenic Pseudomonas aeruginosa (MIC = 2.5-30 mu g mL(-1)) and had a marked ability to disrupt clinically relevant biofilms of strains with high inherent resistance to antibiotics. Moreover, the Au1-4 and Ag1-5 complexes exhibited pronounced ability to competitively intercalate double stranded genomic DNA of P. aeruginosa, which was demonstrated by gel electrophoresis techniques and supported by molecular docking into the DNA major groove. Antiproliferative effect on the normal human lung fibroblast cell line MRC5 has also been evaluated in order to determine therapeutic potential of Au1-5 and Ag1-5 complexes. Since the investigated gold(III) complexes showed much lower negative effects on the viability of the MRC5 cell line than their silver(I) analogues and slightly lower antimicrobial activity against the investigated strains, the combination approach to improve their pharmacological profiles was applied. Synergistic antimicrobial effect and the selectivity index of 10 were achieved for the selected gold(III)/silver(I) complexes mixtures, as well as higher P. aeruginosa PAO1 biofilm disruption activity, and improved toxicity profile towards zebrafish embryos, in comparison to the single complexes. To the best of our knowledge, this is the first report on synergistic activity of gold(III)/silver(I) complexes mixtures and it could have an impact on development of new combination therapy methods for the treatment of multi-resistant bacterial infections.
PB  - Royal Soc Chemistry, Cambridge
T2  - RSC Advances
T1  - A comparative antimicrobial and toxicological study of gold(III) and silver(I) complexes with aromatic nitrogen-containing heterocycles: synergistic activity and improved selectivity index of Au(III)/Ag(I) complexes mixture
VL  - 6
IS  - 16
SP  - 13193
EP  - 13206
DO  - 10.1039/c5ra26002g
ER  - 
@article{
author = "Savić, Nada D. and Milivojević, Dušan R. and Glišić, Biljana Đ. and Ilić-Tomić, Tatjana and Veselinović, Jovana and Pavić, Aleksandar and Vasiljević, Branka and Nikodinović-Runić, Jasmina and Đuran, Miloš I.",
year = "2016",
abstract = "Five aromatic nitrogen-containing heterocycles, pyridazine (pydz, 1), pyrimidine (pm, 2), pyrazine (pz, 3), quinoxaline (qx, 4) and phenazine (phz, 5) have been used for the synthesis of gold(III) and silver(I) complexes. In contrast to the mononuclear Au1-5 complexes all having square-planar geometry, the corresponding Ag1-5 complexes have been found to be polynuclear and of different geometries. Complexes Au1-5 and Ag1-5, along with K[AuCl4], AgNO3 and N-heterocyclic ligands used for their synthesis, were evaluated by in vitro antimicrobial studies against a panel of microbial strains that lead to many skin and soft tissue, respiratory, wound and nosocomial infections. All tested complexes exhibited excellent to good antibacterial activity with minimal inhibitory (MIC) values in the range of 2.5 to 100 mu g mL(-1) against the investigated strains. The complexes were particularly efficient against pathogenic Pseudomonas aeruginosa (MIC = 2.5-30 mu g mL(-1)) and had a marked ability to disrupt clinically relevant biofilms of strains with high inherent resistance to antibiotics. Moreover, the Au1-4 and Ag1-5 complexes exhibited pronounced ability to competitively intercalate double stranded genomic DNA of P. aeruginosa, which was demonstrated by gel electrophoresis techniques and supported by molecular docking into the DNA major groove. Antiproliferative effect on the normal human lung fibroblast cell line MRC5 has also been evaluated in order to determine therapeutic potential of Au1-5 and Ag1-5 complexes. Since the investigated gold(III) complexes showed much lower negative effects on the viability of the MRC5 cell line than their silver(I) analogues and slightly lower antimicrobial activity against the investigated strains, the combination approach to improve their pharmacological profiles was applied. Synergistic antimicrobial effect and the selectivity index of 10 were achieved for the selected gold(III)/silver(I) complexes mixtures, as well as higher P. aeruginosa PAO1 biofilm disruption activity, and improved toxicity profile towards zebrafish embryos, in comparison to the single complexes. To the best of our knowledge, this is the first report on synergistic activity of gold(III)/silver(I) complexes mixtures and it could have an impact on development of new combination therapy methods for the treatment of multi-resistant bacterial infections.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "RSC Advances",
title = "A comparative antimicrobial and toxicological study of gold(III) and silver(I) complexes with aromatic nitrogen-containing heterocycles: synergistic activity and improved selectivity index of Au(III)/Ag(I) complexes mixture",
volume = "6",
number = "16",
pages = "13193-13206",
doi = "10.1039/c5ra26002g"
}
Savić, N. D., Milivojević, D. R., Glišić, B. Đ., Ilić-Tomić, T., Veselinović, J., Pavić, A., Vasiljević, B., Nikodinović-Runić, J.,& Đuran, M. I.. (2016). A comparative antimicrobial and toxicological study of gold(III) and silver(I) complexes with aromatic nitrogen-containing heterocycles: synergistic activity and improved selectivity index of Au(III)/Ag(I) complexes mixture. in RSC Advances
Royal Soc Chemistry, Cambridge., 6(16), 13193-13206.
https://doi.org/10.1039/c5ra26002g
Savić ND, Milivojević DR, Glišić BĐ, Ilić-Tomić T, Veselinović J, Pavić A, Vasiljević B, Nikodinović-Runić J, Đuran MI. A comparative antimicrobial and toxicological study of gold(III) and silver(I) complexes with aromatic nitrogen-containing heterocycles: synergistic activity and improved selectivity index of Au(III)/Ag(I) complexes mixture. in RSC Advances. 2016;6(16):13193-13206.
doi:10.1039/c5ra26002g .
Savić, Nada D., Milivojević, Dušan R., Glišić, Biljana Đ., Ilić-Tomić, Tatjana, Veselinović, Jovana, Pavić, Aleksandar, Vasiljević, Branka, Nikodinović-Runić, Jasmina, Đuran, Miloš I., "A comparative antimicrobial and toxicological study of gold(III) and silver(I) complexes with aromatic nitrogen-containing heterocycles: synergistic activity and improved selectivity index of Au(III)/Ag(I) complexes mixture" in RSC Advances, 6, no. 16 (2016):13193-13206,
https://doi.org/10.1039/c5ra26002g . .
3
37
32
39
35

Synthesis, structural characterization and biological evaluation of dinuclear gold(III) complexes with aromatic nitrogen-containing ligands: antimicrobial activity in relation to the complex nuclearity

Glišić, Biljana Đ.; Savić, Nada D.; Warżajtis, Beata; Đokić, Lidija; Ilić-Tomić, Tatjana; Antić, Marija; Radenković, Slavko; Nikodinović-Runić, Jasmina; Rychlewska, Urszula; Đuran, Miloš I.

(Royal Soc Chemistry, Cambridge, 2016)

TY  - JOUR
AU  - Glišić, Biljana Đ.
AU  - Savić, Nada D.
AU  - Warżajtis, Beata
AU  - Đokić, Lidija
AU  - Ilić-Tomić, Tatjana
AU  - Antić, Marija
AU  - Radenković, Slavko
AU  - Nikodinović-Runić, Jasmina
AU  - Rychlewska, Urszula
AU  - Đuran, Miloš I.
PY  - 2016
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2275
AB  - Dinuclear gold(III) complexes {[AuCl3](2)(mu-4,4'-bipy)} (1) and {[AuCl3](2)(mu-bpe)} (2) with bridging aromatic nitrogen-containing heterocyclic ligands, 4,4'-bipyridine (4,4'-bipy) and 1,2-bis(4-pyridyl)ethane (bpe), were synthesized and characterized by NMR (H-1 and C-13), UV-vis and IR spectroscopic techniques. The crystal structure of 1 was determined by single-crystal X-ray diffraction analysis, while the DFT M06-2X method was applied in order to optimize the structures of 1 and 2. A detailed mechanistic study was performed using the same DFT approach in order to shed light on the disparate coordination modes of the presently investigated N-heterocyclic ligands and the monocyclic pyrazine, which contains two nitrogen atoms within one ring, toward the AuCl3 fragment. The investigation of the solution stability of 1 and 2 in DMSO revealed that both complexes were sufficiently stable in this solvent at room temperature. Complexes 1 and 2, along with K[AuCl4] and the N-heterocyclic ligands used for their synthesis, were evaluated by in vitro antimicrobial studies against a panel of Gram-positive and Gram-negative bacteria and the fungus Candida albicans. In most cases, complexes 1 and 2 have higher antibacterial activity than K[AuCl4] (MICs for 1 and 2 were in the range 3.9-62.5 mu g mL(-1)), while both of the N-heterocycles did not affect the bacterial growth at concentrations up to 500 mu g mL(-1). On the other hand, the antifungal activity of these two complexes against C. albicans was moderate and lower than that of K[AuCl4]. In order to determine the therapeutic potential of 1 and 2, their antiproliferative effect on the normal human lung fibroblast cell line MRC5 and embryotoxicity on zebrafish (Danio rerio) have also been evaluated. To the best of our knowledge, complexes 1 and 2 are the first examples of dinuclear gold(III) complexes with aromatic six-membered heterocycles containing two nitrogen atoms as bridging ligands.
PB  - Royal Soc Chemistry, Cambridge
T2  - MedChemComm
T1  - Synthesis, structural characterization and biological evaluation of dinuclear gold(III) complexes with aromatic nitrogen-containing ligands: antimicrobial activity in relation to the complex nuclearity
VL  - 7
IS  - 7
SP  - 1356
EP  - 1366
DO  - 10.1039/c6md00214e
ER  - 
@article{
author = "Glišić, Biljana Đ. and Savić, Nada D. and Warżajtis, Beata and Đokić, Lidija and Ilić-Tomić, Tatjana and Antić, Marija and Radenković, Slavko and Nikodinović-Runić, Jasmina and Rychlewska, Urszula and Đuran, Miloš I.",
year = "2016",
abstract = "Dinuclear gold(III) complexes {[AuCl3](2)(mu-4,4'-bipy)} (1) and {[AuCl3](2)(mu-bpe)} (2) with bridging aromatic nitrogen-containing heterocyclic ligands, 4,4'-bipyridine (4,4'-bipy) and 1,2-bis(4-pyridyl)ethane (bpe), were synthesized and characterized by NMR (H-1 and C-13), UV-vis and IR spectroscopic techniques. The crystal structure of 1 was determined by single-crystal X-ray diffraction analysis, while the DFT M06-2X method was applied in order to optimize the structures of 1 and 2. A detailed mechanistic study was performed using the same DFT approach in order to shed light on the disparate coordination modes of the presently investigated N-heterocyclic ligands and the monocyclic pyrazine, which contains two nitrogen atoms within one ring, toward the AuCl3 fragment. The investigation of the solution stability of 1 and 2 in DMSO revealed that both complexes were sufficiently stable in this solvent at room temperature. Complexes 1 and 2, along with K[AuCl4] and the N-heterocyclic ligands used for their synthesis, were evaluated by in vitro antimicrobial studies against a panel of Gram-positive and Gram-negative bacteria and the fungus Candida albicans. In most cases, complexes 1 and 2 have higher antibacterial activity than K[AuCl4] (MICs for 1 and 2 were in the range 3.9-62.5 mu g mL(-1)), while both of the N-heterocycles did not affect the bacterial growth at concentrations up to 500 mu g mL(-1). On the other hand, the antifungal activity of these two complexes against C. albicans was moderate and lower than that of K[AuCl4]. In order to determine the therapeutic potential of 1 and 2, their antiproliferative effect on the normal human lung fibroblast cell line MRC5 and embryotoxicity on zebrafish (Danio rerio) have also been evaluated. To the best of our knowledge, complexes 1 and 2 are the first examples of dinuclear gold(III) complexes with aromatic six-membered heterocycles containing two nitrogen atoms as bridging ligands.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "MedChemComm",
title = "Synthesis, structural characterization and biological evaluation of dinuclear gold(III) complexes with aromatic nitrogen-containing ligands: antimicrobial activity in relation to the complex nuclearity",
volume = "7",
number = "7",
pages = "1356-1366",
doi = "10.1039/c6md00214e"
}
Glišić, B. Đ., Savić, N. D., Warżajtis, B., Đokić, L., Ilić-Tomić, T., Antić, M., Radenković, S., Nikodinović-Runić, J., Rychlewska, U.,& Đuran, M. I.. (2016). Synthesis, structural characterization and biological evaluation of dinuclear gold(III) complexes with aromatic nitrogen-containing ligands: antimicrobial activity in relation to the complex nuclearity. in MedChemComm
Royal Soc Chemistry, Cambridge., 7(7), 1356-1366.
https://doi.org/10.1039/c6md00214e
Glišić BĐ, Savić ND, Warżajtis B, Đokić L, Ilić-Tomić T, Antić M, Radenković S, Nikodinović-Runić J, Rychlewska U, Đuran MI. Synthesis, structural characterization and biological evaluation of dinuclear gold(III) complexes with aromatic nitrogen-containing ligands: antimicrobial activity in relation to the complex nuclearity. in MedChemComm. 2016;7(7):1356-1366.
doi:10.1039/c6md00214e .
Glišić, Biljana Đ., Savić, Nada D., Warżajtis, Beata, Đokić, Lidija, Ilić-Tomić, Tatjana, Antić, Marija, Radenković, Slavko, Nikodinović-Runić, Jasmina, Rychlewska, Urszula, Đuran, Miloš I., "Synthesis, structural characterization and biological evaluation of dinuclear gold(III) complexes with aromatic nitrogen-containing ligands: antimicrobial activity in relation to the complex nuclearity" in MedChemComm, 7, no. 7 (2016):1356-1366,
https://doi.org/10.1039/c6md00214e . .
3
16
13
18
15

Copper(II) complexes with aromatic nitrogen-containing heterocycles as effective inhibitors of quorum sensing activity in Pseudomonas aeruginosa

Glišić, Biljana Đ.; Aleksić, Ivana; Comba, Peter; Wadepohl, Hubert; Ilić-Tomić, Tatjana; Nikodinović-Runić, Jasmina; Đuran, Miloš I.

(Royal Soc Chemistry, Cambridge, 2016)

TY  - JOUR
AU  - Glišić, Biljana Đ.
AU  - Aleksić, Ivana
AU  - Comba, Peter
AU  - Wadepohl, Hubert
AU  - Ilić-Tomić, Tatjana
AU  - Nikodinović-Runić, Jasmina
AU  - Đuran, Miloš I.
PY  - 2016
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2317
AB  - Five copper(II) complexes 1-5 with aromatic nitrogen-containing heterocycles, pyrimidine (pm, 1), pyrazine (pz, 2), quinazoline (qz, 3 and 4) and phthalazine (phtz, 5) have been synthesized and structurally characterized by spectroscopic and single-crystal X-ray diffraction techniques. The crystallographic results show that, dependent on the ligand structure, complexes 1-5 are of different nuclearity. The antimicrobial efficiency of complexes 1-5 has been evaluated against three clinically relevant microorganisms and none of the complexes showed significant growth inhibiting activity, with values of minimum inhibitory concentrations (MIC) in the mM range. Since in many bacteria, pathogenicity and virulence are regulated by intercellular communication processes, quorum sensing (QS), the effect of the copper(II) complexes on bacterial QS has also been examined. The results indicate that the investigated complexes inhibit violacein production in Chromobacterium violaceum CV026, suggesting an anti-QS activity. In order to differentiate, which of the QS pathways was affected by the copper(II) complexes, three biosensor strains were used: the PAO1 Delta rhlIpKD-rhlA and the PA14-R3 Delta lasIPrsaI lux strain to directly measure the levels of C4-HSL (N-butanoyl-homoserine lactone) and 3OC12-HSL (N-3-oxo-dodecanoyl- homoserine lactone), respectively, and PAO1 Delta pqsA mini-CTX luxPpqsA for the detection of AHQs (2-alkyl-4-quinolones). Complexes 1-5 were shown to be efficient inhibitors of biofilm formation of the human opportunistic pathogen Pseudomonas aeruginosa PAO1, with the qz-containing complex 3 being the most active. Finally, the most anti-QS-active complexes 1 and 3 showed synergistic activity against a multi-drug resistant clinical isolate of P. aeruginosa, when supplied in combination with the known antibiotics piperacillin and ceftazidime.
PB  - Royal Soc Chemistry, Cambridge
T2  - RSC Advances
T1  - Copper(II) complexes with aromatic nitrogen-containing heterocycles as effective inhibitors of quorum sensing activity in Pseudomonas aeruginosa
VL  - 6
IS  - 89
SP  - 86695
EP  - 86709
DO  - 10.1039/c6ra19902j
ER  - 
@article{
author = "Glišić, Biljana Đ. and Aleksić, Ivana and Comba, Peter and Wadepohl, Hubert and Ilić-Tomić, Tatjana and Nikodinović-Runić, Jasmina and Đuran, Miloš I.",
year = "2016",
abstract = "Five copper(II) complexes 1-5 with aromatic nitrogen-containing heterocycles, pyrimidine (pm, 1), pyrazine (pz, 2), quinazoline (qz, 3 and 4) and phthalazine (phtz, 5) have been synthesized and structurally characterized by spectroscopic and single-crystal X-ray diffraction techniques. The crystallographic results show that, dependent on the ligand structure, complexes 1-5 are of different nuclearity. The antimicrobial efficiency of complexes 1-5 has been evaluated against three clinically relevant microorganisms and none of the complexes showed significant growth inhibiting activity, with values of minimum inhibitory concentrations (MIC) in the mM range. Since in many bacteria, pathogenicity and virulence are regulated by intercellular communication processes, quorum sensing (QS), the effect of the copper(II) complexes on bacterial QS has also been examined. The results indicate that the investigated complexes inhibit violacein production in Chromobacterium violaceum CV026, suggesting an anti-QS activity. In order to differentiate, which of the QS pathways was affected by the copper(II) complexes, three biosensor strains were used: the PAO1 Delta rhlIpKD-rhlA and the PA14-R3 Delta lasIPrsaI lux strain to directly measure the levels of C4-HSL (N-butanoyl-homoserine lactone) and 3OC12-HSL (N-3-oxo-dodecanoyl- homoserine lactone), respectively, and PAO1 Delta pqsA mini-CTX luxPpqsA for the detection of AHQs (2-alkyl-4-quinolones). Complexes 1-5 were shown to be efficient inhibitors of biofilm formation of the human opportunistic pathogen Pseudomonas aeruginosa PAO1, with the qz-containing complex 3 being the most active. Finally, the most anti-QS-active complexes 1 and 3 showed synergistic activity against a multi-drug resistant clinical isolate of P. aeruginosa, when supplied in combination with the known antibiotics piperacillin and ceftazidime.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "RSC Advances",
title = "Copper(II) complexes with aromatic nitrogen-containing heterocycles as effective inhibitors of quorum sensing activity in Pseudomonas aeruginosa",
volume = "6",
number = "89",
pages = "86695-86709",
doi = "10.1039/c6ra19902j"
}
Glišić, B. Đ., Aleksić, I., Comba, P., Wadepohl, H., Ilić-Tomić, T., Nikodinović-Runić, J.,& Đuran, M. I.. (2016). Copper(II) complexes with aromatic nitrogen-containing heterocycles as effective inhibitors of quorum sensing activity in Pseudomonas aeruginosa. in RSC Advances
Royal Soc Chemistry, Cambridge., 6(89), 86695-86709.
https://doi.org/10.1039/c6ra19902j
Glišić BĐ, Aleksić I, Comba P, Wadepohl H, Ilić-Tomić T, Nikodinović-Runić J, Đuran MI. Copper(II) complexes with aromatic nitrogen-containing heterocycles as effective inhibitors of quorum sensing activity in Pseudomonas aeruginosa. in RSC Advances. 2016;6(89):86695-86709.
doi:10.1039/c6ra19902j .
Glišić, Biljana Đ., Aleksić, Ivana, Comba, Peter, Wadepohl, Hubert, Ilić-Tomić, Tatjana, Nikodinović-Runić, Jasmina, Đuran, Miloš I., "Copper(II) complexes with aromatic nitrogen-containing heterocycles as effective inhibitors of quorum sensing activity in Pseudomonas aeruginosa" in RSC Advances, 6, no. 89 (2016):86695-86709,
https://doi.org/10.1039/c6ra19902j . .
8
27
19
28
25

Supplementary data for article: Ilic-Tomic, T.; Genčić, M. S.; Živković, M. Z.; Vasiljevic, B.; Djokic, L.; Nikodinovic-Runic, J.; Radulović, N. S. Structural Diversity and Possible Functional Roles of Free Fatty Acids of the Novel Soil Isolate Streptomyces Sp. NP10. Applied Microbiology and Biotechnology 2015, 99 (11), 4815–4833. https://doi.org/10.1007/s00253-014-6364-5

Ilić-Tomić, Tatjana; Genčić, Marija S.; Živković, Miodrag V.; Vasiljević, Branka; Đokić, Lidija; Nikodinović-Runić, Jasmina; Radulović, Niko S.

(Springer, New York, 2015)

TY  - DATA
AU  - Ilić-Tomić, Tatjana
AU  - Genčić, Marija S.
AU  - Živković, Miodrag V.
AU  - Vasiljević, Branka
AU  - Đokić, Lidija
AU  - Nikodinović-Runić, Jasmina
AU  - Radulović, Niko S.
PY  - 2015
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3430
PB  - Springer, New York
T2  - Applied Microbiology and Biotechnology
T1  - Supplementary data for article: Ilic-Tomic, T.; Genčić, M. S.; Živković, M. Z.; Vasiljevic, B.; Djokic, L.; Nikodinovic-Runic, J.; Radulović, N. S. Structural Diversity and Possible Functional Roles of Free Fatty Acids of the Novel Soil Isolate Streptomyces Sp. NP10. Applied Microbiology and Biotechnology 2015, 99 (11), 4815–4833. https://doi.org/10.1007/s00253-014-6364-5
UR  - https://hdl.handle.net/21.15107/rcub_cherry_3430
ER  - 
@misc{
author = "Ilić-Tomić, Tatjana and Genčić, Marija S. and Živković, Miodrag V. and Vasiljević, Branka and Đokić, Lidija and Nikodinović-Runić, Jasmina and Radulović, Niko S.",
year = "2015",
publisher = "Springer, New York",
journal = "Applied Microbiology and Biotechnology",
title = "Supplementary data for article: Ilic-Tomic, T.; Genčić, M. S.; Živković, M. Z.; Vasiljevic, B.; Djokic, L.; Nikodinovic-Runic, J.; Radulović, N. S. Structural Diversity and Possible Functional Roles of Free Fatty Acids of the Novel Soil Isolate Streptomyces Sp. NP10. Applied Microbiology and Biotechnology 2015, 99 (11), 4815–4833. https://doi.org/10.1007/s00253-014-6364-5",
url = "https://hdl.handle.net/21.15107/rcub_cherry_3430"
}
Ilić-Tomić, T., Genčić, M. S., Živković, M. V., Vasiljević, B., Đokić, L., Nikodinović-Runić, J.,& Radulović, N. S.. (2015). Supplementary data for article: Ilic-Tomic, T.; Genčić, M. S.; Živković, M. Z.; Vasiljevic, B.; Djokic, L.; Nikodinovic-Runic, J.; Radulović, N. S. Structural Diversity and Possible Functional Roles of Free Fatty Acids of the Novel Soil Isolate Streptomyces Sp. NP10. Applied Microbiology and Biotechnology 2015, 99 (11), 4815–4833. https://doi.org/10.1007/s00253-014-6364-5. in Applied Microbiology and Biotechnology
Springer, New York..
https://hdl.handle.net/21.15107/rcub_cherry_3430
Ilić-Tomić T, Genčić MS, Živković MV, Vasiljević B, Đokić L, Nikodinović-Runić J, Radulović NS. Supplementary data for article: Ilic-Tomic, T.; Genčić, M. S.; Živković, M. Z.; Vasiljevic, B.; Djokic, L.; Nikodinovic-Runic, J.; Radulović, N. S. Structural Diversity and Possible Functional Roles of Free Fatty Acids of the Novel Soil Isolate Streptomyces Sp. NP10. Applied Microbiology and Biotechnology 2015, 99 (11), 4815–4833. https://doi.org/10.1007/s00253-014-6364-5. in Applied Microbiology and Biotechnology. 2015;.
https://hdl.handle.net/21.15107/rcub_cherry_3430 .
Ilić-Tomić, Tatjana, Genčić, Marija S., Živković, Miodrag V., Vasiljević, Branka, Đokić, Lidija, Nikodinović-Runić, Jasmina, Radulović, Niko S., "Supplementary data for article: Ilic-Tomic, T.; Genčić, M. S.; Živković, M. Z.; Vasiljevic, B.; Djokic, L.; Nikodinovic-Runic, J.; Radulović, N. S. Structural Diversity and Possible Functional Roles of Free Fatty Acids of the Novel Soil Isolate Streptomyces Sp. NP10. Applied Microbiology and Biotechnology 2015, 99 (11), 4815–4833. https://doi.org/10.1007/s00253-014-6364-5" in Applied Microbiology and Biotechnology (2015),
https://hdl.handle.net/21.15107/rcub_cherry_3430 .

Structural diversity and possible functional roles of free fatty acids of the novel soil isolate Streptomyces sp NP10

Ilić-Tomić, Tatjana; Genčić, Marija S.; Živković, Miodrag V.; Vasiljević, Branka; Đokić, Lidija; Nikodinović-Runić, Jasmina; Radulović, Niko S.

(Springer, New York, 2015)

TY  - JOUR
AU  - Ilić-Tomić, Tatjana
AU  - Genčić, Marija S.
AU  - Živković, Miodrag V.
AU  - Vasiljević, Branka
AU  - Đokić, Lidija
AU  - Nikodinović-Runić, Jasmina
AU  - Radulović, Niko S.
PY  - 2015
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/1713
AB  - Herein, a novel soil bacterium Streptomyces sp. NP10 able to grow outside usual streptomycetes optimum conditions (e.g., at 4 A degrees C, pH 9 and high NaCl concentration), exhibiting atypical hemolytic, DNAse, and cellulolytic activities, is described. This strain produces and excretes into the growth medium large amounts of free long-chain fatty acids (FAs). A concurrent lipidomics study revealed a large structural diversity of FAs with over 50 different n- and branched-chain, (un)saturated, and cyclopropane FAs (C-7-C-30) produced by this strain. Two of these, i-17:0cy9-10 and a-18:0cy9-10, represent new natural products and the first ever identified branched cyclopropane FAs. Both free and bound lipid profiles of Streptomyces sp. NP10 were dominated by saturated branched chain FAs (i-14:0, a-15:0, and i-16:0). Although these free FAs showed only a moderate antimicrobial activity, our results suggest that they could have an ecophysiological role in interspecies signaling with another soil microorganism Pseudomonas aeruginosa. This work represents the first comprehensive report on the structural diversity and complexity of the free FA pool in Streptomyces. A naturally occurring streptomycete, such as Streptomyces sp. NP10, which secretes significant amounts of free long-chain FAs (non-cytotoxic) into the medium, could be useful in microbial biodiesel production.
PB  - Springer, New York
T2  - Applied Microbiology and Biotechnology
T1  - Structural diversity and possible functional roles of free fatty acids of the novel soil isolate Streptomyces sp NP10
VL  - 99
IS  - 11
SP  - 4815
EP  - 4833
DO  - 10.1007/s00253-014-6364-5
ER  - 
@article{
author = "Ilić-Tomić, Tatjana and Genčić, Marija S. and Živković, Miodrag V. and Vasiljević, Branka and Đokić, Lidija and Nikodinović-Runić, Jasmina and Radulović, Niko S.",
year = "2015",
abstract = "Herein, a novel soil bacterium Streptomyces sp. NP10 able to grow outside usual streptomycetes optimum conditions (e.g., at 4 A degrees C, pH 9 and high NaCl concentration), exhibiting atypical hemolytic, DNAse, and cellulolytic activities, is described. This strain produces and excretes into the growth medium large amounts of free long-chain fatty acids (FAs). A concurrent lipidomics study revealed a large structural diversity of FAs with over 50 different n- and branched-chain, (un)saturated, and cyclopropane FAs (C-7-C-30) produced by this strain. Two of these, i-17:0cy9-10 and a-18:0cy9-10, represent new natural products and the first ever identified branched cyclopropane FAs. Both free and bound lipid profiles of Streptomyces sp. NP10 were dominated by saturated branched chain FAs (i-14:0, a-15:0, and i-16:0). Although these free FAs showed only a moderate antimicrobial activity, our results suggest that they could have an ecophysiological role in interspecies signaling with another soil microorganism Pseudomonas aeruginosa. This work represents the first comprehensive report on the structural diversity and complexity of the free FA pool in Streptomyces. A naturally occurring streptomycete, such as Streptomyces sp. NP10, which secretes significant amounts of free long-chain FAs (non-cytotoxic) into the medium, could be useful in microbial biodiesel production.",
publisher = "Springer, New York",
journal = "Applied Microbiology and Biotechnology",
title = "Structural diversity and possible functional roles of free fatty acids of the novel soil isolate Streptomyces sp NP10",
volume = "99",
number = "11",
pages = "4815-4833",
doi = "10.1007/s00253-014-6364-5"
}
Ilić-Tomić, T., Genčić, M. S., Živković, M. V., Vasiljević, B., Đokić, L., Nikodinović-Runić, J.,& Radulović, N. S.. (2015). Structural diversity and possible functional roles of free fatty acids of the novel soil isolate Streptomyces sp NP10. in Applied Microbiology and Biotechnology
Springer, New York., 99(11), 4815-4833.
https://doi.org/10.1007/s00253-014-6364-5
Ilić-Tomić T, Genčić MS, Živković MV, Vasiljević B, Đokić L, Nikodinović-Runić J, Radulović NS. Structural diversity and possible functional roles of free fatty acids of the novel soil isolate Streptomyces sp NP10. in Applied Microbiology and Biotechnology. 2015;99(11):4815-4833.
doi:10.1007/s00253-014-6364-5 .
Ilić-Tomić, Tatjana, Genčić, Marija S., Živković, Miodrag V., Vasiljević, Branka, Đokić, Lidija, Nikodinović-Runić, Jasmina, Radulović, Niko S., "Structural diversity and possible functional roles of free fatty acids of the novel soil isolate Streptomyces sp NP10" in Applied Microbiology and Biotechnology, 99, no. 11 (2015):4815-4833,
https://doi.org/10.1007/s00253-014-6364-5 . .
2
17
14
16
16