Prodanović, Radivoje

Link to this page

Authority KeyName Variants
orcid::0000-0003-4662-1825
  • Prodanović, Radivoje (107)
Projects
Allergens, antibodies, enzymes and small physiologically important molecules: design, structure, function and relevance Study of structure-function relationships in the plant cell wall and modifications of the wall structure by enzyme engineering
Novel encapsulation and enzyme technologies for designing of new biocatalysts and biologically active compounds targeting enhancement of food quality, safety and competitiveness Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200053 (University of Belgrade, Institute for Multidisciplinary Research) National Science Foundation [DMR-1310266]
Harvard MRSEC [DMR-0820484] Excellence Initiative by the German federal government
Ispitivanje strukture i funkcije biološki važnih makromolekula u fiziološkim i patološkim stanjima Ispitivanja novih biosenzora za monitoring i dijagnostiku biljaka
Alexander von Humboldt foundation China Equipment and Education Resources System [CERS-1-75]
Deutsche Forschungsgemeinschaft Deutsche Forschungsgemeinschaft (DFG)
Fulbright Foundation [N0009552407] Harvard Materials Research Science and Engineering Center [DMR-1420570]
National Institute of Health [R01 EB014703, P01GM096971] National Institutes of Health [R01EB014703]
National Natural Science Foundation of China [214350002, 91213305, 81373373] BMBF BiochancePlus program
DAAD bilateral project 451-03-01038/2015-09/21 Engineering and Physical Sciences Research Council [EP/C535456/1]
EPSRC [EP/C535456/1] Fulbright Foundation
G. Menghiu acknowledges support from the strategic grant POSDRU/159/1.5/S/137750: Project “Doctoral and postdoctoral programs support for increased competitiveness in exact sciences research” co-financed by the European Social Fund within the Sectorial Operational Program Human Resources Development 2007–2013. This research was funded by the GRANT PNIII-P3- 284, ChitoWound—Biotechnological tools implementation for new wound healing applications of byproducts from the crustacean seafood processing industry. Characterization and application of fungal metabolites and assessment of new biofungicides potential
Microbial diversity study and characterization of beneficial environmental microorganisms Synthesis, processing and characterization of nanostructured materials for application in the field of energy, mechanical engineering, environmental protection and biomedicine
Razvoj i primena proizvoda na bazi mineralnih sirovina u proizvodnji bezbedne hrane internal program MEF from the Fraunhofer Gesellschaft [125-600156]

Author's Bibliography

Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls

Ilić Đurđić, Karla; Ostafe, Raluca; Prodanović, Olivera; Đurđević Đelmaš, Aleksandra; Popović, Nikolina; Fischer, Rainer; Schillberg, Stefan; Prodanović, Radivoje

(Springer, 2021)

TY  - JOUR
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Prodanović, Olivera
AU  - Đurđević Đelmaš, Aleksandra
AU  - Popović, Nikolina
AU  - Fischer, Rainer
AU  - Schillberg, Stefan
AU  - Prodanović, Radivoje
PY  - 2021
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4101
AB  - The enzymatic degradation of azo dyes is a promising alternative to ineffective chemical and physical remediation methods. Lignin peroxidase (LiP) from Phanerochaete chrysosporium is a heme-containing lignin-degrading oxidoreductase that catalyzes the peroxide-dependent oxidation of diverse molecules, including industrial dyes. This enzyme is therefore ideal as a starting point for protein engineering. Accordingly, we subjected two positions (165 and 264) in the environment of the catalytic Trp171 residue to saturation mutagenesis, and the resulting library of 104 independent clones was expressed on the surface of yeast cells. This yeast display library was used for the selection of variants with the ability to break down structurally-distinct azo dyes more efficiently. We identified mutants with up to 10-fold greater affinity than wild-type LiP for three diverse azo dyes (Evans blue, amido black 10B and Guinea green) and up to 13-fold higher catalytic activity. Additionally, cell wall fragments displaying mutant LiP enzymes were prepared by toluene-induced cell lysis, achieving significant increases in both enzyme activity and stability compared to a whole-cell biocatalyst. LiP-coated cell wall fragments retained their initial dye degradation activity after 10 reaction cycles each lasting 8 h. The best-performing mutants removed up to 2.5-fold more of each dye than the wild-type LiP in multiple reaction cycles.
PB  - Springer
T2  - Frontiers of Environmental Science & Engineering
T2  - Frontiers of Environmental Science & EngineeringFront. Environ. Sci. Eng.
T1  - Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls
VL  - 15
IS  - 2
SP  - 19
DO  - 10.1007/s11783-020-1311-4
ER  - 
@article{
author = "Ilić Đurđić, Karla and Ostafe, Raluca and Prodanović, Olivera and Đurđević Đelmaš, Aleksandra and Popović, Nikolina and Fischer, Rainer and Schillberg, Stefan and Prodanović, Radivoje",
year = "2021",
abstract = "The enzymatic degradation of azo dyes is a promising alternative to ineffective chemical and physical remediation methods. Lignin peroxidase (LiP) from Phanerochaete chrysosporium is a heme-containing lignin-degrading oxidoreductase that catalyzes the peroxide-dependent oxidation of diverse molecules, including industrial dyes. This enzyme is therefore ideal as a starting point for protein engineering. Accordingly, we subjected two positions (165 and 264) in the environment of the catalytic Trp171 residue to saturation mutagenesis, and the resulting library of 104 independent clones was expressed on the surface of yeast cells. This yeast display library was used for the selection of variants with the ability to break down structurally-distinct azo dyes more efficiently. We identified mutants with up to 10-fold greater affinity than wild-type LiP for three diverse azo dyes (Evans blue, amido black 10B and Guinea green) and up to 13-fold higher catalytic activity. Additionally, cell wall fragments displaying mutant LiP enzymes were prepared by toluene-induced cell lysis, achieving significant increases in both enzyme activity and stability compared to a whole-cell biocatalyst. LiP-coated cell wall fragments retained their initial dye degradation activity after 10 reaction cycles each lasting 8 h. The best-performing mutants removed up to 2.5-fold more of each dye than the wild-type LiP in multiple reaction cycles.",
publisher = "Springer",
journal = "Frontiers of Environmental Science & Engineering, Frontiers of Environmental Science & EngineeringFront. Environ. Sci. Eng.",
title = "Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls",
volume = "15",
number = "2",
pages = "19",
doi = "10.1007/s11783-020-1311-4"
}
Ilić Đurđić, K., Ostafe, R., Prodanović, O., Đurđević Đelmaš, A., Popović, N., Fischer, R., Schillberg, S.,& Prodanović, R.. (2021). Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls. in Frontiers of Environmental Science & Engineering
Springer., 15(2), 19.
https://doi.org/10.1007/s11783-020-1311-4
Ilić Đurđić K, Ostafe R, Prodanović O, Đurđević Đelmaš A, Popović N, Fischer R, Schillberg S, Prodanović R. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls. in Frontiers of Environmental Science & Engineering. 2021;15(2):19.
doi:10.1007/s11783-020-1311-4 .
Ilić Đurđić, Karla, Ostafe, Raluca, Prodanović, Olivera, Đurđević Đelmaš, Aleksandra, Popović, Nikolina, Fischer, Rainer, Schillberg, Stefan, Prodanović, Radivoje, "Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls" in Frontiers of Environmental Science & Engineering, 15, no. 2 (2021):19,
https://doi.org/10.1007/s11783-020-1311-4 . .
9
6
5

Supplementary data for the article: Ilić Đurđić, K.; Ostafe, R.; Prodanović, O.; Đurđević Đelmaš, A.; Popović, N.; Fischer, R.; Schillberg, S.; Prodanović, R. Improved Degradation of Azo Dyes by Lignin Peroxidase Following Mutagenesis at Two Sites near the Catalytic Pocket and the Application of Peroxidase-Coated Yeast Cell Walls. Front. Environ. Sci. Eng. 2020, 15 (2), 19. https://doi.org/10.1007/s11783-020-1311-4

Ilić Đurđić, Karla; Ostafe, Raluca; Prodanović, Olivera; Đurđević Đelmaš, Aleksandra; Popović, Nikolina; Fischer, Rainer; Schillberg, Stefan; Prodanović, Radivoje

(Springer, 2021)

TY  - DATA
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Prodanović, Olivera
AU  - Đurđević Đelmaš, Aleksandra
AU  - Popović, Nikolina
AU  - Fischer, Rainer
AU  - Schillberg, Stefan
AU  - Prodanović, Radivoje
PY  - 2021
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4103
PB  - Springer
T2  - Frontiers of Environmental Science & EngineeringFront. Environ. Sci. Eng.
T1  - Supplementary data for the article: Ilić Đurđić, K.; Ostafe, R.; Prodanović, O.; Đurđević Đelmaš, A.; Popović, N.; Fischer, R.; Schillberg, S.; Prodanović, R. Improved Degradation of Azo Dyes by Lignin Peroxidase Following Mutagenesis at Two Sites near the Catalytic Pocket and the Application of Peroxidase-Coated Yeast Cell Walls. Front. Environ. Sci. Eng. 2020, 15 (2), 19. https://doi.org/10.1007/s11783-020-1311-4
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4103
ER  - 
@misc{
author = "Ilić Đurđić, Karla and Ostafe, Raluca and Prodanović, Olivera and Đurđević Đelmaš, Aleksandra and Popović, Nikolina and Fischer, Rainer and Schillberg, Stefan and Prodanović, Radivoje",
year = "2021",
publisher = "Springer",
journal = "Frontiers of Environmental Science & EngineeringFront. Environ. Sci. Eng.",
title = "Supplementary data for the article: Ilić Đurđić, K.; Ostafe, R.; Prodanović, O.; Đurđević Đelmaš, A.; Popović, N.; Fischer, R.; Schillberg, S.; Prodanović, R. Improved Degradation of Azo Dyes by Lignin Peroxidase Following Mutagenesis at Two Sites near the Catalytic Pocket and the Application of Peroxidase-Coated Yeast Cell Walls. Front. Environ. Sci. Eng. 2020, 15 (2), 19. https://doi.org/10.1007/s11783-020-1311-4",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4103"
}
Ilić Đurđić, K., Ostafe, R., Prodanović, O., Đurđević Đelmaš, A., Popović, N., Fischer, R., Schillberg, S.,& Prodanović, R.. (2021). Supplementary data for the article: Ilić Đurđić, K.; Ostafe, R.; Prodanović, O.; Đurđević Đelmaš, A.; Popović, N.; Fischer, R.; Schillberg, S.; Prodanović, R. Improved Degradation of Azo Dyes by Lignin Peroxidase Following Mutagenesis at Two Sites near the Catalytic Pocket and the Application of Peroxidase-Coated Yeast Cell Walls. Front. Environ. Sci. Eng. 2020, 15 (2), 19. https://doi.org/10.1007/s11783-020-1311-4. in Frontiers of Environmental Science & EngineeringFront. Environ. Sci. Eng.
Springer..
https://hdl.handle.net/21.15107/rcub_cherry_4103
Ilić Đurđić K, Ostafe R, Prodanović O, Đurđević Đelmaš A, Popović N, Fischer R, Schillberg S, Prodanović R. Supplementary data for the article: Ilić Đurđić, K.; Ostafe, R.; Prodanović, O.; Đurđević Đelmaš, A.; Popović, N.; Fischer, R.; Schillberg, S.; Prodanović, R. Improved Degradation of Azo Dyes by Lignin Peroxidase Following Mutagenesis at Two Sites near the Catalytic Pocket and the Application of Peroxidase-Coated Yeast Cell Walls. Front. Environ. Sci. Eng. 2020, 15 (2), 19. https://doi.org/10.1007/s11783-020-1311-4. in Frontiers of Environmental Science & EngineeringFront. Environ. Sci. Eng.. 2021;.
https://hdl.handle.net/21.15107/rcub_cherry_4103 .
Ilić Đurđić, Karla, Ostafe, Raluca, Prodanović, Olivera, Đurđević Đelmaš, Aleksandra, Popović, Nikolina, Fischer, Rainer, Schillberg, Stefan, Prodanović, Radivoje, "Supplementary data for the article: Ilić Đurđić, K.; Ostafe, R.; Prodanović, O.; Đurđević Đelmaš, A.; Popović, N.; Fischer, R.; Schillberg, S.; Prodanović, R. Improved Degradation of Azo Dyes by Lignin Peroxidase Following Mutagenesis at Two Sites near the Catalytic Pocket and the Application of Peroxidase-Coated Yeast Cell Walls. Front. Environ. Sci. Eng. 2020, 15 (2), 19. https://doi.org/10.1007/s11783-020-1311-4" in Frontiers of Environmental Science & EngineeringFront. Environ. Sci. Eng. (2021),
https://hdl.handle.net/21.15107/rcub_cherry_4103 .

A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A

Menghiu, Gheorghita; Ostafe, Vasile; Prodanović, Radivoje; Fischer, Rainer; Ostafe, Raluca

(MDPI, 2021)

TY  - JOUR
AU  - Menghiu, Gheorghita
AU  - Ostafe, Vasile
AU  - Prodanović, Radivoje
AU  - Fischer, Rainer
AU  - Ostafe, Raluca
PY  - 2021
UR  - https://www.mdpi.com/1422-0067/22/6/3041
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4393
AB  - Chitinases catalyze the degradation of chitin, a polymer of N-acetylglucosamine found in crustacean shells, insect cuticles, and fungal cell walls. There is great interest in the development of improved chitinases to address the environmental burden of chitin waste from the food processing industry as well as the potential medical, agricultural, and industrial uses of partially deacetylated chitin (chitosan) and its products (chito-oligosaccharides). The depolymerization of chitin can be achieved using chemical and physical treatments, but an enzymatic process would be more environmentally friendly and more sustainable. However, chitinases are slow-acting enzymes, limiting their biotechnological exploitation, although this can be overcome by molecular evolution approaches to enhance the features required for specific applications. The two main goals of this study were the development of a high-throughput screening system for chitinase activity (which could be extrapolated to other hydrolytic enzymes), and the deployment of this new method to select improved chitinase variants. We therefore cloned and expressed the Bacillus licheniformis DSM8785 chitinase A (chiA) gene in Escherichia coli BL21 (DE3) cells and generated a mutant library by error-prone PCR. We then developed a screening method based on fluorescence-activated cell sorting (FACS) using the model substrate 4-methylumbelliferyl β-d-N,N′,N″-triacetyl chitotrioside to identify improved enzymes. We prevented cross-talk between emulsion compartments caused by the hydrophobicity of 4-methylumbelliferone, the fluorescent product of the enzymatic reaction, by incorporating cyclodextrins into the aqueous phases. We also addressed the toxicity of long-term chiA expression in E. coli by limiting the reaction time. We identified 12 mutants containing 2–8 mutations per gene resulting in up to twofold higher activity than wild-type ChiA.
PB  - MDPI
T2  - International Journal of Molecular Sciences
T1  - A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A
VL  - 22
IS  - 6
SP  - 3041
DO  - 10.3390/ijms22063041
ER  - 
@article{
author = "Menghiu, Gheorghita and Ostafe, Vasile and Prodanović, Radivoje and Fischer, Rainer and Ostafe, Raluca",
year = "2021",
abstract = "Chitinases catalyze the degradation of chitin, a polymer of N-acetylglucosamine found in crustacean shells, insect cuticles, and fungal cell walls. There is great interest in the development of improved chitinases to address the environmental burden of chitin waste from the food processing industry as well as the potential medical, agricultural, and industrial uses of partially deacetylated chitin (chitosan) and its products (chito-oligosaccharides). The depolymerization of chitin can be achieved using chemical and physical treatments, but an enzymatic process would be more environmentally friendly and more sustainable. However, chitinases are slow-acting enzymes, limiting their biotechnological exploitation, although this can be overcome by molecular evolution approaches to enhance the features required for specific applications. The two main goals of this study were the development of a high-throughput screening system for chitinase activity (which could be extrapolated to other hydrolytic enzymes), and the deployment of this new method to select improved chitinase variants. We therefore cloned and expressed the Bacillus licheniformis DSM8785 chitinase A (chiA) gene in Escherichia coli BL21 (DE3) cells and generated a mutant library by error-prone PCR. We then developed a screening method based on fluorescence-activated cell sorting (FACS) using the model substrate 4-methylumbelliferyl β-d-N,N′,N″-triacetyl chitotrioside to identify improved enzymes. We prevented cross-talk between emulsion compartments caused by the hydrophobicity of 4-methylumbelliferone, the fluorescent product of the enzymatic reaction, by incorporating cyclodextrins into the aqueous phases. We also addressed the toxicity of long-term chiA expression in E. coli by limiting the reaction time. We identified 12 mutants containing 2–8 mutations per gene resulting in up to twofold higher activity than wild-type ChiA.",
publisher = "MDPI",
journal = "International Journal of Molecular Sciences",
title = "A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A",
volume = "22",
number = "6",
pages = "3041",
doi = "10.3390/ijms22063041"
}
Menghiu, G., Ostafe, V., Prodanović, R., Fischer, R.,& Ostafe, R.. (2021). A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. in International Journal of Molecular Sciences
MDPI., 22(6), 3041.
https://doi.org/10.3390/ijms22063041
Menghiu G, Ostafe V, Prodanović R, Fischer R, Ostafe R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. in International Journal of Molecular Sciences. 2021;22(6):3041.
doi:10.3390/ijms22063041 .
Menghiu, Gheorghita, Ostafe, Vasile, Prodanović, Radivoje, Fischer, Rainer, Ostafe, Raluca, "A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A" in International Journal of Molecular Sciences, 22, no. 6 (2021):3041,
https://doi.org/10.3390/ijms22063041 . .
1
1

Supplementary data for the article: Menghiu, G.; Ostafe, V.; Prodanović, R.; Fischer, R.; Ostafe, R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. International Journal of Molecular Sciences 2021, 22 (6), 3041. https://doi.org/10.3390/ijms22063041.

Menghiu, Gheorghita; Ostafe, Vasile; Prodanović, Radivoje; Fischer, Rainer; Ostafe, Raluca

(MDPI, 2021)

TY  - DATA
AU  - Menghiu, Gheorghita
AU  - Ostafe, Vasile
AU  - Prodanović, Radivoje
AU  - Fischer, Rainer
AU  - Ostafe, Raluca
PY  - 2021
UR  - https://www.mdpi.com/1422-0067/22/6/3041
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4394
PB  - MDPI
T2  - International Journal of Molecular Sciences
T1  - Supplementary data for the article: Menghiu, G.; Ostafe, V.; Prodanović, R.; Fischer, R.; Ostafe, R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. International Journal of Molecular Sciences 2021, 22 (6), 3041. https://doi.org/10.3390/ijms22063041.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4394
ER  - 
@misc{
author = "Menghiu, Gheorghita and Ostafe, Vasile and Prodanović, Radivoje and Fischer, Rainer and Ostafe, Raluca",
year = "2021",
publisher = "MDPI",
journal = "International Journal of Molecular Sciences",
title = "Supplementary data for the article: Menghiu, G.; Ostafe, V.; Prodanović, R.; Fischer, R.; Ostafe, R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. International Journal of Molecular Sciences 2021, 22 (6), 3041. https://doi.org/10.3390/ijms22063041.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4394"
}
Menghiu, G., Ostafe, V., Prodanović, R., Fischer, R.,& Ostafe, R.. (2021). Supplementary data for the article: Menghiu, G.; Ostafe, V.; Prodanović, R.; Fischer, R.; Ostafe, R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. International Journal of Molecular Sciences 2021, 22 (6), 3041. https://doi.org/10.3390/ijms22063041.. in International Journal of Molecular Sciences
MDPI..
https://hdl.handle.net/21.15107/rcub_cherry_4394
Menghiu G, Ostafe V, Prodanović R, Fischer R, Ostafe R. Supplementary data for the article: Menghiu, G.; Ostafe, V.; Prodanović, R.; Fischer, R.; Ostafe, R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. International Journal of Molecular Sciences 2021, 22 (6), 3041. https://doi.org/10.3390/ijms22063041.. in International Journal of Molecular Sciences. 2021;.
https://hdl.handle.net/21.15107/rcub_cherry_4394 .
Menghiu, Gheorghita, Ostafe, Vasile, Prodanović, Radivoje, Fischer, Rainer, Ostafe, Raluca, "Supplementary data for the article: Menghiu, G.; Ostafe, V.; Prodanović, R.; Fischer, R.; Ostafe, R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. International Journal of Molecular Sciences 2021, 22 (6), 3041. https://doi.org/10.3390/ijms22063041." in International Journal of Molecular Sciences (2021),
https://hdl.handle.net/21.15107/rcub_cherry_4394 .

Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization

Popović, Nikolina; Pržulj, Dunja; Mladenović, Maja; Prodanović, Olivera; Ece, Selin; Ilić Đurđić, Karla; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(2021)

TY  - JOUR
AU  - Popović, Nikolina
AU  - Pržulj, Dunja
AU  - Mladenović, Maja
AU  - Prodanović, Olivera
AU  - Ece, Selin
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0141813021008813
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4404
AB  - High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV–Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.
T2  - International Journal of Biological Macromolecules
T1  - Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization
VL  - 181
SP  - 1072
EP  - 1080
DO  - 10.1016/j.ijbiomac.2021.04.115
ER  - 
@article{
author = "Popović, Nikolina and Pržulj, Dunja and Mladenović, Maja and Prodanović, Olivera and Ece, Selin and Ilić Đurđić, Karla and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2021",
abstract = "High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV–Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.",
journal = "International Journal of Biological Macromolecules",
title = "Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization",
volume = "181",
pages = "1072-1080",
doi = "10.1016/j.ijbiomac.2021.04.115"
}
Popović, N., Pržulj, D., Mladenović, M., Prodanović, O., Ece, S., Ilić Đurđić, K., Ostafe, R., Fischer, R.,& Prodanović, R.. (2021). Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. in International Journal of Biological Macromolecules, 181, 1072-1080.
https://doi.org/10.1016/j.ijbiomac.2021.04.115
Popović N, Pržulj D, Mladenović M, Prodanović O, Ece S, Ilić Đurđić K, Ostafe R, Fischer R, Prodanović R. Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. in International Journal of Biological Macromolecules. 2021;181:1072-1080.
doi:10.1016/j.ijbiomac.2021.04.115 .
Popović, Nikolina, Pržulj, Dunja, Mladenović, Maja, Prodanović, Olivera, Ece, Selin, Ilić Đurđić, Karla, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization" in International Journal of Biological Macromolecules, 181 (2021):1072-1080,
https://doi.org/10.1016/j.ijbiomac.2021.04.115 . .
3
4
2
4

Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115.

Popović, Nikolina; Pržulj, Dunja; Mladenović, Maja; Prodanović, Olivera; Ece, Selin; Ilić Đurđić, Karla; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(2021)

TY  - DATA
AU  - Popović, Nikolina
AU  - Pržulj, Dunja
AU  - Mladenović, Maja
AU  - Prodanović, Olivera
AU  - Ece, Selin
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0141813021008813
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4405
T2  - International Journal of Biological Macromolecules
T1  - Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115.
UR  - https://hdl.handle.net/21.15107/rcub_cherry_4405
ER  - 
@misc{
author = "Popović, Nikolina and Pržulj, Dunja and Mladenović, Maja and Prodanović, Olivera and Ece, Selin and Ilić Đurđić, Karla and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2021",
journal = "International Journal of Biological Macromolecules",
title = "Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115.",
url = "https://hdl.handle.net/21.15107/rcub_cherry_4405"
}
Popović, N., Pržulj, D., Mladenović, M., Prodanović, O., Ece, S., Ilić Đurđić, K., Ostafe, R., Fischer, R.,& Prodanović, R.. (2021). Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115.. in International Journal of Biological Macromolecules.
https://hdl.handle.net/21.15107/rcub_cherry_4405
Popović N, Pržulj D, Mladenović M, Prodanović O, Ece S, Ilić Đurđić K, Ostafe R, Fischer R, Prodanović R. Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115.. in International Journal of Biological Macromolecules. 2021;.
https://hdl.handle.net/21.15107/rcub_cherry_4405 .
Popović, Nikolina, Pržulj, Dunja, Mladenović, Maja, Prodanović, Olivera, Ece, Selin, Ilić Đurđić, Karla, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Supplementary data for the article: Popović, N.; Pržulj, D.; Mladenović, M.; Prodanović, O.; Ece, S.; Ilić Đurđić, K.; Ostafe, R.; Fischer, R.; Prodanović, R. Immobilization of Yeast Cell Walls with Surface Displayed Laccase from Streptomyces Cyaneus within Dopamine-Alginate Beads for Dye Decolorization. International Journal of Biological Macromolecules 2021, 181, 1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115." in International Journal of Biological Macromolecules (2021),
https://hdl.handle.net/21.15107/rcub_cherry_4405 .

Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization

Popović, Nikolina; Pržulj, Dunja; Mladenović, Maja; Prodanović, Olivera; Ece, Selin; Ilić Đurđić, Karla; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(2021)

TY  - JOUR
AU  - Popović, Nikolina
AU  - Pržulj, Dunja
AU  - Mladenović, Maja
AU  - Prodanović, Olivera
AU  - Ece, Selin
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0141813021008813
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4406
AB  - High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases