Marinković, Dragana

Link to this page

Authority KeyName Variants
7aa4d6c2-c68c-414e-b334-eab64f2e8eb5
  • Marinković, Dragana (1)

Author's Bibliography

Gamma-ray-induced structural transformation of GQDs towards the improvement of their optical properties, monitoring of selected toxic compounds, and photo-induced effect on bacterial strains

Dorontic, Sladjana; Bonasera, Aurelio; Scopelliti, Michelangelo; Marković, Olivera S.; Bajuk Bogdanović, Danica; Ciasca, Gabriele; Romanò, Sabrina; Dimkić, Ivica; Budimir, Milica; Marinković, Dragana; Jovanovic, Svetlana

(MDPI, 2022)

TY  - JOUR
AU  - Dorontic, Sladjana
AU  - Bonasera, Aurelio
AU  - Scopelliti, Michelangelo
AU  - Marković, Olivera S.
AU  - Bajuk Bogdanović, Danica
AU  - Ciasca, Gabriele
AU  - Romanò, Sabrina
AU  - Dimkić, Ivica
AU  - Budimir, Milica
AU  - Marinković, Dragana
AU  - Jovanovic, Svetlana
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5883
AB  - Structural modification of different carbon-based nanomaterials is often necessary to
improve their morphology and optical properties, particularly the incorporation of N-atoms in
graphene quantum dots (GQDs). Here, a clean, simple, one-step, and eco-friendly method for
N-doping of GQDs using gamma irradiation is reported. GQDs were irradiated in the presence
of the different ethylenediamine (EDA) amounts (1 g, 5 g, and 10 g) and the highest % of N was
detected in the presence of 10 g. N-doped GQDs emitted strong, blue photoluminescence (PL).
Photoluminescence quantum yield was increased from 1.45, as obtained for non-irradiated dots,
to 7.24% for those irradiated in the presence of 1 g of EDA. Modified GQDs were investigated as
a PL probe for the detection of insecticide Carbofuran (2,2-Dimethyl-2,3-dihydro-1-benzofuran-7-
yl methylcarbamate) and herbicide Amitrole (3-amino-1,2,4-triazole). The limit of detection was
5.4 µmol L−1
for Carbofuran. For the first time, Amitrole was detected by GQDs in a turn-off/turn-on
mechanism using Pd(II) ions as a quenching agent. First, Pd(II) ions were quenched (turn-off) PL
of GQDs, while after Amitrole addition, PL was recovered linearly with Amitrole concentration
(turn-on). LOD was 2.03 µmol L−1
. These results suggest that modified GQDs can be used as an
efficient new material for Carbofuran and Amitrole detection. Furthermore, the phototoxicity of dots
was investigated on both Gram-positive and Gram-negative bacterial strains. When bacterial cells
were exposed to different GQD concentrations and illuminated with light of 470 nm wavelength, the
toxic effects were not observed.
PB  - MDPI
T2  - Nanomaterials
T1  - Gamma-ray-induced structural transformation of GQDs  towards the improvement of their optical properties, monitoring of selected toxic compounds,  and photo-induced effect on bacterial strains
VL  - 12
SP  - 2714
DO  - https://doi.org/10.3390/nano12152714
ER  - 
@article{
author = "Dorontic, Sladjana and Bonasera, Aurelio and Scopelliti, Michelangelo and Marković, Olivera S. and Bajuk Bogdanović, Danica and Ciasca, Gabriele and Romanò, Sabrina and Dimkić, Ivica and Budimir, Milica and Marinković, Dragana and Jovanovic, Svetlana",
year = "2022",
abstract = "Structural modification of different carbon-based nanomaterials is often necessary to
improve their morphology and optical properties, particularly the incorporation of N-atoms in
graphene quantum dots (GQDs). Here, a clean, simple, one-step, and eco-friendly method for
N-doping of GQDs using gamma irradiation is reported. GQDs were irradiated in the presence
of the different ethylenediamine (EDA) amounts (1 g, 5 g, and 10 g) and the highest % of N was
detected in the presence of 10 g. N-doped GQDs emitted strong, blue photoluminescence (PL).
Photoluminescence quantum yield was increased from 1.45, as obtained for non-irradiated dots,
to 7.24% for those irradiated in the presence of 1 g of EDA. Modified GQDs were investigated as
a PL probe for the detection of insecticide Carbofuran (2,2-Dimethyl-2,3-dihydro-1-benzofuran-7-
yl methylcarbamate) and herbicide Amitrole (3-amino-1,2,4-triazole). The limit of detection was
5.4 µmol L−1
for Carbofuran. For the first time, Amitrole was detected by GQDs in a turn-off/turn-on
mechanism using Pd(II) ions as a quenching agent. First, Pd(II) ions were quenched (turn-off) PL
of GQDs, while after Amitrole addition, PL was recovered linearly with Amitrole concentration
(turn-on). LOD was 2.03 µmol L−1
. These results suggest that modified GQDs can be used as an
efficient new material for Carbofuran and Amitrole detection. Furthermore, the phototoxicity of dots
was investigated on both Gram-positive and Gram-negative bacterial strains. When bacterial cells
were exposed to different GQD concentrations and illuminated with light of 470 nm wavelength, the
toxic effects were not observed.",
publisher = "MDPI",
journal = "Nanomaterials",
title = "Gamma-ray-induced structural transformation of GQDs  towards the improvement of their optical properties, monitoring of selected toxic compounds,  and photo-induced effect on bacterial strains",
volume = "12",
pages = "2714",
doi = "https://doi.org/10.3390/nano12152714"
}
Dorontic, S., Bonasera, A., Scopelliti, M., Marković, O. S., Bajuk Bogdanović, D., Ciasca, G., Romanò, S., Dimkić, I., Budimir, M., Marinković, D.,& Jovanovic, S.. (2022). Gamma-ray-induced structural transformation of GQDs  towards the improvement of their optical properties, monitoring of selected toxic compounds,  and photo-induced effect on bacterial strains. in Nanomaterials
MDPI., 12, 2714.
https://doi.org/https://doi.org/10.3390/nano12152714
Dorontic S, Bonasera A, Scopelliti M, Marković OS, Bajuk Bogdanović D, Ciasca G, Romanò S, Dimkić I, Budimir M, Marinković D, Jovanovic S. Gamma-ray-induced structural transformation of GQDs  towards the improvement of their optical properties, monitoring of selected toxic compounds,  and photo-induced effect on bacterial strains. in Nanomaterials. 2022;12:2714.
doi:https://doi.org/10.3390/nano12152714 .
Dorontic, Sladjana, Bonasera, Aurelio, Scopelliti, Michelangelo, Marković, Olivera S., Bajuk Bogdanović, Danica, Ciasca, Gabriele, Romanò, Sabrina, Dimkić, Ivica, Budimir, Milica, Marinković, Dragana, Jovanovic, Svetlana, "Gamma-ray-induced structural transformation of GQDs  towards the improvement of their optical properties, monitoring of selected toxic compounds,  and photo-induced effect on bacterial strains" in Nanomaterials, 12 (2022):2714,
https://doi.org/https://doi.org/10.3390/nano12152714 . .