Blagojević, Jelena P.

Link to this page

Authority KeyName Variants
f1f0abb7-6e0a-4aa8-82f7-4c693d0904a5
  • Blagojević, Jelena P. (3)
Projects

Author's Bibliography

Benzene and water – different or similar?

Milovanović, Milan R.; Živković, Jelena M.; Ninković, Dragan B.; Blagojević, Jelena P.; Zarić, Snežana D.

(2023)

TY  - CONF
AU  - Milovanović, Milan R.
AU  - Živković, Jelena M.
AU  - Ninković, Dragan B.
AU  - Blagojević, Jelena P.
AU  - Zarić, Snežana D.
PY  - 2023
UR  - www.iccbikg2023.kg.ac.rs
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6342
AB  - Considering the properties of water and benzene molecules, one can expect very different benzene/benzene and water/water interactions. Benzene does not have a dipole moment, while water does. Analysis of the data in the crystal structures in the Cambridge Structural Database (CSD) revealed the most frequent benzene/benzene and water/water geometries. The majority of the benzene/benzene interactions in the crystal structures in the CSD are stacking interactions with large horizontal displacements, and not geometries that are minima on benzene/benzene potential surface. A large number of the water/water contacts in the CSD are hydrogen bonds, 70% of all attractive water/water interactions. In addition, water/water contacts with two water forming antiparallel interactions are 20% of all attractive water/water contacts. In these contacts, the O-H bonds of water molecules are in antiparallel orientation. In benzene/benzene interactions at large horizontal displacements, two C-H bonds also are in the antiparallel orientation. This shows that although the two molecules are different, both of them form antiparallel interactions with a local O-H and C-H dipole moments.
C3  - 2nd International Conference on Chemo and Bioinformatics (ICCBIKG_2023), Book of Proceedings, 28-29 September 2023, Kragujevac, Serbia
T1  - Benzene and water – different or similar?
UR  - https://hdl.handle.net/21.15107/rcub_cherry_6342
ER  - 
@conference{
author = "Milovanović, Milan R. and Živković, Jelena M. and Ninković, Dragan B. and Blagojević, Jelena P. and Zarić, Snežana D.",
year = "2023",
abstract = "Considering the properties of water and benzene molecules, one can expect very different benzene/benzene and water/water interactions. Benzene does not have a dipole moment, while water does. Analysis of the data in the crystal structures in the Cambridge Structural Database (CSD) revealed the most frequent benzene/benzene and water/water geometries. The majority of the benzene/benzene interactions in the crystal structures in the CSD are stacking interactions with large horizontal displacements, and not geometries that are minima on benzene/benzene potential surface. A large number of the water/water contacts in the CSD are hydrogen bonds, 70% of all attractive water/water interactions. In addition, water/water contacts with two water forming antiparallel interactions are 20% of all attractive water/water contacts. In these contacts, the O-H bonds of water molecules are in antiparallel orientation. In benzene/benzene interactions at large horizontal displacements, two C-H bonds also are in the antiparallel orientation. This shows that although the two molecules are different, both of them form antiparallel interactions with a local O-H and C-H dipole moments.",
journal = "2nd International Conference on Chemo and Bioinformatics (ICCBIKG_2023), Book of Proceedings, 28-29 September 2023, Kragujevac, Serbia",
title = "Benzene and water – different or similar?",
url = "https://hdl.handle.net/21.15107/rcub_cherry_6342"
}
Milovanović, M. R., Živković, J. M., Ninković, D. B., Blagojević, J. P.,& Zarić, S. D.. (2023). Benzene and water – different or similar?. in 2nd International Conference on Chemo and Bioinformatics (ICCBIKG_2023), Book of Proceedings, 28-29 September 2023, Kragujevac, Serbia.
https://hdl.handle.net/21.15107/rcub_cherry_6342
Milovanović MR, Živković JM, Ninković DB, Blagojević JP, Zarić SD. Benzene and water – different or similar?. in 2nd International Conference on Chemo and Bioinformatics (ICCBIKG_2023), Book of Proceedings, 28-29 September 2023, Kragujevac, Serbia. 2023;.
https://hdl.handle.net/21.15107/rcub_cherry_6342 .
Milovanović, Milan R., Živković, Jelena M., Ninković, Dragan B., Blagojević, Jelena P., Zarić, Snežana D., "Benzene and water – different or similar?" in 2nd International Conference on Chemo and Bioinformatics (ICCBIKG_2023), Book of Proceedings, 28-29 September 2023, Kragujevac, Serbia (2023),
https://hdl.handle.net/21.15107/rcub_cherry_6342 .

Differences and Similarities in Benzene/Benzene and Water/Water Interactions

Milovanović, Milan R.; Živković, Jelena M.; Ninković, Dragan B.; Blagojević, Jelena P.; Zarić, Snežana D.

(2023)

TY  - CONF
AU  - Milovanović, Milan R.
AU  - Živković, Jelena M.
AU  - Ninković, Dragan B.
AU  - Blagojević, Jelena P.
AU  - Zarić, Snežana D.
PY  - 2023
UR  - https://physics.mff.cuni.cz/kchfo/MIB23
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6350
AB  - Considering properties of water and benzene molecules, one can expect very different benzene/benzene and water/water interactions. Benzene does not have a dipole moment, while water has. Quantum chemical calculations showed that minima on potential surface of water/water interactions is hydrogen bond, where dipole moment of water plays important role. The calculations show that the minima on potential surface for benzene/benzene interactions are stacking (parallel displaced) geometry and T-shaped geometry. Analysis of the data in the crystal structures in the Cambridge Structural Database (CSD) revealed the most frequent benzene/benzene and water/water geometries. Majority of the benzene/benzene interactions in the crystal structures in the CSD are tacking interactions with large horizontal displacements, and not geometries that are minima on benzene/benzene potential surface. Large number of the water/water contacts in the CSD are hydrogen bonds, 70% of all attractive water/water interactions. In addition water/water contacts with two water forming antiparallel interactions are 20% of all attractive water/water contacts. In these contacts O-H bonds of water molecules are in antiparallel orientation (Fig. 1). In benzene/benzene interactions at large horizontal displacements two C-H bonds also are in the antiparallel orientation (Fig. 1).
C3  - Modeling Interactions in Biomolecules IX, Book of Abstracts, Pruhonice, Prague-Pruhonice, Czech Republic, 10th-14th September 2023
T1  - Differences and Similarities in Benzene/Benzene and Water/Water Interactions
SP  - 56
EP  - 56
UR  - https://hdl.handle.net/21.15107/rcub_cherry_6350
ER  - 
@conference{
author = "Milovanović, Milan R. and Živković, Jelena M. and Ninković, Dragan B. and Blagojević, Jelena P. and Zarić, Snežana D.",
year = "2023",
abstract = "Considering properties of water and benzene molecules, one can expect very different benzene/benzene and water/water interactions. Benzene does not have a dipole moment, while water has. Quantum chemical calculations showed that minima on potential surface of water/water interactions is hydrogen bond, where dipole moment of water plays important role. The calculations show that the minima on potential surface for benzene/benzene interactions are stacking (parallel displaced) geometry and T-shaped geometry. Analysis of the data in the crystal structures in the Cambridge Structural Database (CSD) revealed the most frequent benzene/benzene and water/water geometries. Majority of the benzene/benzene interactions in the crystal structures in the CSD are tacking interactions with large horizontal displacements, and not geometries that are minima on benzene/benzene potential surface. Large number of the water/water contacts in the CSD are hydrogen bonds, 70% of all attractive water/water interactions. In addition water/water contacts with two water forming antiparallel interactions are 20% of all attractive water/water contacts. In these contacts O-H bonds of water molecules are in antiparallel orientation (Fig. 1). In benzene/benzene interactions at large horizontal displacements two C-H bonds also are in the antiparallel orientation (Fig. 1).",
journal = "Modeling Interactions in Biomolecules IX, Book of Abstracts, Pruhonice, Prague-Pruhonice, Czech Republic, 10th-14th September 2023",
title = "Differences and Similarities in Benzene/Benzene and Water/Water Interactions",
pages = "56-56",
url = "https://hdl.handle.net/21.15107/rcub_cherry_6350"
}
Milovanović, M. R., Živković, J. M., Ninković, D. B., Blagojević, J. P.,& Zarić, S. D.. (2023). Differences and Similarities in Benzene/Benzene and Water/Water Interactions. in Modeling Interactions in Biomolecules IX, Book of Abstracts, Pruhonice, Prague-Pruhonice, Czech Republic, 10th-14th September 2023, 56-56.
https://hdl.handle.net/21.15107/rcub_cherry_6350
Milovanović MR, Živković JM, Ninković DB, Blagojević JP, Zarić SD. Differences and Similarities in Benzene/Benzene and Water/Water Interactions. in Modeling Interactions in Biomolecules IX, Book of Abstracts, Pruhonice, Prague-Pruhonice, Czech Republic, 10th-14th September 2023. 2023;:56-56.
https://hdl.handle.net/21.15107/rcub_cherry_6350 .
Milovanović, Milan R., Živković, Jelena M., Ninković, Dragan B., Blagojević, Jelena P., Zarić, Snežana D., "Differences and Similarities in Benzene/Benzene and Water/Water Interactions" in Modeling Interactions in Biomolecules IX, Book of Abstracts, Pruhonice, Prague-Pruhonice, Czech Republic, 10th-14th September 2023 (2023):56-56,
https://hdl.handle.net/21.15107/rcub_cherry_6350 .

Antiparallel Noncovalent Interactions

Milovanović, Milan R.; Živković, Jelena M.; Ninković, Dragan B.; Blagojević, Jelena P.; Zarić, Snežana D.

(University of Strasbourg, 2023)

TY  - CONF
AU  - Milovanović, Milan R.
AU  - Živković, Jelena M.
AU  - Ninković, Dragan B.
AU  - Blagojević, Jelena P.
AU  - Zarić, Snežana D.
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/6371
AB  - In spite of being quite different substances, benzene and water can form similar noncovalent interactions. Analysis of the
data in the crystal structures in the Cambridge Structural Database (CSD) revealed similarities in benzene/benzene and
water/water interactions, since both benzene/benzene and water/water can form antiparallel interactions.
The quantum chemical calculations of potential surface of water/water interactions showed that the minimum is hydrogen
bond. Analysis of the data in the crystal structures in the Cambridge Structural Database (CSD) revealed antiparallel
water/water interactions, in addition to classical hydrogen bonds (1). The geometries of all water/water contacts in the CSD
were analyzed and for all contacts interaction energies were calculated at accurate CCSD(T)/CBS level. The results
showed that the most frequent water/water contacts are hydrogen bonds; hydrogen bonds are 70% of all attractive
water/water interactions. In addition, water/water contacts with antiparallel interactions are 20% of all attractive water/water
contacts. In these contacts O-H bonds of water molecules are in antiparallel orientation (Figure).
The quantum chemical calculations of potential surface of benzene/benzene interactions showed two minima stacking
(parallel displaced) geometry and T-shaped geometry. Analysis of all benzene/benzene contacts in the crystal structures
in the CSD revealed the most frequent benzene/benzene geometries (2). Majority of the benzene/benzene interactions in
the CSD are stacking interactions with large horizontal displacements, and not geometries that are minima on
benzene/benzene potential surface. In benzene/benzene interactions at large horizontal displacements two C-H bonds are in the antiparallel orientation (Figure).
In these O-H and C-H antiparallel interactions two dipoles are in antiparallel orientation enabling close contact of positive
and negative regions of the dipoles. Symmetry Adapted Perturbation Theory (SAPT) analysis showed that electrostatic is
the largest attractive force in the antiparallel interactions. Antiparallel interactions are also possible between O-H and C-H
bonds; in the crystal structures from the CSD these interactions are observed as one of the types of water benzene interactions (3).
PB  - University of Strasbourg
C3  - The van der Waals-London Discussions, Univesity of Strasbourg, October 26-27th 2023
T1  - Antiparallel Noncovalent Interactions
UR  - https://hdl.handle.net/21.15107/rcub_cherry_6371
ER  - 
@conference{
author = "Milovanović, Milan R. and Živković, Jelena M. and Ninković, Dragan B. and Blagojević, Jelena P. and Zarić, Snežana D.",
year = "2023",
abstract = "In spite of being quite different substances, benzene and water can form similar noncovalent interactions. Analysis of the
data in the crystal structures in the Cambridge Structural Database (CSD) revealed similarities in benzene/benzene and
water/water interactions, since both benzene/benzene and water/water can form antiparallel interactions.
The quantum chemical calculations of potential surface of water/water interactions showed that the minimum is hydrogen
bond. Analysis of the data in the crystal structures in the Cambridge Structural Database (CSD) revealed antiparallel
water/water interactions, in addition to classical hydrogen bonds (1). The geometries of all water/water contacts in the CSD
were analyzed and for all contacts interaction energies were calculated at accurate CCSD(T)/CBS level. The results
showed that the most frequent water/water contacts are hydrogen bonds; hydrogen bonds are 70% of all attractive
water/water interactions. In addition, water/water contacts with antiparallel interactions are 20% of all attractive water/water
contacts. In these contacts O-H bonds of water molecules are in antiparallel orientation (Figure).
The quantum chemical calculations of potential surface of benzene/benzene interactions showed two minima stacking
(parallel displaced) geometry and T-shaped geometry. Analysis of all benzene/benzene contacts in the crystal structures
in the CSD revealed the most frequent benzene/benzene geometries (2). Majority of the benzene/benzene interactions in
the CSD are stacking interactions with large horizontal displacements, and not geometries that are minima on
benzene/benzene potential surface. In benzene/benzene interactions at large horizontal displacements two C-H bonds are in the antiparallel orientation (Figure).
In these O-H and C-H antiparallel interactions two dipoles are in antiparallel orientation enabling close contact of positive
and negative regions of the dipoles. Symmetry Adapted Perturbation Theory (SAPT) analysis showed that electrostatic is
the largest attractive force in the antiparallel interactions. Antiparallel interactions are also possible between O-H and C-H
bonds; in the crystal structures from the CSD these interactions are observed as one of the types of water benzene interactions (3).",
publisher = "University of Strasbourg",
journal = "The van der Waals-London Discussions, Univesity of Strasbourg, October 26-27th 2023",
title = "Antiparallel Noncovalent Interactions",
url = "https://hdl.handle.net/21.15107/rcub_cherry_6371"
}
Milovanović, M. R., Živković, J. M., Ninković, D. B., Blagojević, J. P.,& Zarić, S. D.. (2023). Antiparallel Noncovalent Interactions. in The van der Waals-London Discussions, Univesity of Strasbourg, October 26-27th 2023
University of Strasbourg..
https://hdl.handle.net/21.15107/rcub_cherry_6371
Milovanović MR, Živković JM, Ninković DB, Blagojević JP, Zarić SD. Antiparallel Noncovalent Interactions. in The van der Waals-London Discussions, Univesity of Strasbourg, October 26-27th 2023. 2023;.
https://hdl.handle.net/21.15107/rcub_cherry_6371 .
Milovanović, Milan R., Živković, Jelena M., Ninković, Dragan B., Blagojević, Jelena P., Zarić, Snežana D., "Antiparallel Noncovalent Interactions" in The van der Waals-London Discussions, Univesity of Strasbourg, October 26-27th 2023 (2023),
https://hdl.handle.net/21.15107/rcub_cherry_6371 .